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Abstract

Sleep is important for memory consolidation and contributes to the formation of new perceptual 

categories. This study examined sleep as a source of variability in typical learners’ ability to form 

new speech sound categories. We trained monolingual English speakers to identify a set of non-

native speech sounds at 8PM, and assessed their ability to identify and discriminate between these 

sounds immediately after training, and at 8AM on the following day. We tracked sleep duration 

overnight, and found that light sleep duration predicted gains in identification performance, while 

total sleep duration predicted gains in discrimination ability. Participants obtained an average of 

less than 6 hours of sleep, pointing to the degree of sleep deprivation as a potential factor. 

Behavioral measures were associated with ERP indexes of neural sensitivity to the learned 

contrast. These results demonstrate that the relative success in forming new perceptual categories 

depends on the duration of post-training sleep.
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Introduction

Perceptual categories are the foundation for mental organization of the external world and 

underlie complex cognitive operations such as object recognition and linguistic 

communication. The capacity to acquire new perceptual categories is fundamental to 

learning. A core question in cognitive science is what kind of experiences facilitates 

category acquisition. Recent work has pointed to the importance of memory consolidation 

during sleep in certain types of perceptual learning. The present study asks whether sleep 

behavior can account for the variability that exists in the ability to acquire new speech sound 

categories.

Memory processes that are involved in capturing and retaining acoustic information 

aggregate one’s experience with spoken language into functional acoustic-phonetic units, 

speech sounds such as /d/ or /a/. Variations in the quality of these speech sound 

representations have been linked to differences in language and reading ability [1,2]. While 

differences in linguistic input are often cited as the source of such perceptual variability [3], 

we propose that variance in the representation of speech sounds amongst typical learners can 

in part be attributed to differences in sleep. Sleep’s importance in memory consolidation has 

been documented across many domains [4], and sleep appears to play a role in the 

organization of speech information as well. Prior work suggests that a period of sleep 

following perceptual training is associated with generalization of speech information to 

unfamiliar lexical contexts in mapping synthetic tokens to native categories [5]. In the 

acquisition of nonnative speech sounds, the effect of sleep appears to be in protecting 

phonetic features from conflicting acoustic information [6], and in the generalization of 

acoustic-phonetic features to an unfamiliar talker [7]. In these prior investigations, we have 

found the magnitude of the effect of offline consolidation on nonnative category acquisition 

to be highly variable between individuals. One possibility is that the magnitude of overnight 

gain is dependent on the amount of learning achieved during training. Another possibility, 

based on a study of word learning that showed that larger gains in learning were associated 

with longer sleep duration [8], is that the length of post-training sleep determines the degree 

of improvement. Non-rapid eye movement (NREM) sleep is considered critically important 

for the consolidation of hippocampal-encoded memory [9]. Specifically, it has been 

suggested that light sleep (NREM stages 1 and 2) is responsible for active potentiation of 

wake-state memory, in contrast with deep sleep’s (NREM stage 3) role in maintaining 

homeostatic regulation [10].

The aim of the current study is to test the relationship between sleep behavior and non-native 

speech sound learning. At 8PM on day 1, we trained monolingual English speakers with 

typical language and reading ability to identify voiced Hindi dental and retroflex consonants. 

The dental sound is produced with the tongue tip placed behind the teeth, and the retroflex 

with the tongue curled behind the alveolar ridge, and both sounds perceptually assimilate to 

the English (alveolar) /d/ for most monolingual speakers of English. Participants were 

trained by the experimenter to use a sleep-monitoring headband [11] prior to leaving the lab 

on the first day (see [12] for reliability of the device), wore the device overnight, and 

returned at 8AM the next morning for reassessment. We measured learning of the non-native 

contrast through two tasks: discrimination and identification. In discrimination, the listener 
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compares two tokens to determine if the speech features are categorically similar or 

dissimilar, but this skill does not require awareness of category identity. In contrast, 

identification requires an explicit recall of a category label for tokens falling within a 

specific distribution of auditory stimuli. Therefore, the changes in performance on these 

perceptual tasks reflect different types of perceptual learning that are both commonly used to 

describe the representational quality of speech sounds. We tracked performance in each task 

on days 1 and 2 (see Figure 1 for scheduling of tasks). We predicted that sleep duration 

would be positively associated with gains in behavioral performance.

