Chemical dynamics
 CHEM674

Laplace and linear algebra methods
University of Delaware
2020

Outline

- Laplace methods
- Linear algebra methods

Laplace transform

The transform $F(p)$ of a function $f(t)$ subjected to the Laplace transformation is defined by the integral:

$$
F(p)=\mathscr{L}[f(t)]=\int_{0}^{\infty} e^{-p t} f(t) d t
$$

Laplace transform

The transform $F(p)$ of a function $f(t)$ subjected to the Laplace transformation is defined by the integral:

$$
F(p)=\mathscr{L}[f(t)]=\int_{0}^{\infty} e^{-p t} f(t) d t
$$

The Laplace transform of a given function maybe determined by direct integration :

$$
\begin{aligned}
F(p) & =\mathscr{L}\left[e^{-a t}\right]=\int_{0}^{\infty} e^{-a t} e^{-p t} d t=\int_{0}^{\infty} e^{-(a+p) t} d t \\
& =-\frac{1}{a+p}\left[e^{-(a+p) t}\right]_{0}^{\infty} \\
& =\frac{1}{p+a} \quad(p>-a)
\end{aligned}
$$

Properties of the Laplace transform

Laplace transform of a linear combination of functions.

$$
\begin{gathered}
f(t)=f_{1}(t)+f_{2}(t)+\cdots+f_{n}(t) \\
\mathscr{L}[f(t)]=\int_{0}^{\infty}\left[f_{1}(t)+f_{2}(t)+\cdots+f_{n}(t)\right] e^{-p t} d t \\
=\int_{0}^{\infty} f_{1}(t) e^{-p t} d t+\int_{0}^{\infty} f_{2}(t) e^{-p t} d t+\cdots+\int_{0}^{\infty} f_{n}(t) e^{-p t} d t \\
\mathscr{L}[f(t)]=F_{1}(p)+F_{2}(p)+\cdots+F_{n}(p)
\end{gathered}
$$

Properties of the Laplace transform

The Laplace transform of the derivative of $f(t)$, i.e., $f^{\prime}(t)$, can be readily obtained.

$$
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t
$$

Properties of the Laplace transform

The Laplace transform of the derivative of $f(t)$, i.e., $f^{\prime}(t)$, can be readily obtained.

$$
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t
$$

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

Properties of the Laplace transform

The Laplace transform of the derivative of $f(t)$, i.e., $f^{\prime}(t)$, can be readily obtained.

$$
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t
$$

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

$u=\exp (-\mathrm{pt})$ $d v=f^{\prime}(t) d t$

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

Properties of the Laplace transform

The Laplace transform of the derivative of $f(t)$, i.e., $f^{\prime}(t)$, can be readily obtained.

$$
\begin{array}{ll}
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t & \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
\left.\mathscr{L}\left[f^{\prime}(t)\right]=f(t) e^{-p t}\right]_{0}^{\infty}+p \int_{0}^{\infty} f(t) e^{-p t} d t & \\
& \mathrm{u}=\exp (-\mathrm{pt}) \\
& \mathrm{dv}=\mathrm{f}^{\prime}(\mathrm{t}) \mathrm{dt}
\end{array}
$$

Properties of the Laplace transform

The Laplace transform of the derivative of $f(t)$, i.e., $f^{\prime}(t)$, can be readily obtained.

$$
\begin{array}{ll}
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t & \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v \\
\left.\mathscr{L}\left[f^{\prime}(t)\right]=f(t) e^{-p t}\right]_{0}^{\infty}+p \int_{0}^{\infty} f(t) e^{-p t} d t & \mathrm{u}=\exp (-\mathrm{pt}) \\
\mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) & \mathrm{dv}=\mathrm{f}^{\prime}(\mathrm{t}) \mathrm{dt}
\end{array}
$$

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

Properties of the Laplace transform

$$
\begin{aligned}
& \mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t \\
& \left.\mathscr{L}\left[f^{\prime}(t)\right]=f(t) e^{-p t}\right]_{0}^{\infty}+p \int_{0}^{\infty} f(t) e^{-p t} d t \\
& \mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) \quad \mathscr{L}\left[f^{\prime \prime}(t)\right]=p \mathscr{L}\left[f^{\prime}(t)\right]-f^{\prime}(0)
\end{aligned}
$$

[^0]
Properties of the Laplace transform

$$
\begin{aligned}
& \mathscr{S}\left[f^{\prime}(t)\right]=\int_{0}^{x} f^{\prime}(t) e^{-p t} d t \\
& \left.\mathscr{L}\left[f^{\prime}(t)\right]=f(t) e^{-p t}\right]_{0}^{\infty}+p \int_{0}^{\infty} f(t) e^{-p t} d t \\
& \mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) \quad \mathscr{L}\left[f^{\prime \prime}(t)\right]=p \mathscr{L}\left[f^{\prime}(t)\right]-f^{\prime}(0) \\
& \mathscr{L}\left[f^{\prime \prime}(t)\right]=p(p \mathscr{L}[f(t)]-f(0))-f^{\prime}(0)
\end{aligned}
$$

