

Language Ability Predicts Health Literacy Skills

Charlotte Robinson¹, F. Sayako Earle² University of Connecticut ¹, University of Delaware²

Background

Health literacy is the ability to read, understand, navigate and communicate within the healthcare field in order to be able to make informed decisions about one's health. Health literacy contributes to an individual's ability to communicate health history information, employ preventative measures for disease, navigate insurance, fill prescriptions and understand mathematical concepts such as probability and risks for disease. This is an important skill in today's health industry because due to under-staffing in hospitals, there is a decrease in face-to-face patient to healthcare provider time (Rosseter). By extension, people with poor health literacy skills may be less capable of obtaining the highest level of patient care and their health may suffer as a result. This research seeks to reveal the connections between patient healthcare literacy and their language skills through analysis of language and healthcare related tests.

Language Test	Subtests	Construct		
WRMT-III	Word attack	Phonics and word recognition use to determine ability to apply structural analysis skills		
	word ID	untimed sight-word recognition		
TOWRE-II	Phonemic decoding	Timed decoding		
	Sight Word Efficiency	Timed sight-word recognition		
Spelling	N/A	Spelling of infrequent words (possible index of reading habit)		
Modified Token Test	N/A	Spoken language processing		
Health Literacy Test	Subtests	Construct		
METER	N/A	Medical term recognition test		
BREIF	N/A	Self-reported health questionnaire		

Woodcock, R. W. (2011). Woodcock reading mastery test (WMMT-11). San Antonio, TK. Pearson Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (1999). Test of Word Reading Efficiency (TOWRE). Austin, TK. Pro-ed.

Methods

Participants:

- Inclusionary criteria for this study was that all participants must have previously completed a MAPS lab study.
- The sample size for this study was 52. Of this sample, 24.4% were male and 75.6% were female. 75% were White, 11.5% African American, 5.7% Asian and 7.8% were Hispanic/Latino. Their ages ranged from 18-32 and the mean age was 21 years old.

Materials:

- Subjects completed many language skill tests, outlined in Table A.
- RedCap and JASP software was used to record and analyze participant's scores.

Procedures:

- Participants came in for a 2 hour long language and reading testing session. Tests were administered one-on-one by a trained research assistant. Scores were then double scored and checked for accuracy.
- For the BRIEF and METER scores participants were emailed a link to a RedCap survey and participants completed the assessments online.

Contact

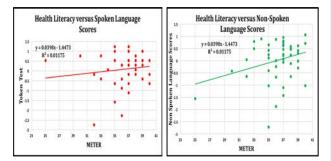
University of Delaware 100 Discovery Blvd. Newark, DE 19711 Charlotte.robinson@uconn.edu (860) 449-2208

		Ana	lysis			
Linear l	Regression	BREIF, I	Reading Con	nposite an	d Token	
Model	R 0.154		R ²	Adjusted R ²	RMSE 2.46	
1			0.024	-0.037		
		A	NOVA	•		
Model	Sum of squares	df	Mean Square	F	р	
Regression	7.091	3	2.364	0.388	0.762	
Residual	292.352	48	6.091			
Total	299.442	51				
		Coe	fficients			
Model	Unstandardized		Standard error	t	р	
(Intercept)	16.783		3.052	5.498	<.001	
Non-Spoken Language	0.473		0.449	1.052	0.298	
age	-0.029		0.144	-0.201	0.841	
Spoken Language	-0.044		0.37	-0.119	0.905	

Linear Regression with BRIEF as the dependent variable and reading composite, Token test scores and age as covariates.

Model		R	R ³	Adjusted R ²	RMSE
1	0.349		0.122	0.067	2.629
		A	NOVA		
Model	Sum of Squares	df	Mean Square	F	р
Regression	45.931	3	15.31	2.215	0.098
Residual	331.838	48	6.913		1
Total	377.769	51			
		Coe	fficients		14
Model	Unstandardized		Standard Error	t	р
(Intercept)	33.124		3.252	10.186	<.001
Non-Spoken Language	0.99		0.479	2.068	0.044
age	0.153		0.153	0.997	0.324
Spoken Language	0.13		0.394	0.33	0.743

as covariates.


		Reading me	asures correlations			
		Word ID	Sight Word Rep	Spelling	Word Attack	Phonemia
Word ID	p-value	1000				
Sight Word Repetition	Pearson's r	0.346*				
	p-value	0.012				
Spelling	Pearson's r	0.808***	0.258			
	p-value	<.001	0.065	-		
Phonemic Decoding	Pearson's r	0.718***	0.459***	0.653***	0.732***	1000
	p-value	<.001	<.001	<.001	< .001	

55, p<.01, p<.001

Correlation matrix shows that reading and spelling scores are highly correlated and therefore can be made into a composite reading score

Results

- The data was transformed by taking the Z score of all the raw language score data.
- A correlation matrix was used to show that all reading and spelling measures in the language battery were all highly correlated. A
- composite reading score was then created by averaging the Z scores. A linear regression was conducted to analyze METER, BRIEF, nonspoken and spoken language scores.
- In the linear regression, age was used as a covariate to control for any differences in age among participants.

Discussion

- It was found that BRIEF scores had no significant relationships with any
 of the reading scores.
- This may have been due to the order in which the BRIEF , a self
- assessment, was administered after METER, a quantitative measure. • Initial hypothesis that poor spoken language skills is linked to poor
- health literacy scores was not supported.
- It was found that non-spoken language skills such as reading and spelling were predictive of health literacy.
- Spoken language scores did not show significance in our samples.
- The implications of these findings may act as a basis for developing more effective tools for doctor- patient communication such as informational videos that use spoken language and visuals rather than written material to instruct patients and relay important health information.

Acknowledgements

This work was supported by the University of Delaware's Undergraduate Research Scholar's award to Charlotte Robinson, and NIH grant R21DC016391 to F. Sayako Earle. Poster printing courtesy of DRI. The authors are responsible for this work and this research does not necessarily reflect the views of our sponsoring institutions or sources of funding.

References DeWalt, D.A., Berkman, N.D., Sheridan, S. et al. J GEN INTERN MED (2004) 19: 12

F. S., & Myers, E. B. (2015). Sleep and native language interference affect non-native speech sound learning. Journal of Experimental Psychology:

a, J. F., & Longnecker, N. (2010). Doctor-patient communication: a review. The Ochsner journal, 10(1), 38-43.

Haun, J., Noland-Dodd, V., Varnes, J., Graham-Pole, J., Rienzo, B., & Donaldson, P. (2009). Testing the BRIEF health literacy screening tool. Federal Proctitioner, 26(12), 24-3

Parker, R. M., Baker, D. W., Williams, M. V., & Nurss, J. R. (1995). The test of functional health literacy in adults. Journal of general internal medicine, 10(10), 537-54.

Rosseter, R. (n.d.). Nursing Shortage. Retrieved August 6, 2019, from https://www.aacnnursing.org/News-Information/Fact-Sheets/Nursing-Shortage