It is possible that discrimination and identification tasks underestimate participants’ ability 

to perceive differences among the trained sounds, or that motivational factors that vary as a 

function of fatigue might affect task performance. Thus, in order to obtain a task-

independent measure of changes to perceptual sensitivity, we also collected 

electrophysiological recordings during an oddball paradigm to determine each participant’s 

mismatch negativity (MMN) response to the trained contrast immediately before training on 

day 1, and after behavioral reassessment on day 2. The MMN component of the event-

related potential (ERP) reflects pre-attentive responses to stimulus change, and has been 

used to measure phonological processing in both typical and atypical populations [13]. We 

predicted that overnight changes in the MMN response would be positively associated with 

changes in behavioral performance.

Materials and Methods

Participants

All participants provided informed written consent in accordance with our human subjects 

research protocol approved by the University of Connecticut Institutional Review Board 

prior to participation. The data presented in this manuscript is from a subset from a larger 

dataset collected from monolingual, native speakers of American English, 18–24 years of 

age, who grew up in a household with only native speakers of American English. The 

participants included in the current report met additional criteria as follows. Participants 

reported no neurological, socio-emotional, or attention disorder, and a history of typical 

language, reading, and cognitive development. In addition, participants passed a pure tone 

hearing screening and obtained scores at or above the 25th percentile on the following 

standardized assessments of reading and nonverbal cognition at the time of the study: 

Woodcock Reading Mastery Test-Revised [14], Test of Word Reading Efficiency [15], 

Wechsler Abbreviated Scale of Intelligence [16]. These participants were further identified 

as ‘typical’ in language by the Modified Token Test and the 15-word spelling test, which are 

non-standardized measures devised to identify adults with a history of language impairment 

[17]. Twenty-seven participants (Mean: 20 years, 5 months; SD: 16 months; 17 female, 25 

right-handed) met all criteria and completed the EEG recording and the perceptual training; 

of these, data from two participants were excluded from the current analyses for the reason 

that behavioral performance immediately after training was greater than 3 standard 

deviations above the mean; this brought their scores close to task ceiling (equal to or greater 

than 95% accurate) and as such, a meaningful measure of overnight improvement on 

perceptual tasks could not be obtained. Data on the remaining 25 participants contributed 
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behavioral/EEG measures. For analyses involving sleep data, we excluded data points that 

revealed missing segments due to signal dropout during the recording period (n=7). The 

remaining 18 (Mean: 20 years, 4 months; SD: 17 months; 11 female, 16 right-handed) 

completed sleep data collection.

Standardized assessments were administered and scored by the first author or one other 

graduate student, and rescored by one of two trained undergraduate students. Any 

discrepancies in scoring were flagged by the second scorer and resolved by the first author.

Stimuli

Nonnative phonetic training/assessment—A set of 10 naturally spoken tokens (5 

each: /d̪ug/ [dental], /ɖug/ [retroflex]) were produced by a male, native speaker of Hindi in a 

sound attenuated audiology booth and recorded by an Edirol digital recorder [18]. Praat 

software [19] was used to cut tokens to the burst onset and to adjust mean amplitudes to 

70dB. For training, two novel visual objects [20] were used, each corresponding to one 

‘word’ within the minimal pair: /u̪g/-/ɖug/ used during training.

Mismatch Negativity (MMN) response—Two tokens from the above training set (one 

dental and one retroflex) were further modified in Praat to equate burst, vowel, and token 

duration to total 250ms from onset to offset. The dental token was used as the frequently 

occurring Standard, and the retroflex token was used as the infrequently occurring Deviant.

Procedure

Participants were scheduled for the experiment on two consecutive days: from 7–9PM on 

day 1, and 8–10AM on day 2 (Figure 1). At the end of the first session, participants were 

instructed on the use of the sleep-monitoring headband [11,12], and were sent home with the 

device. Participants returned at 8AM the next day and were first reassessed behaviorally on 

their perception of the nonnative contrast. This was followed by a second EEG/ERP 

recording session, and then by administration of the remaining language and cognitive 

assessments.

Nonnative phonetic training/assessment—On day 1, participants completed a 

baseline assessment of discrimination, training using an identification task, identification 

post-training assessment, and a post-training discrimination assessment. On day 2, 

participants completed a post-training identification assessment, followed by a post-training 

discrimination assessment. E-Prime 2.0 software [21] was used for stimulus presentation and 

recording participant response. Participants were presented the auditory stimuli through 

SONY MDR-7506 Hi-Fi digital Sound Monitor headphones, at an average listening level of 

70 dB SPL.

