Bio-inspired network protocols

Department of Mathematical Sciences University of Delaware

Supported by Army SBIR A072-074-1669, NSF CCF-0726556 and CCF-0829748

November 5, 2013

Graduate students

- Wei Chen
- Rui Fang
- Zequn Huang
- Jeremy Keffer
- Ke Li
- Claudio Torres

What is swarm intelligence?

Modeling and analysis objectives

- Construct a complete mathematical model of a basic ant-based routing protocol (BARP) and slime mold based sensor network protocols.
- Analyze the model to extract design principles.
- Compare with QualNet simulations.
- Refine/improve the model.

Individual ant properties

• Lifespan: 1-2 years.

Individual ant properties

- Lifespan: 1-2 years.
- Individually inept.

Individual ant properties

- Lifespan: 1-2 years.
- Individually inept.
 - Nearly blind.
 - Fast movers and carriers.
 - Can lay chemical trails of pheromones and detect trails.
 - Can consume food and regurgitate food through antennation.

- Lifespan: 1-2 years.
- Individually inept.
 - Nearly blind.
 - Fast movers and carriers.
 - Can lay chemical trails of pheromones and detect trails.
 - Can consume food and regurgitate food through antennation.
- Very simple programming. Searching for food (foraging), carrying food, recruiting others, alarm, attack.

- Lifespan: 10's of years.
- No central control!

- Lifespan: 10's of years.
- No central control!
- Robust. Resilient to environmental changes.

- Lifespan: 10's of years.
- No central control!
- Robust. Resilient to environmental changes.
- Capable to solving sophisticated problems such as finding the minimum path between the hive and food sources with multiple barriers and obstacles.

- Lifespan: 10's of years.
- No central control!
- Robust. Resilient to environmental changes.
- Capable to solving sophisticated problems such as finding the minimum path between the hive and food sources with multiple barriers and obstacles.
- Inspiration for "swarm" algorithms.

- Lifespan: 10's of years.
- No central control!
- Robust. Resilient to environmental changes.
- Capable to solving sophisticated problems such as finding the minimum path between the hive and food sources with multiple barriers and obstacles.
- Inspiration for "swarm" algorithms.
- Ants account for 15% 20% of the terrestrial animal biomass. on Earth. In tropical climates, estimates are closer to 25%. By this assessment, they are the most successful animals on Earth!

- Lifespan: 10's of years.
- No central control!
- Robust. Resilient to environmental changes.
- Capable to solving sophisticated problems such as finding the minimum path between the hive and food sources with multiple barriers and obstacles.
- Inspiration for "swarm" algorithms.
- Ants account for 15% 20% of the terrestrial animal biomass on Earth. In tropical climates, estimates are closer to 25%.
 By this assessment, they are the most successful animals on Earth!

Random noisy exploration

Stimergy (deposition of pheromone).

Evaporation.

Nonlinear reinforcement.

Forward ant propagation

Ants

000000000000

$$p_{ij} = \frac{\left(\tau_{ij}\right)^{\alpha} \left(\eta_{ij}\right)^{\beta} \left(\psi_{ij}\right)^{\gamma}}{\sum_{h \in N_i} \left(\tau_{ih}\right)^{\alpha} \left(\eta_{ih}\right)^{\beta} \left(\psi_{ih}\right)^{\beta}},$$

Forward ant propagation

$$ho_{ij} = rac{\left(au_{ij}
ight)^{eta}}{\sum_{h \in N_i} \left(au_{ih}
ight)^{eta}},$$

Forward ant propagation

$$p_{ij} = rac{\left(au_{ij}
ight)^{eta}}{\sum_{h \in N_i} \left(au_{ih}
ight)^{eta}},$$

Ideal communication: $\vec{y}^{(n+1)} = P^{(n)}(\beta)\vec{y}^{(n)}, \quad P^{(n)} = [p_{ij}].$

Timescales

There are three critical timescales.

- h_1 : time interval over which pheromone evaporates.
- h_2 : time interval at which ants are released into the network.
- h_3 : typical time required to make a single hop.

We assume $h_3 \ll h_1 \leq h_2$ and $m = h_2/h_1$.

$$au_{ij}^{(n+1)} = (1 - h_1 \kappa_1)^m au_{ij}^{(n)} + h_2 \kappa_2 \sum_{k=1}^{\infty} \frac{1}{k} \tilde{p}_{ij}^{sd}(k)$$

Nonlinear dynamics

$$\vec{y}^{(n+1)} = P(\beta)\vec{y}^{(n)},$$

$$\vec{\tau}^{(n+1)} = (1 - h_1 \kappa_1)^{m_2} \tau_{ij}^{(n)} + h_2 \kappa_2 \sum_{k=1}^{\infty} \frac{1}{k} \tilde{p}_{ij}^{sd}(k),$$

Goal: Identify stationary states of this system, and dynamic response to perturbations.