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

Properties of the Laplace transform

$$
\begin{aligned}
& \mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t \\
& \left.\mathscr{L}\left[f^{\prime}(t)\right]=f(t) e^{-p t}\right]_{0}^{\infty}+p \int_{0}^{\infty} f(t) e^{-p t} d t \\
& \mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) \quad \mathscr{L}\left[f^{\prime \prime}(t)\right]=p \mathscr{L}\left[f^{\prime}(t)\right]-f^{\prime}(0) \\
& \mathscr{L}\left[f^{\prime \prime}(t)\right]=p(p \mathscr{L}[f(t)]-f(0))-f^{\prime}(0) \\
& \mathscr{L}\left[f^{\prime \prime}(t)\right]=p^{2} \mathscr{L}[f(t)]-p f(0)-f^{\prime}(0)
\end{aligned}
$$

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

Properties of the Laplace transform

$$
\begin{aligned}
\mathscr{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-p t} d t & \mathscr{L}\left[f^{(n)}(t)\right]
\end{aligned}=p^{n} \mathscr{L}[f(t)]-\sum_{i=1}^{n} f^{(i-1)}(0) p^{n-1} .
$$

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

Properties of the Laplace transform

The transform of an integral of a function $f(t)$ may be expressed as

$$
\mathscr{L}\left[\int_{0}^{t} f(t) d t\right]=\frac{\mathscr{L}[f(t)]}{p}
$$

Thus, for rate equations that are linear with respect to the reactants, Laplace methods is great

Reversible reactions

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

At time $t=0$ both A_{1} and A_{2} are present, that is $\left[A_{1}\right]=\left[A_{1}\right]_{0}$ and $\left[A_{2}\right]=\left[A_{2}\right]_{0}$

$$
\left[\mathbf{A}_{1}\right]_{0}+\left[\mathbf{A}_{2}\right]_{0}=\left[\mathbf{A}_{1}\right]+\left[\mathbf{A}_{2}\right]
$$

Reversible reactions

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~A}_{2}
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \quad \mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

Reversible reactions

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~A}_{2}
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \quad \mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0) \\
-\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
\left(p+k_{1}\right)\left(\mathscr{L}\left[\mathrm{A}_{1}\right]\right)-k_{2} \mathscr{L}\left[\mathrm{~A}_{2}\right]=\left[\mathrm{A}_{1}\right]_{0} \\
-k_{1}\left(\mathscr{L}\left[\mathrm{~A}_{1}\right]\right)+\left(p+k_{2}\right) \mathscr{L}\left[\mathrm{A}_{2}\right]=\left[\mathrm{A}_{2}\right]_{0}
\end{aligned}
$$

Reversible reactions The determinant of a 2×2 matrix is denoted by $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$
 To evaluate a 2x2 determinant use $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|=a d-b c$

Cramer's rule for a system of linear equations:
The solution to the system:

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right\}
$$

Is given by:

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

Cramer's rule

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right\}
$$

$$
\begin{aligned}
& 6 x-5 y=-23 \\
& 3 x+3 y=16
\end{aligned}
$$

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

Cramer's rule

$$
\begin{gathered}
\left\{\begin{array}{c}
\left\{\begin{array}{c}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y
\end{array}\right\}=c_{2}
\end{array}\right\} \\
\left.\begin{array}{c}
6 x-5 y=-23 \\
3 x+3 y
\end{array}\right)
\end{gathered}
$$

$$
\begin{array}{ll}
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} & y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \\
x=\frac{\left|\begin{array}{cc}
-23 & -5 \\
16 & 3
\end{array}\right|}{\left|\begin{array}{cc}
6 & -5 \\
3 & 3
\end{array}\right|} & y=\frac{\left|\begin{array}{cc}
6 & -23 \\
3 & 16
\end{array}\right|}{\left|\begin{array}{cc}
6 & -5 \\
3 & 3
\end{array}\right|}
\end{array}
$$

Cramer's rule

$$
\begin{gathered}
\left\{\begin{array}{c}
\left\{\begin{array}{c}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y
\end{array}\right\}=c_{2}
\end{array}\right\} \\
\begin{array}{c}
6 x-5 y=-23 \\
3 \mathrm{x}+3 \mathrm{y}=
\end{array} \\
\hline 16
\end{gathered}
$$

$$
\begin{array}{ll}
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} & y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \\
x=\frac{\left|\begin{array}{cc}
-23 & -5 \\
16 & 3
\end{array}\right|}{\left|\begin{array}{cc}
6 & -5
\end{array}\right|} & y=\frac{\left|\begin{array}{cc}
6 & -23 \\
3 & 16
\end{array}\right|}{\left|\begin{array}{cc}
6 & -5 \\
3 & 3
\end{array}\right|}
\end{array}
$$

$$
\begin{aligned}
& x=\frac{(-23)(3)-(16)(-5)}{(6)(3)-(3)(-5)}=\frac{-69+80}{18+15}=\frac{11}{33}=\frac{1}{3} \\
& y=\frac{(6)(16)-(3)(-23)}{(6)(3)-(3)(-5)}=\frac{96+69}{18+15}=\frac{165}{33}=5
\end{aligned}
$$