During training, participants were first exposed to a familiarization sequence of each 

auditory token presented with the corresponding picture. They were then instructed to 

choose which of two pictures of novel objects corresponded to each of the two ‘words.’ 

Participants completed 200 trials of this task with a 2-minute break halfway through, and 

were provided with written feedback (‘correct’ or ‘incorrect’) after every trial. During each 
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post-training assessment, participants completed 50 trials of the same identification task 

without feedback. For the discrimination task, participants were presented two tokens in 

sequence (stimulus onset asynchrony [SOA] of 1 second), and instructed to indicate if the 

sound at the beginning of the two words belonged to the same or different speech sound 

category. During each assessment, participants completed 128 (64 ‘same’ and ‘different’) 

discrimination trials without feedback.

Performance accuracy for each task was converted to d′ scores [22]. In order to avoid 

infinite values, proportion accuracy scores of 0 or 1 were adjusted to a ceiling z-value of 

4.65 [23].

ERP recording and analysis—E-Prime 2.0 software was used for stimulus presentation. 

Stimuli were presented over two wall-mounted free-field speakers approximately two feet in 

front and two feet above the participants at an average listening level of 75dB SPL. 

Participants watched a muted nature documentary during the entire recording. In each 

recording session, participants were presented with a train of 667 stimuli (15%, or 100, 

deviant tokens) with an SOA of 650ms in two blocks. Stimuli were arranged in a 

pseudorandom order such that deviant tokens were presented no fewer than 3, and no more 

than 8, standard tokens apart.

The EEG was recorded continuously using a 128-channel Hydrocel geodesic sensor net [24] 

with a Cz reference. Data were sampled at 500 Hz/channel with hardware filter settings 0.1–

100 Hz. Using Netstation software [24], the recordings were bandpass filtered (0.3–30 Hz) 

and segmented (−100 to 800 ms from stimulus onset) to obtain ERPs. Segments containing 

artifacts (defined as min-max voltage > 200μv over a moving average of 80ms for eye 

blinks, and min-max voltage > 100 μv over a moving average of 80ms for eye movements) 

were removed and bad channels (defined as channels with greater than 40% of segments 

marked bad) were spline interpolated before averaging. The data was re-referenced to the 

average reference and baseline corrected to 100 ms pre-stimulus presentation. Across 

participants, the number of segments retained for statistical analyses are as follows: for day 

1, 72% deviant, 74% standard; for day 2, 71% deviant, 71% standard.

Only Standard tokens that immediately preceded Deviant tokens were included in statistical 

analyses. Area under the curve from 150 to 200ms post-stimulus onset (where the MMN has 

been identified for auditory stimuli with only a subtle difference [25]) was calculated for the 

response waveforms at the electrode corresponding to Fz in the 10/20 system for each 

condition separately, and subjected to further statistical analysis. Individual MMN values 

were computed by calculating the difference between the Deviant and Standard waveforms 

for the specified time window.

Results

Association between behavior and sleep

We tracked performance in each perceptual task (discrimination and identification) on days 

1 and 2 (Figure 1). An initial repeated measures analysis of variance (ANOVA) with time as 

the within-subjects factor, and subsequent paired samples t-tests, determined that 
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participants improved in discrimination performance at each time point (Time main effect: 

F(2,34) = 12.09; p<.001, η2=.42; baseline to day 1 post, t(17)=2.74, p=.014; day 1 to day 2 

post, t(17)=3.02, p=.008; all pairwise comparisons significant at .05 after Bonferroni 

correction). A paired samples t-test determined that participants improved in identification 

performance between days 1 and 2 (t(17)=4.51, p<.001). The increase in performance from 

day 1 to day 2 in the absence of further training replicates previous findings showing that an 

intervening period of sleep facilitates improvement on perceptual tasks [5].

