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* From macroscopic observables to a miscroscopic description of
chemical reactions (suggested reading Steinfeld et al. Chapter 6 & 7)
* Potential energy surfaces
* Long-range potentials
* Empirical potentials
* Molecular bonding potentials
* Internal coordinates and Normal Modes of vibration
* Ab Initio calculation of potential energy surfaces
* Analytic potential energy functions
* Reaction path and introduction to transition state theory
* Potential energy surfaces of electronically excited molecules




From the intermolecular potential energy surface
to thermally averaged rate coefficients.
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Potential energy curve

For N atoms, the potential energy surface
depends on 3N-6 independent coordinates.
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Potential energy curve

For N atoms, the potential energy surface
dependd on 3N-6 independent coordinates.
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Potential energy curve

Vi)

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

_dv(r)

L) = dr

V(r) = Z\ 7 - Potential between two
r charges Z;e and Ze.

Zlfﬂ-z cosf - Potential between a charge
i Z1e and a dipole .

Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.
dVv(r)
dr

Z Z.e .
Vi(r) = 1r2 Potential between two

charges Z;e and Ze.

F, =

Zle.‘-"z cosf - Potential between a charge
Firh=————— Z1e and a dipole pa.
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6

independent coordinates.

o _ _dV()
¢ dr '
A dipole may be induced by the
— electric field of an ion.
By = Z,\ 7 Potential between two B
(r) p=akE
r charges Z;e and Ze. =
Z|€.u-g cosf h Potential between a charge
V(r) = — 3 - Zie and a dipole y,.
Electronic Polarization
p

Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6

independent coordinates.
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Vir) = Z1"7'!2“-"' h Potential between two
r charges Z;e and Ze.

Z ew,cosf h Potential between a charge

5 Zie and a dipole p,.
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A dipole may be induced by the
electric field of an ion.

p=aE
Where a; is the polarizability of the
nonpolar molecule. The magnitude of

the ion’s electric field is given by

E = —d[Ze/r)/dr = Ze/r*
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

Vi(r
)
dr
V(r) = Z\ 7 h Potential between two
r charges Z;e and Ze.

Z|€.u-g cosf h Potential between a charge
i Zie and a dipole ;.
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A dipole may be induced by the
electric field of an ion.

=k =), =a,Ze/r

Where a; is the polarizability of the
nonpolar molecule. The magnitude of
the ion’s electric field is given by

E = —d[Ze[r)/dr = Ze/r*

Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

dVv(r
F,=- ( }k
dr
Vi(r) = Z, 7. h Potential between two
r charges Z;e and Ze.

The magnitude of the Coulomb # B s dE_:
force on the induced dipole L dr
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A dipole may be induced by the
electric field of an ion.

p=aE #’u = n:Z]P/r!

Where a; is the polarizability of the
nonpolar molecule. The magnitude of
the ion’s electric field is given by

E = —d|Z,e/r)/dr = Ze/r*
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

Vi(r
)
dr
_ Z\ 7 Potential between two
Vir)
r charges Z;e and Ze.

The magnitude of the Coulomb
force on the induced dipole

V(r) = 7J- F-dr = 7[ Fdr

J4E
dr
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A dipole may be induced by the
electric field of an ion.

p=akE #Hv = a,Ze/r’

Where a; is the polarizability of the
nonpolar molecule. The magnitude of
the ion’s electric field is given by

E = —d[Ze[r)/dr = Ze/r*

Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

dVv(r
BARRO)
dr
Vir) = leifv h Potential between two
r charges Z;e and Ze.

The magnitude of the Coulomb

# P i
force on the induced dipole L dr
V(r) = —f F-dr= —f Fdr # V(r) = —ay)(Z,e)*/2r
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A dipole may be induced by the
electric field of an ion.

p=aE #’u = a,Ze/r’

Where a; is the polarizability of the
nonpolar molecule. The magnitude of
the ion’s electric field is given by

E = —d|Z,e/r)/dr = Ze/r*
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

Vi(r
)
dr
V(r) = Z\ 7 h Potential between two
r charges Z;e and Ze.