Cramer's rule

$\left[a_{1} x+b_{1} y+c_{1} z=d_{1}\right.$
The determinant of a 3×3 matrix is denoted by $\left|\begin{array}{llc}a & d & g \\ b & e & h \\ c & f & i\end{array}\right|$
$\left\{a_{2} x+b_{2} y+c_{2} z=d_{2}\right\}$ To evaluate a 3x3 determinant use $\left|\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right|=a\left|\begin{array}{ll}e & h \\ f & i\end{array}\right|-b\left|\begin{array}{ll}d & g \\ f & i\end{array}\right|+c\left|\begin{array}{ll}d & g \\ e & h\end{array}\right|$ $a_{3} x+b_{3} y+c_{3} z=d_{3}$
Cramer's rule for a system of linear equations :
The solution to the system:
Is given by: $\quad x=\frac{D_{x}}{D} \quad y=\frac{D_{y}}{D} \quad z=\frac{D_{z}}{D}$

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \quad D_{x}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \quad D_{y}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| \quad D_{z}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
$$

Cramer's rule

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\} \quad \begin{array}{r}
-x+2 y+3 z=-7 \\
-4 x-5 y+6 z=-13 \\
7 x-8 y-9 z=39
\end{array}
$$

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Cramer's rule

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\} \quad \begin{array}{r}
-x+2 y+3 z=-7 \\
-4 x-5 y+6 z=-13 \\
7 x-8 y-9 z=39
\end{array}
$$

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

$$
D=\left|\begin{array}{ccc}
-1 & 2 & 3 \\
-4 & -5 & 6 \\
7 & -8 & -9
\end{array}\right|
$$

Cramer's rule

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\} \quad \begin{array}{r}
-x+2 y+3 z=-7 \\
-4 x-5 y+6 z=-13 \\
7 x-8 y-9 z=39
\end{array}
$$

$D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

$$
\begin{aligned}
& D=\left|\begin{array}{ccc}
-1 & 2 & 3 \\
-4 & -5 & 6 \\
7 & -8 & -9
\end{array}\right|=-1\left|\begin{array}{cc}
-5 & 6 \\
-8 & -9
\end{array}\right|-(-4)\left|\begin{array}{cc}
2 & 3 \\
-8 & -9
\end{array}\right|+7\left|\begin{array}{cc}
2 & 3 \\
-5 & 6
\end{array}\right| \\
& D=-1[(-5)(-9)-(6)(-8)]+4[(2)(-9)-(3)(-8)]+7[(2)(6)-(3)(-5)] \\
& D=-1(45+48)+4(-18+24)+7(12+15)=\underline{120}
\end{aligned}
$$

Cramer's rule

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\} \quad \begin{array}{r}
-x+2 y+3 z=-7 \\
-4 x-5 y+6 z=-13 \\
7 x-8 y-9 z=39
\end{array}
$$

$x=\frac{D_{x}}{D} \quad y=\frac{D_{y}}{D} \quad z=\frac{D_{z}}{D} \quad D=-1(45+48)+4(-18+24)+7(12+15)=\underline{120}$
$D_{x}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|$
$D_{x}=\left|\begin{array}{ccc}-7 & 2 & 3 \\ -13 & -5 & 6 \\ 39 & -8 & -9\end{array}\right|=-7\left|\begin{array}{cc}-5 & 6 \\ -8 & -9\end{array}\right|-(-13)\left|\begin{array}{cc}2 & 3 \\ -8 & -9\end{array}\right|+39\left|\begin{array}{cc}2 & 3 \\ -5 & 6\end{array}\right|=-7(45+48)+13(-18+24)+39(12+15)=\underline{480}$
$D_{y}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|$
$D_{y}=\left|\begin{array}{ccc}-1 & -7 & 3 \\ -4 & -13 & 6 \\ 7 & 39 & -9\end{array}\right|=-1\left|\begin{array}{cc}-13 & 6 \\ 39 & -9\end{array}\right|-(-4)\left|\begin{array}{cc}-7 & 3 \\ 39 & -9\end{array}\right|+7\left|\begin{array}{ll}-7 & 3 \\ -13 & 6\end{array}\right|=-1(117-234)+4(63-117)+7(-42+39)=-120$
$D_{z}=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|$
$D_{z}=\left|\begin{array}{ccc}-1 & 2 & -7 \\ -4 & -5 & -13 \\ 7 & -8 & 39\end{array}\right|=-1\left|\begin{array}{cc}-5 & -13 \\ -8 & 39\end{array}\right|-(-4)\left|\begin{array}{cc}2 & -7 \\ -8 & 39\end{array}\right|+7\left|\begin{array}{cc}2 & -7 \\ -5 & -13\end{array}\right|=-1(-195-104)+4(78-56)+7(-26-35)=\frac{-40}{-}$