The average sleep duration across participants was 351 minutes (SD 45 min, range [285, 

410]). Different stages of sleep are associated with consolidation of different types of 

memory [26]; therefore, the two perceptual tasks likely differ in their respective 

relationships to sleep as well, depending on the type of memory on which performance 

relies. Because duration of sleep stages are highly collinear, total sleep, rapid eye movement 

(REM) sleep, light sleep (NREM stages 1 and 2), and deep sleep (NREM stages 3 and 4) 

durations were entered stepwise as predictors into a multiple regression model using SPSS 

software [27] with performance gain (the difference between day 2 and day 1 posttest 

scores) as the dependent variable for each task. Total sleep duration accounted for the largest 

proportion of variance in overnight discrimination gain (F(1,16) = 6.94, p = .018, r2 = .302), 

and light sleep duration accounted for the largest proportion of variance in identification 

gain (F(1,16) = 8.01, p < .001, r2 = .800).

The significant MMN response on day 1 (F(1,23) = 4.96, p = .007, η2 = .27) was found to be 

associated with identification performance on day 1 (F(1,23) = 4.84, p = .038, r2 = .17). 

While the MMN response on day 2 was marginal (F(1,23) = 3.98, p = .057, η2 = .14), we 

found that individual changes in the MMN between days were significantly correlated with 

the magnitude of behavioral performance gain on the discrimination task (F(1,23) = 6.10, p 

= .021, r2 = .21), with a larger increase in MMN associated with improved discrimination 

performance from day 1 to day 2 (Figure 2).

Discussion

The present findings lend strong support to the hypothesis that some differences in 

perceptual speech category learning are attributable to differences in sleep behavior. The 

observation that light sleep duration is associated with category identification performance is 

consistent with the argument that light sleep plays a dominant role in the consolidation of 

hippocampal memory [10].

The finding that discrimination performance is associated with total sleep duration allows 

for several possibilities for interpretation. For one, category discrimination may be 

facilitated by a sleep-mediated process (or a combination of processes) that are not confined 

to a particular stage of sleep. A second possibility is that improvement on perceptual 

discrimination may be facilitated by a period of a lack of conflicting speech input (i.e. 

silence) that is indirectly provided by periods of sleep. This interpretation would be 

consistent with our previous findings [6] that discrimination performance is vulnerable to 

degradation following exposure to conflicting phonetic information, while identification 

performance is not. Finally, all participants obtained less than 7 hours of sleep between 

Earle et al. Page 6

Neurosci Lett. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sessions, raising the possibility that sleep deprivation may have played a role in 

performance, particularly in those who showed the least amounts of performance gain. We 

note that performance in category discrimination, because the task was not explicitly trained, 

is consequently an indirect measure of learning. This may explain the discrepancy in the 

magnitude of training-induced gain between the two tasks.

Future investigations will address the need to disambiguate the subtle distinctions between 

different perceptual tasks as a measure of perceptual learning. Nonetheless, the relationship 

between learning and sleep duration suggests that, among typical individuals with 

comparable linguistic experience, sleep duration accounts for differences in the encoding of 

new speech features, necessary in the formation of new perceptual categories. Furthermore, 

electrophysiological results support the interpretation that the observed changes in 

perceptual performance reflect changes to neural structure and/or physiological changes.

Conclusions

This study demonstrated that relative success in the acquisition of new speech sounds is 

determined by post-exposure sleep duration. Over time, habitual differences in sleep habits 

may lead incrementally to differences in the quality of the resultant linguistic units. This 

work prompts further investigation into the relationship between habitual sleep behaviors 

and language function.
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Highlights

• Sleep duration predicts improvement in measures of speech sound 

learning

• Behavioral gains are associated with changes in ERP response 

magnitude overnight

• Duration of sleep determines relative success of forming new 

perceptual categories
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FIGURE 1. Perceptual performance over time and relationships with sleep duration
(A) Schedule of tasks in the study protocol.

(B, C) Mean perceptual task performance by time point: before training on day 1 (baseline), 

immediately following training on day 1 (day 1 post), and 12 hours later (day 2 post). 

Performance is measured by d′ scores (y-axis).

(D, E) Relationships between individual differences in sleep duration and the overnight 

change to perceptual task performance (day 2 – day 1 d′ scores on y-axis).
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FIGURE 2. ERP responses to the target contrast and relationships with behavioral performance
(A, C) ERP waveforms for each stimulus condition: Standard, Deviant, and Difference 

(Deviant minus Standard) recorded at the FZ electrode. Amplitude (y-axis) is in microvolts.

(B, D) Relationships between MMN amplitude (area under the curve 150–200 ms of the 

difference waveform) and behavior
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