The magnitude of the Coulomb # B c{l}
force on the induced dipole s dr

V(r) = —J-’F-dr = —J'Fdr # Vi)

—a,(Z,e)*/2r
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Similarly, a dipole p; may be induced
by a w; dipole .

— a,pui(3cos’d + 1)

V(r,0) = o

Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

dVv(r
BARRO)
dr
Vir) = leifv h Potential between two
r charges Z;e and Ze.

The magnitude of the Coulomb # B s c{@
force on the induced dipole L dr

V(r) = _J-’ F-dr = _J.' F dr # V(() = _“1(21('):,/2}'4
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Similarly, a dipole p; may be induced
by a w dipole .

- a,ui(3cos’d + 1)
2r®

V(r.8) =

For a large number of particles, the
average interaction energy is obtained by
averaging the interaction potential at a
fixed r; over all possible orientations.
Each orientation is weighted by the
Boltzman factor: exp[=V(8,. 6, r)/kyT)]
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Long-range potentials

For N atoms, the potential energy
surface depending on 3N-6
independent coordinates.

Vi(r)
e o B 7
' dr

V(r) = Z\ 7 h Potential between two
r charges Z;e and Ze.

The magnitude of the Coulomb # e i dl::
dr

force on the induced dipole

Pl *I’F"" - *J’”’ =) V() - -aZe/2"
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Orientation Polarization

Similarly, a dipole p; may be induced

by a w; dipole .

- a,pj(3cos’d + 1 -
VG.6) = uh#.(’:hs ) * ey

For a large number of particles, the

average interaction energy is obtained by
averaging the interaction potential at a
fixed r; over all possible orientations.

Each orientation is weighted by the

Boltzman factor: exp[— V(8,8 r)/kyT)]
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Intermolecular potentials

) ) - " Dispersion and London forces are present even in the absence
of net charges and permanent dipoles. The interaction energy

Q Q
He(A)  He(B) H,(A)
No polarization

H,(B)

No polarization

V(r) = ———= A

. - - (r) 21, + 1) ro o are polarizabilities
6 &
@9 Wy

A

He(A)  He(B) H,(A) Ha(B)
Instantaneous Instantaneous dipole
dipole on atom A on molecule A
§ & & &° ( i i i
He(A)  He(B) Hy(A) H,(8)
Induced dipole Induced dipole on
on atom B molecule B

from QM perturbation theory, is

I is first ionization potential
—31,1, &, ofmoleculesland?2
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Intermolecular potentials

) )

\ A
He(A)  He(B)

No polarization

6~ &F

(F S
He(A)  He(B)
Instantaneous

dipole on atom A

H—H

H,(A)

5 [

H—H

H,(B)

No polarization

Ha(A)

Instantaneous dipole
on molecule A

3

00 D

Dispersion and London forces are present even in the absence
of net charges and permanent dipoles. The interaction energy

from QM perturbation theory, is
I is first ionization potential

V(r) = —35,l, @@  ofmolecules 1and2

2, +1,) r® a are polarizabilities
To simplify the calculation of interaction energies due to dispersion
forces it is common practice to use Empirical potentials.

He(A)  He(B) H,(A) H,(B)
Induced dipole Induced dipole on
onatomB molecule B
Intermolecular potentials
) ) o - Dispersion and London forces are present even in the absence
S S of net charges and permanent dipoles. The interaction energy
He(A)  He(B) H,(A) H,(B) from QM perturbation theory, is
I is first ionization potential

No polarization

No polarization

—3I,1, @@  ofmolecules1and 2

Vir) = 2(1, + 1) r8 o are polarizabilities

To simplify the calculation of interaction energies due to dispersion

(IS
He(A)  He(®) H,(A) H,(B) forces it is common practice to use Empirical potentials.
Instantaneous Instantaneous dipole Hard sphere potential :
dipole on atom A on molecule A .
Attractive potential
)
"
— Walr) = -C/r"
& &5 &t 6 .5 & .8 Vir) =0 r=>o
( b ( ' ( 7'-’ Q‘iH’ V{r:l = 0 r<a ¥ Repulsive potential
wi(r)
He(A) He(B) H,(A) H,(B) Him 4
W,ep(r) = (afr)”
Induced dipole Induced dipole on *
on atom B molecule B