Cramer's rule

$$
\begin{aligned}
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\} \quad \begin{array}{r}
-x+2 y+3 z=-7 \\
-4 x-5 y+6 z=-13 \\
7 x-8 y-9 z=39
\end{array} \\
\begin{aligned}
& x=\frac{D_{x}}{D} \quad y=\frac{D_{y}}{D} \quad z=\frac{D_{z}}{D} D=-1(45+48)+4(-18+24)+7(12+15)=120 \\
& x=\frac{480}{120}=4 \quad y=\frac{-120}{120}=-1 \quad z=\frac{-40}{120}=-\frac{1}{3}
\end{aligned}
\end{aligned}
$$

Reversible reactions

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\overleftrightarrow{2}}} \mathrm{~A}_{2}
$$

$$
\mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0)
$$

The differential equation for this mechanism is:

$$
\begin{array}{r}
\left(p+k_{1}\right)\left(\mathscr{L}\left[\mathrm{A}_{1}\right]\right)-k_{2} \mathscr{L}\left[\mathrm{~A}_{2}\right]=\left[\mathrm{A}_{1}\right]_{0} \quad \\
-k_{1}\left(\mathscr{L}\left[\mathrm{~A}_{1}\right]\right)+\left(p+k_{2}\right) \mathscr{A}\left[\mathrm{A}_{2}\right]=\left[\mathrm{A}_{2}\right]_{0} \quad\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right\} \\
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad y=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \\
\left.\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array} \right\rvert\,
\end{array}
$$

Reversible reactions

$$
\mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0)
$$

The differential equation for this mechanism is:

$$
\begin{array}{r}
\left(p+k_{1}\right)\left(\mathscr{L}\left[\mathrm{A}_{1}\right]\right)-k_{2} \mathscr{L}\left[\mathrm{~A}_{2}\right]=\left[\mathrm{A}_{1}\right]_{0} \\
-k_{1}\left(\mathscr{L}\left[\mathrm{~A}_{1}\right]\right)+\left(p+k_{2}\right) \mathscr{L}\left[\mathrm{A}_{2}\right]=\left[\mathrm{A}_{2}\right]_{0}
\end{array} \quad\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right\}
$$

Reversible reactions

$$
\mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
\left(p+k_{1}\right)\left(\mathscr{L}\left[\mathbf{A}_{1}\right]\right)-k_{2} \mathscr{L}\left[\mathbf{A}_{2}\right] & =\left[\mathbf{A}_{1}\right]_{0} \\
-k_{1}\left(\mathscr{L}\left[\mathbf{A}_{1}\right]\right)+\left(p+k_{2}\right) \mathscr{L}\left[\mathbf{A}_{2}\right] & =\left[\mathbf{A}_{2}\right]_{0}
\end{aligned}
$$

Reversible reactions

$$
\mathscr{L}\left[f^{\prime}(t)\right]=p \mathscr{L}[f(t)]-f(0)
$$

The differential equation for this mechanism is:
Inverse Laplace transform :

$$
\begin{aligned}
\left(p+k_{1}\right)\left(\mathscr{L}\left[\mathbf{A}_{1}\right]\right)-k_{2} \mathscr{L}\left[\mathbf{A}_{2}\right] & =\left[\mathbf{A}_{1}\right]_{0} \\
-k_{1}\left(\mathscr{L}\left[\mathbf{A}_{1}\right]\right)+\left(p+k_{2}\right) \mathscr{L}\left[\mathbf{A}_{2}\right] & =\left[\mathbf{A}_{2}\right]_{0}
\end{aligned}
$$

$$
\mathscr{L}\left[\mathrm{A}_{1}\right]=\frac{\left|\begin{array}{rr}
{\left[\mathrm{A}_{1}\right]_{0}} & -k_{2} \\
{\left[\mathrm{~A}_{2}\right]_{0}} & \left(p+k_{2}\right.
\end{array}\right|}{\left|\begin{array}{cc}
p+k_{1} & -k_{2} \\
-k_{1} & p+k_{2}
\end{array}\right|} \mathscr{L}\left[\mathrm{A}_{2}\right]=\frac{\left|\begin{array}{rr}
p+k_{1} & {\left[\mathrm{~A}_{1}\right]_{0}} \\
-k_{1} & {\left[\mathrm{~A}_{2}\right]_{0}}
\end{array}\right|}{\left|\begin{array}{rr}
p+k_{1} & -k_{2} \\
-k_{1} & p+k_{2}
\end{array}\right|} \longrightarrow \begin{aligned}
& \mathscr{L}\left[\mathrm{A}_{1}\right]=\frac{\left(p+k_{2}\right)\left[\mathrm{A}_{1}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}+\frac{k_{2}\left[\mathrm{~A}_{2}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}
\end{aligned} \quad \Longleftrightarrow \begin{aligned}
& {\left[\mathrm{A}_{2}\right]=\frac{\left(p+k_{1}\right)\left[\mathrm{A}_{2}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}+\frac{k_{1}\left[\mathrm{~A}_{1}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}}
\end{aligned}
$$

Reversible reactions

Inverse Laplace transform :

$$
\mathscr{L}^{-1}[F(p)]=f(t)
$$

$$
\mathscr{L}\left[\mathrm{A}_{1}\right]=\frac{\left(p+k_{2}\right)\left[\mathrm{A}_{1}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}+\frac{k_{2}\left[\mathrm{~A}_{2}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}
$$

