Chemical dynamics CHEM674

From macroscopic observables to a miscroscopic description Andrew Teplyakov University of Delaware 2020

Outline

- From macroscopic observables to a miscroscopic description of chemical reactions (suggested reading Steinfeld et al. Chapter 6 & 7)
 - Potential energy surfaces
 - Long-range potentials
 - Empirical potentials
 - Molecular bonding potentials
 - Internal coordinates and Normal Modes of vibration
 - · Ab Initio calculation of potential energy surfaces
 - Analytic potential energy functions
 - Reaction path and introduction to transition state theory
 - Potential energy surfaces of electronically excited molecules

From the intermolecular potential energy surface to thermally averaged rate coefficients.

Potential energy curve

For N atoms, the potential energy surface depends on 3N-6 independent coordinates.

6

Intermolecular potentials

Dispersion and London forces are present even in the absence of net charges and permanent dipoles. The interaction energy from QM perturbation theory, is

$$V(r) = \frac{-3I_1I_2}{2(I_1 + I_2)} \frac{\alpha_1\alpha_2}{r^6}$$

I is first ionization potential of molecules 1 and 2 α are polarizabilities

To simplify the calculation of interaction energies due to dispersion forces it is common practice to use Empirical potentials.

Intermolecular potentials Dispersion and London forces are present even in the absence $\mathrm{H}-\mathrm{H}$ H - Hof net charges and permanent dipoles. The interaction energy from QM perturbation theory, is He(A) He(B) $H_2(A)$ $H_2(B)$ *I* is first ionization potential No polarization No polarization $V(r) = \frac{-3I_1I_2}{2(I_1 + I_2)} \frac{\alpha_1\alpha_2}{r^6}$ of molecules 1 and 2 $\boldsymbol{\alpha}$ are polarizabilities δ δ δ H - HTo simplify the calculation of interaction energies due to dispersion forces it is common practice to use Empirical potentials. $H_2(A)$ H₂(B) He(A) He(B) Lennard-jones potential (6-12) : Instantaneous dipole Instantaneous dipole on atom A on molecule A E/cm⁻¹ Repulsive +A/r1 50 $V(r) - 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$ δ δ δ δ -50 He(A) He(B) $H_2(A)$ H₂(B) -100 Induced dipole Induced dipole on 3.0 4.0 5.0 6.0 r/Å on atom B molecule B

Normal modes of vibration

