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Advanced vortex methods

The point vortex method: a venerable technique...

L. Rosenhead, “The point vortex approximation of a vortex
sheet” Proc. Roy. Soc., 134, 1932.



Advanced vortex methods

Particle methods

Computationally, if we know the initial distribution of ρ or ω, we can
use Φt to follow it forward in time.

d~x
dt

= ~u(~x , t)

~x(0) = ~y

t=T

t=0
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Advanced vortex methods

Why does one do this?

Natural adaptivity.
Resources are dedicated where ρ or ω are and nowhere
else. This yields a strong general method for scientific and
engineering applications.
Stability.
Geometry independent.
Appeal to modelers.
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Why does one do this?

Natural adaptivity.
Stability.
Assuming that the flow field is “well behaved”, the initial
value problem for the system of ODEs is well-posed and
stability is guaranteed.
Geometry independent.
Appeal to modelers.



Advanced vortex methods

Why does one do this?

Natural adaptivity.
Stability.
Geometry independent.
Local solutions to PDEs mean that boundary conditions
are applied locally, not globally.
Appeal to modelers.



Advanced vortex methods

Why does one do this?

Natural adaptivity.
Stability.
Geometry independent.
Appeal to modelers.
Such schemes bridge the gap between computations and
modeling because each computational element can
represent a localized model for the full system.



Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

Example: Mixing in a differentially rotating flow.

Advantage: Adaptive resolution of fine scales and high
gradients. Particle methods can capture diffusion exactly.
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Advanced vortex methods

A tough problem

A comparison with a meshed method.
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A tough problem

A comparison with a meshed method.
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A comparison with a meshed method.
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A tough problem

A comparison with a meshed method.
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Advanced vortex methods

Vortex methods

Dω
Dt

=
1

Re
∇2ω

Express ω (or ~ω in 3D) as a linear combination of moving basis
functions (blobs):

ω̂(~x) =
N∑

i=1

γiφ(~x − ~xi)

d~xi

dt
= ~u(~xi)



Advanced vortex methods

The Biot-Savart integral

ω̂(~x) =
N∑

i=1

γiφ(~x − ~xi)

d~xi

dt
= ~u(~xi)

Since ω (ω̂) is our primitive variable, we must determine ~u from
a Biot-Savart integral via a streamfunction ψ.
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The Biot-Savart integral

Since ω (ω̂) is our primitive variable, we must determine ~u from
a Biot-Savart integral via a streamfunction ψ.

~u =

[
−∂ψ
∂y
∂ψ
∂x

]
∇2ψ = −ω̂
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The Biot-Savart integral

Since ω (ω̂) is our primitive variable, we must determine ~u from
a Biot-Savart integral via a streamfunction ψ.

~u =

[
−∂ψ
∂y
∂ψ
∂x

]
∇2ψ = −ω̂

ψ = − 1
4π

∫∫ ∞
−∞

log(|~x − ~s|2)ω̂(~s)d~s
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An example with Gaussian blobs

φ(~x) =
1

4πσ2 exp
(
−|
~x |2

4σ2

)
~u(~x) =

N∑
i=1

γi

2π
~x − ~xi

|~x − ~xi |2

[
1− exp

(
−|
~x − ~xi |2

4σ2

)]

Note: O(N2) complexity.
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Corrected core spreading vortex method (CCVSM)

φ(~x) =
1

4πσ2
i

exp

(
−|
~x |2

4σ2
i

)
,

~u(~x) =
N∑

i=1

γi

2π
~x − ~xi

|~x − ~xi |2

[
1− exp

(
−|
~x − ~xi |2

4σ2
i

)]
,

dσi

dt
=

1
Re
.

Some comments: Refinement and merging (or remeshing) can
maintain spatial accuracy for all time. For high Reynolds
number flows and limited resolutions, core size growth may not
be important anyway. σ0 � T

Re .
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The dynamics of elliptical Gaussians

θ

σ /a

σ a

Find the evolution equations for ~xi , θi , σi and ai so that
φ ≡ φ(~x ;~xi , σi ,ai , θi) satisfies

∂tφ+ [~u(~xi) + D~u(~xi)(~x − ~xi)] · ∇φ− 1
Re
∇2φ = 0.
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The dynamics of elliptical Gaussians

θ

σ /a

σ a

For simplicity θi = 0...

d
dt
~xi =

[
ui

vi

]
d
dt

(σ2
i ) =

1
2Re

(a2
i + a−2

i )

d
dt

(a2
i ) =2d11,ia2

i +
1

2Reσ2
i

(1− a4
i )

d
dt
θi =

d21,i − d12,i

2
−

d21,i + d12,i

2
(a−2

i + a2
i )

(a−2
i − a2

i )
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Exploring complex flows is time consuming
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Removing the pain from BlobFlow.

Just a thought.
A scientist should not need to ...

... understand my algorithm to explore vorticity.

... compile my program to explore vorticity.

... own a cluster to explore vorticity.

... know how to project basis functions onto grids to
explore vorticity.
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Removing the pain from BlobFlow.

Goals...
Useful to any scientist.
Visual.
Networked.
Free, open and cross-platform (Python + Qt4).
Kinda’ like Minecraft.
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Removing the pain from BlobFlow.
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Conclusions

The high-order vortex method is an accurate, general
solver that is competitive with more mainstream methods.
The next step is to make vorticity exploration more open to
scientists.
Please visit the BlobFlow site and play with vorticity.

www.math.udel.edu/∼rossi/BlobFlow

http://www.math.udel.edu/~rossi/BlobFlow