TABLE 2-1.2 Some Useful Laplace Transform Pairs

No.	$F(p)$	$f(t)$
1	$\frac{1}{p^{2}}$	t
2	$\frac{1}{p+a}$	$e^{-a t} \quad$ Valid for complex a.
3	$\frac{1}{p(p+a)}$	$\frac{1}{a}\left(1-e^{-a r}\right)$
4	$\frac{1}{(p+a)(p+b)}$	$\frac{1}{(b-a)}\left(e^{-a t}-e^{-b t}\right)$
5	$\frac{1}{p(p+a)(p+b)}$	$\frac{1}{a b}\left[1+\frac{1}{(a-b)}\left(b e^{-a t}-a e^{-b c}\right)\right]$
6	$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{1}{(b-a)(c-a)} e^{-a t}+\frac{1}{(a-b)(c-b)} e^{-b t}+\frac{1}{(a-c)(b-c)} e^{-c t}$
7	$\frac{1}{(p+a)^{2}}$	$t e^{-a t}$
8	$\frac{1}{p(p+a)^{2}}$	$\frac{1}{a^{2}}\left[1-e^{-a t}-a t e^{-a t}\right]$.
9	$\frac{p}{(p+a)(p+b)}$	$\frac{1}{(a-b)}\left[a e^{-a t}-b e^{-b r}\right]$
10	$\frac{p}{(p-a)(p-b)}$	$\frac{1}{(a-b)}\left[a e^{a r}-b e^{b r}\right]$
11	$\frac{p}{(p+a)(p+b)(p+c)}$	$\frac{-a}{(b-a)(c-a)} e^{-a t}-\frac{b}{(a-b)(c-b)} e^{-b t}-\frac{c}{(a-c)(b-c)} e^{-c t}$
12	$\frac{p}{(p+a)^{2}}$	$(1-a t) e^{-a t}$
13	$\frac{p+a}{(p+b)(p+c)}$	$\frac{1}{(c-b)}\left[(a-b) e^{-b c}-(a-c) e^{-c \tau}\right]$
14	$\frac{p^{2}}{(p+a)(p+b)(p+c)}$	$\frac{a^{2}}{(b-a)(c-a)} e^{-a t}+\frac{b^{2}}{(a-b)(c-b)} e^{-b r}+\frac{c^{2}}{(a-c)(b-c)} e^{-c t}$

Reversible reactions

Inverse Laplace transform :

$$
\mathscr{L}^{-1}[F(p)]=f(t)
$$

$$
\mathscr{L}\left[\mathrm{A}_{1}\right]=\frac{\left(p+k_{2}\right)\left[\mathrm{A}_{1}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}+\frac{k_{2}\left[\mathrm{~A}_{2}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}
$$

$\left[\mathrm{A}_{1}\right]=\frac{\left[\mathrm{A}_{1}\right]_{0}}{\left(k_{1}+k_{2}\right)}\left(k_{2}+k_{1} e^{-\left(k_{1}+k_{2}\right) v}\right)+\frac{\left[\mathrm{A}_{2}\right]_{0} k_{2}}{\left(k_{1}+k_{2}\right)}\left(1-e^{-\left(k_{1}+k_{2}\right) c}\right)$

No.	$F(p)$	$f(t)$
1	$\frac{1}{p^{2}}$	t
2	$\frac{1}{p+a}$	$e^{-a t} \quad$ Valid for complex a.
3	$\frac{1}{p(p+a)}$	$\frac{1}{a}\left(1-e^{-a r}\right)$
4	$\frac{1}{(p+a)(p+b)}$	$\frac{1}{(b-a)}\left(e^{-a t}-e^{-b t}\right)$
5	$\frac{1}{p(p+a)(p+b)}$	$\frac{1}{a b}\left[1+\frac{1}{(a-b)}\left(b e^{-a t}-a e^{-b c}\right)\right]$
6	$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{1}{(b-a)(c-a)} e^{-a t}+\frac{1}{(a-b)(c-b)} e^{-b t}+\frac{1}{(a-c)(b-c)} e^{-c t}$
7	$\frac{1}{(p+a)^{2}}$	$t e^{-a t}$
8	$\frac{1}{p(p+a)^{2}}$	$\frac{1}{a^{2}}\left[1-e^{-a t}-a t e^{-a t}\right]$.
9	$\frac{p}{(p+a)(p+b)}$	$\frac{1}{(a-b)}\left[a e^{-a x}-b e^{-b r}\right]$
10	$\frac{p}{(p-a)(p-b)}$	$\frac{1}{(a-b)}\left[a e^{a r}-b e^{b r}\right]$
11	$\frac{p}{(p+a)(p+b)(p+c)}$	$\frac{-a}{(b-a)(c-a)} e^{-a t}-\frac{b}{(a-b)(c-b)} e^{-b t}-\frac{c}{(a-c)(b-c)} e^{-c t}$
12	$\frac{p}{(p+a)^{2}}$	$(1-a t) e^{-a t}$
13	$\frac{p+a}{(p+b)(p+c)}$	$\frac{1}{(c-b)}\left[(a-b) e^{-b c}-(a-c) e^{-c}\right]$
14	$\frac{p^{2}}{(p+a)(p+b)(p+c)}$	$\frac{a^{2}}{(b-a)(c-a)} e^{-a t}+\frac{b^{2}}{(a-b)(c-b)} e^{-b r}+\frac{c^{2}}{(a-c)(b-c)} e^{-c t}$