10



4/21/20

Intermolecular potentials

) &

Q N
He(A)  He(B)

No polarization

- o
-
He(A)  He(B)

Instantaneous
dipole on atom A

& & & &
He(A) He(B)

Induced dipole
onatomB

ol LH=lbl

H,(A) H,(B)

No polarization

[ &
@ o
H,(A) H,(B)

Instantaneous dipole
on molecule A

[ S
@) D
H,(A) H,(B)

Induced dipole on
molecule B

Dispersion and London forces are present even in the absence

of net charges and permanent dipoles. The interaction energy

from QM perturbation theory, is

I is first ionization potential
of molecules 1 and 2

o are polarizabilities

_ -3 ay o,
V(’)‘zuﬁ.!?) o

To simplify the calculation of interaction energies due to dispersion
forces it is common practice to use Empirical potentials.

Lennard-jones potential (6-12) : "

E/cm

J A

100 '." Attractive —B/r®

30 4.0 50 6.0 70 80
r/A

Intermolecular potentials

He(A)  He(B)

No polarization

[
@09

He(A) He(B)

Instantaneous
dipole on atom A

§ & & &°

He(A)  He(B)

Induced dipole
on atom B

nfe=r H=ih

Hy(A) H,(B)

No polarization

S5~ &t
D -
H,(A) H,(B)

Instantaneous dipole
on molecule A

H,(A) H,(B)
Induced dipole on
molecule B

Lennard Jones

strong repulsive
?orc’e)s Interatomic Potential
‘_“_’ separation at o 12 o 6
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il weak attractive
: force
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o |
|
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Molecular bonding potentials

o - 5 s (2]

9.4, <—-"r
’ 231247[80};7 u /—"‘_

1
Harmonic potential for bonds # + z Ekb(r_ n)? OwO
Aty

<
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o
1 , @ @
Angles between 3 particles # + Z —k, (60-6,)" $AAY,
angles 2 @
O

Torsion angles involving 4 # 3 éﬂ_“é'
particles ¥ Zko [1+cos(ng-5)]

torsions

Energy

Molecular bonding potentials

\» || Dissociation Energy

s V(r) = D[1 — exp{-Br = r)I)’

}‘c Morse potential are used to introduce anharmonicity.
Internuclear Separation (r)
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Normal modes of vibration

I

s >

e\ NI/ IR
JONCON OMO PO ®

Symmetric stretch Symmetric bend Antisvmmetric stretch
3651.7 em? 1595.0 cm! 3755.8 cm!

Normal modes of vibration

l]
S
7\ NN/ /\\\
2 & ®® AP ®

Symmetric stretch Symmetric bend

3651.7 em™? 1595.0 cm Antisymmetric stretch

37558 cm?

Consider the stretching vibration of a diatomic
molecule with the harmonic potential:

V=Afr- r..):,f‘E

Let’s make r=x; — x3.

13
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Normal modes of vibration

;

—
‘*/
Lo e © @ AP ®

Symmetric stretch Symmetric bend Antisvmmetric stretch
36517 em? 1595.0 em? 37558 em!

Consider the stretching vibration of a diatomic
molecule with the harmonic potential:

V=Ffr-r)n

Let’s make r=x; — x.

And calculating the second derivatives of the potential with
respect to the Cartesian coordinates :

PV /ax2 = f,#*V /ax} = f,and 8*V/ox,0x, = 0*V/éxx, = —f.

Normal modes of vibration

i}
%
7\ NN/ /\\\
PURCON ®® QQ

Symmetric stretch Symmetric bend

3651.7 em™? 1595.0 cm Antisymmetric stretch

37558 cm?

Consider the stretching vibration of a diatomic
molecule with the harmonic potential:

V=Ffr-r)n

Let’s make r=x; — x3.

And calculating the second derivatives of the potential with
respect to the Cartesian coordinates :

PV /ax2 = f,#*V /ax} = f,and 8*V/ox,0x, = 0*V/éxx, = —f.

— -

fim,
—f/(mym,)'?