Nonlinear dynamics

$$\Lambda au_{ij} = \sum_{k=1}^{\infty} \frac{1}{k} \tilde{p}_{ij}^{sd}(k), \quad \Lambda = \kappa_1/\kappa_2.$$

Goal: Identify stationary states of this system, and dynamic response to perturbations.

Model prediction versus Qualnet Simulations

Experiments on a simple 5 node network

The structure of stable solutions varies based on the routing exponent β :

Example

S1:
$$\beta = 0.5$$
, $\Lambda = 0.3$, multi-route solution

S5:
$$\beta = 2$$
, $\Lambda = 0.3$, single-route solution

Trials with varying β

The multi-route solution is dynamically connected to the single-route solution

o be first.

Ants

Time of Simulation	199.99
N	200
β	0.5→ 2
٨	0.3
h1	1
h2	1
h3	0.01

Large 50-node networks

Ants

Following are some parameters we used Matlab and Qualnet parameters:

Simulation time	200
N	200
β	$0.5 \rightarrow 2$
Λ	0.3
h1	1
h2	1
h3	0.01

Random initial conditions.

Ants

 $T = 0 \ (\beta = 0.5)$

Dare to be first.

Exploiting the dynamics

Exploiting the dynamics

0.1

٥٢ 0.1 0.2 0.3

Ants

$$T = 65 \ (\beta = 0.5 \rightarrow 2)$$

0.5 0.6 0.7 0.8 0.9

0.4

0.1

Exploiting the dynamics

Ants

Exploiting the dynamics

Hop count versus time

Statistical comparison

Problem: Sensor networks

Given an ad-hoc network of data sources, relay nodes (data sources without data) and a data sink, how do we move the data from the sources to the sink?

Life Cycle of Physarum polycephalum

Mold solves hard problems

Steiner problems...

Slime mold solves the problems without central control.

T. Nakagaki, A Tero. et al. Nature 407 (2000), Proc. Roy. Soc. 271 (2004), J. Theo. Bio. 244 (2007)

Mold solves hard problems

Steiner problems...

Slime mold solves the problems without central control.

T. Nakagaki, A Tero. et al. Nature 407 (2000), Proc. Roy. Soc. 271 (2004), J. Theo. Bio. 244 (2007)

Mold and singular potentials

Attack the problem with an electrostatic model. Application: Sensor/Actor networks.

Model the sensor network as a system of pipes.

$$q_{ij} = \frac{D_{ij}}{L_{ij}}(p_i - p_j),$$

$$\sum_{j \in N_i} q_{ij} = m_i,$$

$$\frac{dD_{ij}}{dt} = f(|q_{ij}|) - rD_{ij},$$

where

$$f(x) = rD_{\max} \frac{a|x|^{\mu}}{1 + a|x|^{\mu}}.$$

Note that we need to globally solve the pressure equation. $m \to p \to q$.

The pressure equation

$$\sum_{j\in N_i}\frac{D_{ij}}{L_{ij}}(p_i-p_j)=m_i$$

$$p_i \leftarrow \frac{m_i + \sum_{j \in N_i} \frac{D_{ij}}{L_{ij}} p_j}{\sum_{j \in N_i} \frac{D_{ij}}{L_{ij}}}$$

A very small network

A very small network

A very small network

Linear stability of stationary states in the network.

Sample problems

Sample problems

Robustness - degree distribution

Fault tolerance

	10%		30%		50%	
μ	0.5	2	0.5	2	0.5	2
1-fault	1	.9851	.9856	.9761	.9799	.9530
2-fault	.9998	.9700	.9709	.9616	.9595	.9070

Impact on performance

Expected hop count

Extension to sensor actor networks

Sensor actor networks with $\mu = 0.5$

Sensor actor networks with $\mu = 2$

• Our model for ant-based and slime-based protocols captures actual protocol behavior well.

- Our model for ant-based and slime-based protocols captures actual protocol behavior well.
- Using pressure rather than pheromone poses special problems on ad-hoc networks that can be addressed with the asynchronous Jacobi algorithm.

Summary

- Our model for ant-based and slime-based protocols captures actual protocol behavior well.
- Using pressure rather than pheromone poses special problems on ad-hoc networks that can be addressed with the asynchronous Jacobi algorithm.
- Nonlinear dynamics helps us understand phase transitions when we vary the routing or flux exponent.

Summary

- Our model for ant-based and slime-based protocols captures actual protocol behavior well.
- Using pressure rather than pheromone poses special problems on ad-hoc networks that can be addressed with the asynchronous Jacobi algorithm.
- Nonlinear dynamics helps us understand phase transitions when we vary the routing or flux exponent.
- Design principles from small networks transfer to large networks