Reversible reactions

Inverse Laplace transform :

$$
\mathscr{L}^{-1}[F(p)]=f(t)
$$

$$
\mathscr{L}\left[\mathrm{A}_{1}\right]=\frac{\left(p+k_{2}\right)\left[\mathrm{A}_{1}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}+\frac{k_{2}\left[\mathrm{~A}_{2}\right]_{0}}{p\left(p+\left(k_{1}+k_{2}\right)\right)}
$$

$\left[\mathrm{A}_{1}\right]=\frac{\left[\mathrm{A}_{1}\right]_{0}}{\left(k_{1}+k_{2}\right)}\left(k_{2}+k_{1} e^{-\left(k_{1}+k_{2}\right) v}\right)+\frac{\left[\mathrm{A}_{2}\right]_{0} k_{2}}{\left(k_{1}+k_{2}\right)}\left(1-e^{-\left(k_{1}+k_{2}\right) c}\right)$

$$
\left[\mathrm{A}_{1}\right]=\frac{\left[\mathrm{A}_{1}\right]_{0}}{\left(k_{1}+k_{2}\right)}\left(k_{2}+k_{1} e^{-\left(k_{1}+k_{2}\right) t}\right)
$$

TABLE 2-1.2 Some Useful Laplace Transform Pairs

No.	$F(p)$	$f(t)$
1	$\frac{1}{p^{2}}$	t
2	$\frac{1}{p+a}$	$e^{-a t} \quad$ Valid for complex a.
3	$\frac{1}{p(p+a)}$	$\frac{1}{a}\left(1-e^{-a r}\right)$
4	$\frac{1}{(p+a)(p+b)}$	$\frac{1}{(b-a)}\left(e^{-a t}-e^{-b t}\right)$
5	$\frac{1}{p(p+a)(p+b)}$	$\frac{1}{a b}\left[1+\frac{1}{(a-b)}\left(b e^{-a t}-a e^{-b x}\right)\right]$
6	$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{1}{(b-a)(c-a)} e^{-a t}+\frac{1}{(a-b)(c-b)} e^{-b t}+\frac{1}{(a-c)(b-c)} e^{-c t}$
7	$\frac{1}{(p+a)^{2}}$	$t e^{-a}$
8	$\frac{1}{p(p+a)^{2}}$	$\frac{1}{a^{2}}\left[1-e^{-a t}-a t e^{-a t}\right]$.
9	$\frac{p}{(p+a)(p+b)}$	$\frac{1}{(a-b)}\left[a e^{-a m}-b e^{-b r}\right]$
10	$\frac{p}{(p-a)(p-b)}$	$\frac{1}{(a-b)}\left[a e^{a r}-b e^{b r}\right]$
11	$\frac{p}{(p+a)(p+b)(p+c)}$	$\frac{-a}{(b-a)(c-a)} e^{-a t}-\frac{b}{(a-b)(c-b)} e^{-b t}-\frac{c}{(a-c)(b-c)} e^{-a}$
12	$\frac{p}{(p+a)^{2}}$	$(1-a t) e^{-a t}$
13	$\frac{p+a}{(p+b)(p+c)}$	$\frac{1}{(c-b)}\left[(a-b) e^{-b c}-(a-c) e^{-c}\right]$
14	$\frac{p^{2}}{(p+a)(p+b)(p+c)}$	$\frac{a^{2}}{(b-a)(c-a)} e^{-a r}+\frac{b^{2}}{(a-b)(c-b)} e^{-b r}+\frac{c^{2}}{(a-c)(b-c)} e^{-c t}$

Linear algebra methods

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

At time $t=0$ both A_{1} and A_{2} are present, that is $\left[A_{1}\right]=\left[A_{1}\right]_{0}$ and $\left[A_{2}\right]=\left[A_{2}\right]_{0}$

$$
\left[\mathbf{A}_{1}\right]_{0}+\left[\mathbf{A}_{2}\right]_{0}=\left[\mathbf{A}_{1}\right]+\left[\mathbf{A}_{2}\right]
$$

Linear algebra methods

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~A}_{2}
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

$$
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
$$

Linear algebra methods

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\overleftrightarrow{2}}} \mathrm{~A}_{2}
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}} & =\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]} \\
\mathbf{K} & =\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
\end{aligned}
$$

