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Laplace transform
The transform F(p) of a function f(t) subjected to the Laplace transformation is defined by the integral: 



Laplace transform
The transform F(p) of a function f(t) subjected to the Laplace transformation is defined by the integral: 

The Laplace transform of a given function maybe determined by direct integration : 



Properties of the Laplace transform

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley 

Laplace transform of a linear combination of functions.
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Properties of the Laplace transform

W. Boyce and R. DiPrima. Elementary differential equations and boundary value problems. © John Wiley 

The transform of an integral of a function f(t) may be expressed as



Reversible reactions

The differential equation for this mechanism is:

At time t=0 both A1 and A2 are present, that is

Thus, for rate equations that are linear with respect to the reactants, Laplace methods is great
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Reversible reactions

Cramer’s rule for a system of linear equations :
The solution to the system:

Is given by: 
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Reversible reactions

The differential equation for this mechanism is:
Inverse Laplace transform :
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Reversible reactions

Inverse Laplace transform :



Linear algebra methods

The differential equation for this mechanism is:

At time t=0 both A1 and A2 are present, that is
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The differential equation for this mechanism is:

We define an orthogonal matrix P which is invertible 
such that :

In addition :
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The differential equation for this mechanism is:

We define an orthogonal matrix P which is invertible 
such that :

In addition :

dB/dt = P-1dA/dt = P-1KA = P-1KPB
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The differential equation for this mechanism is:

We define an orthogonal matrix P which is invertible 
such that :

In addition :

Solution

Bi is the vector of initial values of B
And at t = 0: Ai = PBi
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The differential equation for this mechanism is:

We define an orthogonal matrix P which is invertible 
such that :

In addition :

Multiplying through by P from the left :
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The differential equation for this mechanism is:

We must find the matrix P that 
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The differential equation for this mechanism is:

We must find the matrix P that 
diagonalizes Kt :

, which diagonalizes  Kt



Linear algebra methods

The differential equation for this mechanism is:



Linear algebra methods

The differential equation for this mechanism is:

This approach is fine for any set of 
first-order or pseudo first-order equations.  