—f f(mymy)' 2|
fimy |
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Normal modes of vibration

Hessian, second derivative matrix :

®

==
7N \/ o\\ &
y% ONCEENNCRC S |F

Hf(x1,X2, 00y Xg) = | d2 811

iy dxs

Symmetric stretch Symmetric bend Antisymmetric stretch
36517 em? 1595.0 em? 37558 cmd . . . )
>f >f >y 3 f

Gy Ay O Dy i g g

Consider the stretching vibration of a diatomic
molecule with the harmonic potential: Thus, the mass-weighted Cartesian force constant matrix is

V= f{r B r,,):fz (Hessian):
f/m, —f/(mmy)'2|

F=|-fmmy  * frm,

Let’s make r=x; — x.

And calculating the second derivatives of the potential with
respect to the Cartesian coordinates :

PV /ax2 = f,#*V /ax} = f,and 8*V/ox,0x, = 0*V/éxx, = —f.

Normal modes of vibration

Hessian, second derivative matrix :

(o) @)

—>
e W W & D B
y ®@ & v e e e

Hf (X1 X2y ooy Xp) = | B2 801 a3 g o g iy

Symmetric stretch Symmetric bend Antisymmetric stretch
5] -1 -1 : H
3651.7 emy 1595.0 cm 3755.8 cm! Y Y 27 2
Pf P P P

g dxy Oy Gy Dy Ay ag

Consider the stretching vibration of a diatomic
molecule with the harmonic potential: Thus, the mass-weighted Cartesian force constant matrix is

2 (Hessian):
V=Ffr-r)/2 _ : -
N B T L
Let’s make r=x, — x. =f/mymy)'"”? fim,
Solving the eigenvector problem :
And calculating the second derivatives of the potential with & & P
respect to the Cartesian coordinates : (F-AL=0
2 2 2 2 2 2 We get : 9
@'V /axi = f,a*V/axi = f,and 3*V/ax,0x, = *V/axx, = —f. fim = x  =f/(mm)'?| _ "
—f/mgm)'?  flm,— A |
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Normal modes of vibration

Hessian, second derivative matrix :

®

==
7N \/ o\\ &
f% ONCEENNCRC S |F

Hf@xi,x2, .0, xy)=| P20

Symmetric stretch Symmetric bend Antisvmmetric stretch
36517 em? 1595.0 em? 37558 em!

Consider the stretching vibration of a diatomic
molecule with the harmonic potential: Thus, the mass-weighted Cartesian force constant matrix is

V= f{r B r,,):fz (Hessian):
f/m, —f/(mmy)'2|

Fe = f/(mm,)"? f/m,

Let’s make r=x; — xi.
Solving the eigenvector problem :

And calculating the second derivatives of the potential with _
. . p=mim;/ (my+my)
respect to the Cartesian coordinates : (F-AL=0
- 2 . B " We get : ) A =0
@'V /axi = f,a*V/axi = f,and 3*V/ax,0x, = *V/axx, = —f. fim = A —f/(mymy)'?| 0 »
—f/mgm)'?  f/m,— A | A, = fln

Normal modes of vibration

Hessian, second derivative matrix :

@
7\ N\ ON 2
J% Jchc ™ |

Hfx),x3,0020)= dy dxy

Symmetric stretch Symmetric bend Antisymmetric stretch

36517 cmt 15950 em? 37558 cm .

iy dxy

Consider the stretching vibration of a diatomic
molecule with the harmonic potential: Thus, the mass-weighted Cartesian force constant matrix is

V= f{r B r,,):fz (Hessian):
fim, —f/(mymy)'?|

_ff(’fﬁmz.)m f/m,

Solving the eigenvector problem :

=

Let’s make r=x; — x3.

And calculating the second derivatives of the potential with _
) ) p=mim; / (mg +my)
respect to the Cartesian coordinates : (F-AL=0
, , - ) Translation == A; =0
#V/joxt = f,9*V/ax: = f,and 3*V/ax,dx, = 8*°V/ox,x, = —f.
/ 1 f /i 2 =F a°V/ax0x, = / bl f. Vibration N }‘1 s f,fj.-l-
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