Linear algebra methods

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\overleftrightarrow{2}}} \mathrm{~A}_{2}
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right] \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}} & =\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right. \\
\mathbf{K} & =\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
\end{aligned}
$$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \stackrel{k_{1}}{\stackrel{k_{2}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\mathbf{A}=\mathbf{P B}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

where Λ is the matrix of negative eigenvalues with $-\lambda_{1},-\lambda_{2}, \ldots-\lambda_{n}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

$$
\mathrm{dB} / \mathrm{dt}=\mathrm{P}^{-1} \mathrm{dA} / \mathrm{dt}=\mathrm{P}^{-1} \mathrm{KA}=\mathrm{P}^{-1} \mathrm{KPB}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\frac{d \mathbf{B}}{d t}=\mathbf{P}^{-1} \mathbf{K P B}=\Lambda \mathbf{B}
$$

$$
\mathbf{A}=\mathbf{P B}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

where Λ is the matrix of negative eigenvalues with $-\lambda_{1},-\lambda_{2}, \ldots-\lambda_{n}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{~A}_{2} \quad \mathrm{~K}=\left(\begin{array}{cc}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\mathbf{A}=\mathbf{P B}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

$$
\frac{d \mathbf{B}}{d t}=\mathbf{P}^{-1} \mathbf{K} \mathbf{P B}=\Lambda \mathbf{B}
$$

$$
\mathbf{B}=e^{N} \mathbf{B}_{i}
$$

$\mathbf{B}_{\boldsymbol{i}}$ is the vector of initial values of \mathbf{B} And at $\mathrm{t}=0: \mathbf{A}_{\mathbf{i}}=\mathbf{P B}_{\mathrm{i}}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \stackrel{k_{1}}{\stackrel{k_{2}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\mathbf{A}=\mathbf{P B} \Longleftrightarrow \mathbf{P}^{-1} \mathbf{A}=\mathbf{B}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

$$
\frac{d \mathbf{B}}{d t}=\mathbf{P}^{-1} \mathbf{K} \mathbf{P B}=\Lambda \mathbf{B}
$$

$$
\mathbf{B}=e^{\mu} \mathbf{B}_{i}
$$

where Λ is the matrix of negative eigenvalues with $-\lambda_{1},-\lambda_{2}, \ldots-\lambda_{n}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{~A}_{2} \quad \mathrm{~K}=\left(\begin{array}{cc}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\frac{d \mathbf{B}}{d t}=\mathbf{P}^{-1} \mathbf{K} \mathbf{P B}=\Lambda \mathbf{B}
$$

$$
\mathbf{A}=\mathbf{P B} \Longleftrightarrow \mathbf{P}^{-1} \mathbf{A}=\mathbf{B}
$$

$$
\mathbf{B}=e^{N} \mathbf{B}_{i}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

where Λ is the matrix of negative eigenvalues with $-\lambda_{1},-\lambda_{2}, \ldots-\lambda_{n}$ $\mathbf{P}^{-1} \mathbf{A}=e^{A t} \mathbf{B}_{i}=e^{M} \mathbf{P}^{-1} \mathbf{A}_{i}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
\end{aligned}
$$

$$
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A}
$$

We define an orthogonal matrix \mathbf{P} which is invertible such that:

$$
\mathbf{A}=\mathbf{P B} \Longleftrightarrow \mathbf{P}^{-1} \mathbf{A}=\mathbf{B}
$$

$$
\mathbf{P}^{-1} \mathbf{A}=e^{\Lambda t} \mathbf{B}_{i}=e^{A t} \mathbf{P}^{-1} \mathbf{A}_{i}
$$

Multiplying through by \mathbf{P} from the left :

$$
\mathbf{A}=\mathbf{P} e^{M} \mathbf{P}^{-1} \mathbf{A}_{i}
$$

In addition :

$$
\mathbf{P}^{-1} \mathbf{K} \mathbf{P}=\Lambda
$$

where Λ is the matrix of negative eigenvalues with $-\lambda_{1},-\lambda_{2}, \ldots-\lambda_{\mathrm{n}}$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\begin{aligned}
& \mathrm{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~A}_{2} \quad \mathrm{~K}=\left(\begin{array}{cc}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right) \\
& \text { The differential equation for this mechanism is: } \\
& -\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right] \\
& \binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
\mathbf{A}=\mathbf{P} e^{\Lambda} \mathbf{P}^{-1} \mathbf{A}_{i}
\end{gathered}
$$

We must find the matrix \mathbf{P} that diagonalizes Kt :

$$
\operatorname{det}(\mathbf{K}-\Lambda \mathbf{1})=0
$$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\begin{aligned}
& \qquad \mathrm{A}_{1} \stackrel{k_{1}}{\stackrel{k_{2}}{\longleftrightarrow}} \mathrm{~A}_{2} \quad \mathbf{K}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right) \\
& \text { The differential equation for this mechanism is: }
\end{aligned}\left(\begin{array}{c}
\frac{d\left[\mathrm{~A}_{2}\right]}{d t}
\end{array} \quad \begin{array}{c}
\frac{d\left[\mathrm{~A}_{1}\right]}{d t} \\
\frac{d\left[\mathrm{~A}_{2}\right]}{d t}
\end{array}\right)=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
$$

$$
\begin{aligned}
& \qquad \frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
& \mathbf{A}=\mathbf{P} e^{\Lambda} \mathbf{P}^{-1} \mathbf{A}_{i} \\
& \text { We must find the matrix } \mathbf{P} \text { that } \\
& \text { diagonalizes } \mathbf{K t} \text { : } \\
& \operatorname{det}(\mathbf{K}-\mathbf{\Lambda} \mathbf{1})=0
\end{aligned}
$$ diagonalizes Kt :

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \stackrel{k_{1}}{\stackrel{k_{2}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
-\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
$$

$$
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\left(\left[\begin{array}{l}
{\left[\mathrm{A}_{1}\right]} \\
{\left[\mathrm{A}_{2}\right]}
\end{array}\right)\right.
$$

$$
\begin{gathered}
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
\mathbf{A}=\mathbf{P} e^{\Lambda t} \mathbf{P}^{-1} \mathbf{A}_{i}
\end{gathered}
$$

We must find the matrix \mathbf{P} that diagonalizes Kt :

$$
\operatorname{det}(\mathbf{K}-\Lambda \mathbf{1})=0
$$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{\kappa}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

The differential equation for this mechanism is:

$$
-\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
$$

$$
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\mathrm{A}_{2}}
$$

$$
\begin{gathered}
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
\mathbf{A}=\mathbf{P} e^{\Lambda} \mathbf{P}^{-1} \mathbf{A}_{i}
\end{gathered}
$$

We must find the matrix \mathbf{P} that diagonalizes Kt :

$$
\operatorname{det}(\mathbf{K}-\Lambda \mathbf{1})=0
$$

$$
\begin{aligned}
& \left(-k_{1}-\lambda\right)\left(-k_{2}-\lambda\right)-k_{1} k_{2}=0 \\
& \lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=-\left(k_{1}+k_{2}\right) \\
& \quad \mathbf{P}_{1}=\binom{k_{2}}{k_{1}} \text { and } \mathbf{P}_{2}=\binom{1}{-1} \\
& \quad \mathbf{P}=\left(\begin{array}{rr}
k_{2} & 1 \\
k_{1} & -1
\end{array}\right), \text { which diagonalizes } \mathrm{Kt}
\end{aligned}
$$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
A_{1} \stackrel{k_{1}}{k_{2}} A_{2} \quad \kappa=\binom{k_{1}}{h_{1}}
$$

$$
-\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
$$

The differential equation for this mechanism is:

$$
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
$$

$$
\begin{aligned}
& \frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
& \lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=-\left(k_{1}+k_{2}\right) \\
& \mathbf{A}=\mathbf{P} e^{\mu} \mathbf{P}^{-1} \mathbf{A}_{i} \\
& \mathbf{P}=\left(\begin{array}{rr}
k_{2} & 1 \\
k_{1} & -1
\end{array}\right) \quad \mathbf{P}^{-1}=\left(\begin{array}{cc}
\frac{1}{\left(k_{1}+k_{2}\right)} & \frac{1}{\left(k_{1}+k_{2}\right)} \\
\frac{k_{1}}{\left(k_{1}+k_{2}\right)} & \frac{-k_{2}}{\left(k_{1}+k_{2}\right)}
\end{array}\right) \\
& \mathbf{A}=\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}=\frac{A_{0}}{\left(k_{1}+k_{2}\right)}\binom{k_{2}+k_{1} e^{-\left(k_{1}+k_{2}\right)}}{k_{1}+k_{1} e^{-\left(k_{1}+k_{2}\right) \prime}}
\end{aligned}
$$

Linear algebra methods

$$
-\frac{d\left[\mathrm{~A}_{1}\right]}{d t}=k_{1}\left[\mathrm{~A}_{1}\right]-k_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\mathbf{A}_{1} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathbf{A}_{2} \quad \mathbf{k}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)
$$

$$
-\frac{d\left[\mathrm{~A}_{2}\right]}{d t}=k_{2}\left[\mathrm{~A}_{2}\right]-k_{1}\left[\mathrm{~A}_{1}\right]
$$

$$
\binom{\frac{d\left[\mathrm{~A}_{1}\right]}{d t}}{\frac{d\left[\mathrm{~A}_{2}\right]}{d t}}=\left(\begin{array}{rr}
-k_{1} & k_{2} \\
k_{1} & -k_{2}
\end{array}\right)\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}
$$

$$
\begin{gathered}
\frac{d \mathbf{A}}{d t}=\mathbf{K} \mathbf{A} \\
\mathbf{A}=\mathbf{P} e^{\Lambda} \mathbf{P}^{-1} \mathbf{A}_{i}
\end{gathered}
$$

$$
\lambda_{1}=0 \quad \text { and } \quad \lambda_{2}=-\left(k_{1}+k_{2}\right)
$$

This approach is fine for any set of first-order or pseudo first-order equations.

$$
\mathbf{A}=\binom{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}=\frac{A_{0}}{\left(k_{1}+k_{2}\right)}\binom{k_{2}+k_{1} e^{-\left(k_{1}+k_{2}\right)}}{k_{1}+k_{1} e^{-\left(k_{1}+k_{2}\right) k}}
$$

[^0]: W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley

