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Abstract 

Frequent casualties and massive infrastructure damages are strong indicators of the need for dynamic site 
characterization and systematic evaluation of a site’s sustainability against hazards. Microzonation is one 
of the most popular techniques in assessing a site's hazard potential. Improving conventional 
macrozonation maps and generating detailed microzonation is a crucial step towards preparedness for 
hazardous events and their mitigation. In most geoscience studies, the direct measurement of parameters 
imposes a huge cost on projects. On one hand, field tests are expensive, time-consuming, and require 
specific high-level expertise. Laboratory methods, on the other hand, are faced with difficulties in perfect 
sampling. These limitations foster the need for the development of new numerical techniques that 
correlate simple-accessible data with parameters that can be used as inputs for site characterization. In this 
paper, a microzonation algorithm that combines neural networks (NNs) and geographic information 
system (GIS) is developed. In the field, standard penetration and downhole tests are conducted. Atterberg 
limit test and sieve analysis are performed on soil specimens retrieved during field-testing. The field and 
laboratory data are used as inputs, in the integrated NNs-GIS algorithm, for developing the microzonation 
of shear wave velocity and soil type of a selected site. The algorithm is equipped with the ability to 
automatically update the microzonation maps upon addition of new data.  
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Introduction 

Casualties and massive infrastructure destruction are great indicators of the need for systematic 

characterization of a site’s sustainability against natural disasters. Microzonation has been known 

as one of the most accepted tools in assessing soil failure potentials. Seismic microzonation is a 

generic name for the process of subdividing a seismic-prone area into zones based on 

appropriately selected geotechnical properties. This process can be done by systematically 

estimating the response of soil layers to earthquake excitations. The result of a microzonation 

process is a geographical map—generated in terms of suitable geotechnical and geophysical 

parameters—illuminating specific geological characteristics of a site, such as soil type, or the 

potential of different zones of a site for geotechnical failures, such as ground shaking, 

liquefaction, landslide, tsunami, and flooding. One example parameter that can be used in 

microzonation is the small-strain shear modulus (also called maximum shear modulus, Gmax). 

Gmax can be correlated to the deformation potential of a given site against seismic actions. This 

parameter has been discovered to have a direct correlation with the small-strain shear wave 

velocity of a soil [1]. In other words, shear wave velocity in low strains can be used as a unique 

and reliable parameter that can be used in microzonation maps.  

Making improvements on the traditional macrozonation maps and generating detailed 

microzonation maps is a crucial step towards preparedness for future hazardous events. In the 

last few decades, efforts were made to perform microzonation on different earthquake-prone 

areas to be used for construction and design purposes. Fäh, Rüttener, Noack and Kruspan [2] 

carried out a detailed microzonation of the city of Basel to perform a numerical modelling of 

expected ground motions during earthquake events. Tuladhar, Yamazaki, Warnitchai and Saita 

[3] performed a seismic microzonation for the city of Bangkok by using micro-tremor 
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observations. Anbazhagan and Sitharam [4] mapped the average shear wave velocity for the 

Bangalore region in India. They also proposed an empirical relationship between the Standard 

Penetration Test blow count (SPT-N) and shear wave velocity. Vipin, Sitharam and Anbazhagan 

[5] carried out a performance-based liquefaction potential analysis based on SPT data acquired 

from Bangalore, India. Cox, Bachhuber, Rathje, Wood, Dulberg, Kottke, Green and Olson [6] 

presented a seismic site classification microzonation of the city of Port-au-Prince based on shear 

wave velocity of the soil and provided a code-based classification scheme for the city. Murvosh, 

Luke and Calderón-Macías [7] carried out shear wave velocity profiling in complex ground to 

enhance the existing microzonation of Las Vegas. Kalinina and Ammosov [8] studied the 

applicability of multichannel analysis of surface waves to address the solutions for 

microzonation problems.    

For a good microzonation, it is not only important to obtain reliable data from field 

measurements but also to identify and implement a robust technique to optimize the input-output 

relationship. Most of the statistical methods require a significant volume of data to produce 

reliable results. Direct measurement of most geotechnical parameters imposes huge costs on 

projects. Field tests are time-consuming and need specific expertise. Laboratory methods, on the 

other hand, are faced with difficulties from imperfect sampling. These limitations necessitate the 

development of numerical techniques that correlate easily accessible data with parameters that 

require extensive effort. In light of this, Artificial Intelligence (AI) integrated with GIS can be 

used to model the seismic hazard susceptibility of a site.  

Fuzzy Networks, metaheuristic algorithms, and most importantly, neural networks (NNs) can all 

be categorized under the field of AI. NNs are designed to approximate complicated non-linear 

correlations between input and output layers of a specific problem while using a small fraction of 
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data for training purposes [9-11]. Furthermore, NNs are designed to eliminate the complicated 

statistical variables that exist in conventional statistical methods [12]. The integration of NNs 

with GIS has recently been tried for various problems [13]. Li and Yeh [14] used this approach to 

simulate multiple land use changes in southern China. Pijanowski, Brown and Shellito [15] 

proposed a model to evaluate the land transformation. Lee, Ryu, Min and Won [12] used an 

integrated GIS and NNs to study the landslide susceptibility in the area of Yongin in Korea. 

Pradhan and Lee [16] analyzed the regional landslide hazard  utilizing optical remote sensing 

data. Yoo and Kim [17] predicted the tunneling performance required in routine tunnel design 

works. Pradhan, Lee and Buchroithner [18] proposed a GIS-based neural network model to 

obtain landslide susceptibility mapping for risk analysis. Ho, Lin and Lo [19] proposed a 

methodology to assess the water leakage and prioritize the order of pipe replacement in a water 

distribution network. 

In this study, NNs have been used to correlate easily obtainable geotechnical parameters with 

parameters that govern the seismic potential of a soil. The resulting correlation has been 

implemented in generating microzonation maps. Python coding has been implemented to 

develop a dynamic system capable of automatically improving microzonation maps as additional 

data is acquired and inserted. The proposed algorithm has been applied for the microzonation of 

Urmia City, which is located in the northeastern part of Iran. In the succeeding sections of the 

paper, the design and implementation of an integrated system that performs geotechnical 

microzonation of a site will be presented. 
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Methods and Materials 

Neural Networks (NNs) 

Neural networks are known to be the main and inspiring branch of artificial intelligence. It is not 

an overstatement to claim that the word intelligence is an appropriate attribute for neural 

networks, since the NNs algorithms are based on simplified mathematical models for the 

interconnected electro-chemical transmitting neurons, what we call it "Brain" [20]. NNs are 

designed to extract non-linear correlations between effective variables by examining a large set 

of responses. Neural networks are primarily trained with a large data set. NNs are able to provide 

accurate output for a data set if a proper training plan has been implemented. Correctly, designed 

NNs will have three main parts: the transfer function, the network structure, and the learning law. 

These parts are defined separately based on the type of the defined problem [21]. 

NNs consist of an interaction between several interconnected nodes, called artificial neurons. 

These neurons exchange messages with each other. These neurons could be located in several 

different layers. The structure of designed NNs includes three different types of layers: (1) input 

layer (2) hidden layer(s) and (3) output layer. Each structure has one input layer and one output 

layer. Hidden layers are intermediate layers defined between the input and output layers where 

the active signals are transmitted between layers. The number of hidden layers and nodes per 

layer are set based on trial and error by the network's designer. The connections between neurons 

have numeric weights that can be adjusted based on experience. This feature helps the NNs learn 

from experience. Each weighted neuron connection is activated by a transform function in a 

given layer. This process is repeated until the output neurons are all activated. The error of the 

NNs is defined as the difference between the NNs output and the given observation. The weights 

are then changed until the error is minimized. The minimization of the error can be performed 
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with different types of optimization techniques. Metaheuristic methods such as the harmony 

search algorithm have been used in several engineering problems [22, 23]. Least squares 

methods can also be used to minimize the error. 

From a number of different types of NNs, a feedforward network is selected here. Such a 

network uses backpropagation (BP) technique—a gradient descent algorithm in which the 

network weights are moved along the negative of the gradient of the performance function. In 

this study, the Levenberg-Marquardt (LM) algorithm [24] is employed to optimize the weight of 

networks. This algorithm has the capability of solving non-linear least squares problems. For the 

basic BP algorithm, the weights of the network are adjusted in the direction that the rate of 

descent for the performance function is highest. The weight of the network for each iteration is 

calculated from the following expression: 

kkkk GWW 1 α−=+  (1) 

where Wk is a vector of current weights, Gk is the current gradient, and kα is the learning rate.  

For fast optimization, the gradient can be replaced by the Hessian matrix of the performance 

index at the current values of the weights 
1( )k
−A . Since a huge computational effort is required to 

obtain the Hessian matrix for feedforward neural networks, the LM algorithm has been designed 

to approach a second-order training speed without the need to calculate the Hessian matrix [25]. 

For the performance function with the form of a sum of squares, the Hessian matrix can be 

approximated by: 

JJH T=  (2) 

EG TJ=  (3) 
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where J is the Jacobian matrix that contains the first derivatives of the network errors with 

respect to the weights, and E is a vector of network errors.  

The Jacobian matrix can be computed through a standard backpropagation technique [25] which 

bypasses the difficulty of computing the Hessian matrix. The LM algorithm uses this 

approximation to the Hessian matrix in the following Newton-like update: 

E][WW T1T
1 JIJJ −
+ +−= μkk  (4) 

The correction factor μ is a counterweight that guarantees the reduction of the performance 

function. Any increase or decrease in performance function is accompanied by mutual increase 

or decrease in the correction factor. This way, the performance function is always reduced at 

each iteration of the algorithm [26]. 

Overfitting is the most common problem that may occur during the training process. This 

problem occurs when the obtained error for the training set of the data is very small but that of 

the testing data is very large. The network has memorized the training examples, but it has not 

learned to generalize to new situations (i.e., testing data). Regulation is a technique that prevents 

overfitting and improves network generalization. It involves modifying the performance 

function, which is normally chosen to be the sum of squares of the network errors in the training 

set. 

The performance of a neural network is evaluated by a correlation coefficient (r), mean absolute 

error (MAE), and root mean square error (RMSE). The correlation coefficient is defined as: 
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The mean absolute and root mean square errors are defined as follows: 
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where Ti and Oi are the target output and the output calculated by the neural network, 

respectively. 

The performance function used for training neural networks is the root mean sum of squares of 

the network errors. It is possible to improve generalization if the performance function is 

modified by adding a term that consists of the root mean of the sum of squares of the network 

weights as: 

n
2

reg j
j 1

(1 γ)γ
n

rmse rmse W
=

−= + ∑
 

(8) 

where γ and n are the performance ratio and number of network weights, respectively. 

This performance function causes the network to have smaller weights and forces the network 

response to be smoother and less likely to overfit [27]. 

To model the nonlinear behavior of the communication mechanism in a neuron, an activation 

function has to be introduced to a layer’s net input. Transfer functions calculate a layer's output 

from its net input [28]. Different forms of nonlinear mathematical models have been suggested 

and used in various engineering applications. In this study, based on trial and error, the tangent 

sigmoidal (Tansig) transfer function has been employed: 
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2tan ( ) 1
1 exp( 2 )

a sig x
x

= = −
+ −  

(9) 

where a is the output of the current layer and input of the next layer, and x is the input of the 

current layer. The Tansig transfer function is shown in Fig. 1. 

Integration of GIS with NNs 

In this work, a novel dynamic algorithm has been developed to collect data from geographic 

information systems, and Python® has been employed to link NNs to GIS. First, the system 

searches for any deficiency in data over the entire domain of layers. For each layer, if any data is 

missed, the ordinary kriging method [29] is used to do interpolation, and the spatial information 

associated with the missed data points are extracted and added to the data set. Then the complete 

data is used to design NNs. NNs are trained for the available data based on the optimum number 

of hidden layer nodes and internal parameters such as momentum term and learning rate. For a 

given data set, 80% of it is used for training, and the remaining 20% is used for evaluation 

purposes.  

 

Fig. 1 - Tangent sigmoidal (Tansig) transfer function 
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Fig. 2 - Flowchart of the proposed integrated dynamic system. 

The trained NNs are then embedded in a GIS platform using Python scripts to dynamically 

update microzonation maps. Fig. 2 shows a flowchart of the integrated dynamic system idealized 

as a three-step process. In step 1, null data lags are filled. Steps 2 and 3 embed the trained NNs in 

GIS and update the microzonation map, respectively. Once all layers are covered, steps 1 and 2 

freeze, and step 3 dynamically updates the microzonation with new details as newly collected 

information is added to the database. 
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Laboratory and Field Experiments 

Location of the experimental work 

The city of Urmia is located 1330 meters above sea level with geographic coordinates, 

37°33’19”N 45°04’21”E. Urmia is the 10th most populated city in Iran (with a population of 

667,499 in 2012). The city is the trading center for fruit produce, which is the source of its 

nickname “the city of apples and grapes”. One of the world’s largest salt lakes, “Lake Urmia”, is 

located east of the city and adds tourism attraction to the region. The geographic position of 

Urmia is close to Cenozoic stress fields and faults east of Lake Urmia. In the past 10 years, 

Urmia has been shaken by several earthquakes—each time with higher magnitude and intensity. 

Attributed to those incidents, the Iranian Code of Practice for Seismic Resistant Design of 

Buildings (2800) recently added Urmia to the list of cities with a high risk of earthquake. Given 

the high rate of population growth and urban development, and the fact that earthquake is a 

recurring threat to the city, a comprehensive seismic study is necessary for the city.  

Description of the Field and Laboratory Experiments 

In this work, two field and two laboratory tests were conducted to gather important parameters 

for training the NNs. Standard Penetration Tests (SPT) [30] were performed on 71 boreholes 

distributed throughout the city of Urmia. Fig 3(a) shows the SPT equipment setup during in-situ 

testing. In each borehole, sampling was performed at 2 m intervals up to a depth of 10 m (i.e., 5 

samples per borehole). The measured blow counts (SPT-N or N) were standardized for 60% 

energy transfer from the safety hammer to the drill rod. On the soil samples retrieved for 

laboratory examination, Atterberg limit tests [31] and sieve analyses [32] were performed.  
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Fig. 3 - (a) SPT test setup (b) borehole isolation using a concrete block (c) dropping 

geophones into the borehole (d) Generating waves at ground surface with a hammer 

The second field test that was performed was the downhole test [33]. In this test, the stiffness of 

a soil is determined directly by analyzing the shear and compression waves throughout the length 

of a borehole (Figs 3(a & b)). Shear waves generated on the ground surface by an external source 

are received by a sensor that can be moved freely in the borehole. Fig 3(d) shows the process of 

generating shear waves using a hammer. The traveling time of the seismic waves is analyzed, 

and seismic velocity of the soil is obtained. Measurements can be done above or below the water 

table. In order to perform the downhole test, the borehole is dug up to engineering bedrock. The 

engineering bedrock is defined as the layer in which the underlying stratum has from 300 to 700 

m/sec of the shear wave velocity. In this study, the value of 700 m/sec has been assumed as an 

indicator for engineering bedrock. The depth of the boreholes varied between 10 to 50 m. Wall 

stabilization of the boreholes was done with PVC pipes of 3 to 6 inches in diameter. The most 

significant problem during the downhole test was noise caused by nearby construction and traffic 

load that affected the amplitude and wavelength of the pure shear waves that were originally 
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produced by the experimental source. This problem was solved by conducting the experiments at 

night and during the day at times of minimal construction activity inside the city and by 

integrating statistical correction measures with the testing instrument. 

From field and laboratory experiments, the data collection activity resulted in 355 data sets from 

the 71 boreholes. Fig. 4(a) shows the relative location of the study area. The geographic 

coordinates and satellite view of Urmia city are also indicated in Figure 4(b).  Fig. 4(c) shows 

borehole locations. The data collected from the SPT and downhole tests were used to train the 

NNs in the input and output layers. 

   

Fig. 4 – (a) the relative location of the study (b) Satellite view of Urmia city; and (c) 

Location of boreholes. 

Results and discussion 

Microzonation for shear wave velocity 

Practical importance of shear wave velocity, Vs 

The importance of shear wave velocity (Vs) in earthquake analyses can be inferred from its strong 

correlation with the small-strain shear modulus (Gmax) of a soil. For different strain levels, the shear modulus 

of a soil will attain different magnitudes. As the shear strain increases, the shear modulus of a soil decreases, 

as shown in Fig. 5. Such curves are commonly referred to as modulus reduction curves and are used to 

describe the reduction of the secant modulus with increase in cyclic shear strain. For very small strains (i.e. 
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less than 10-3), the variation in shear modulus becomes negligible, and it is assumed that the shear modulus 

remains constant at a value of Gmax.  

From Fig. 5, it can be inferred that accurate information regarding the Gmax of a given soil is vital 

in estimating the shear modulus at different strain levels. Gmax and Vs are two of the most 

employed parameters in dynamic analysis. These two parameters are employed in soil 

classification, liquefaction potential, and soil-structure interaction analyses [34]. Given the unit 

mass (density) and Vs of a certain soil, Gmax can be estimated using the following equation: 

2
max  sG Vρ=  (10) 

 

Fig. 5 - Modulus reduction curve 

Shear wave velocity determination methods  

The shear wave velocity of soils can be obtained from: (1) laboratory measurements; (2) 

geophysical seismic field measurements; or (3) other indirect measurements. Low strain 

laboratory tests such as resonant column and bender element tests on undisturbed soil samples 

are the common laboratory methods used to obtain Vs. Cyclic triaxial apparatus combined with 

exact measurement of axial strains has also been used for this purpose. Collecting undisturbed 
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samples is always a challenge because the weak bonds between soil particles start to break 

during the process of sampling. This in turn degrades the stiffness of samples and dramatically 

affects the results of small strain laboratory tests. Generally, undisturbed soil sampling on coarse 

material is impossible unless expensive freezing methods are used [35]. 

Soil shear wave velocity can also be measured using geophysical methods such as crosshole 

(CHT), downhole (DHT), seismic cone penetration tests (SCPTs), Micro-tremor, wave 

propagation analysis at several stations (MASW), and spectral analysis of surface waves 

(SASW). Since these field experiments are performed at small strain levels, the results of these 

experiments can be used to estimate Gmax. Compared to the laboratory methods, the advantage of 

field measurements is that they naturally cause less disturbance on soil. However, various 

limitations related to space, cost, and noise, hinder their utilization. 

Both laboratory and field measurements are expensive and time consuming and, in many 

projects, may not be feasible. Thus, the recent trend has shifted towards determining Vs using 

indirect methods. Indirect methods try to obtain a correlation between Vs and simply acquired 

geotechnical parameters.  

Significant effort has recently been made by researchers to obtain a unique relationship between 

the shear wave velocity of a soil and other geotechnical parameters. The goal of coming up with 

these relationships is to cut the cost of obtaining Vs with expensive laboratory and/or field-tests 

by correlating it to simple geotechnical parameters. Most of the experimental studies focused on 

directly correlating Vs to SPT blow count (N). The most common functional form for the 

relations proposed in the literature is Vs = A.NB, where the constants A and B are determined by 

statistical regression of a data set [1]. Some common empirical relationships proposed to relate 

Vs with N are summarized in Table 1. 
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Table 1 - Empirical relationships used to estimate Vs from SPT number (N) 

References 
Soil type 

All soils Sand Clay 

Imai and Yoshimura [36] Vs=91N 0.337 Vs=80.6N 0.331 Vs=102N 0.292 

Seed and Idriss [37] Vs=61.4N 0.5 - - 

Seed, Idriss and Arango 

[38] 

- Vs=56.4N 0.5 - 

Jinan [39] 

Vs=116.1(N+.318) 

0.202 
- - 

Iyisan [40] Vs=51.5N 0.516 - - 

Hasancebi and Ulusay [41] Vs=90N 0.309 Vs=90.82N 0.319 Vs=97.89N 0.269 

Dikmen [42] Vs=58N 0.39 Vs=73N 0.33 Vs=44N 0.48 

Fig. 6 shows the graphical representation of the correlations presented in Table 1 with 

experimental data from a field study in Urmia. Observing the data scatter, it is clear from Fig. 6 

that the SPT number (N) is not sufficient to obtain the shear wave velocity of the soil. 

Brandenberg, Bellana and Shantz [43] presented an equation to estimate Vs for soils under 

Caltrans bridges. They gathered data sets from 79 logs over 21 bridges and expressed the natural 

logarithm of Vs as a function of N and overburden effective stress for sandy, silty, and clayey 

soils. 
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Fig. 6 - Comparison between field data and N-based empirical equations (See Table 1) 

for Vs 

The percentage of fines, the depth, and the tip resistance in the cone penetration test are among 

the other parameters investigated to find a reliable correlation. In addition to overburden stress, 

the effect of porosity on Gmax has been investigated by several studies [43-48]. The results 

revealed that overburden stress and porosity influence the magnitude of Gmax. Geological age 

also has an important influence on Gmax. Pre-consolidation of the soil, on the other hand, has 

been found to have a little effect on Gmax [44, 46, 49-55]. There is still an ongoing discussion 

over the effects of the plasticity index (PI) on Gmax. Some studies show a direct relationship 

between Gmax and PI [44, 53, 54]. Others reported a reverse relationship [46, 52, 56]. Hardin and 

Drnevich [53] showed that Gmax and Vs are dependent on unit weight, porosity, and vertical 

effective stress, whereas soil type, age, and cementation were shown to impose negligible effect. 

On the other hand, Dobry and Vucetic [57] showed that with an increase in vertical effective 
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stress, age, cementation, and pre-consolidation, Vs also increases. They also found out that a 

reverse relationship governs the correlation between Vs and porosity. 

NNs as an indirect method of determining shear wave velocity 

In this study, NNs were utilized for estimating the shear wave velocity of soils. The input 

variables were the corrected SPT number (N60), effective overburden pressure (σ´), fines content 

(Fc), and plasticity index (PI). Correlations obtained from NNs were integrated with GIS by 

means of a Python script.  

As was stated in previous sections of this paper, SPT tests were conducted over vertical intervals 

of 2 m up to a depth of 10 m below the ground surface. This resulted in 5 geographical layers for 

the soil profile. In each borehole, a downhole test was conducted to obtain shear wave velocity 

for each 2 m increment. Atterberg limit tests and sieve analysis were performed on samples 

collected during the SPT tests. A total of 355 data points, from 71 boreholes dispersed 

throughout Urmia, were generated. Table 2 summarizes some of the statistical indices for the 

data sets. The collected data and associated statistical indices were used for Vs estimation. 

Table 2 – Statistical indices for data obtained from field tests 

Variables 
Statistics 

Max Min Mean Standard deviation 

N60 130 4.67 73.82 38.25 

σv´(kPa) 176.4 17.3 87.85 49.13 

Fc 98 6 71.51 26.6 

PI 55.8 0 5.87 9.86 

Vs (m/s) 652 90 383.3 123.91 
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It has been observed that the shear wave velocity changes with a change in overburden pressure. 

With an increase in soil confinement, the overburden effective stress increases, and the stiffer the 

soil, the higher the shear wave velocity. The average velocity to any depth Ho, ( )s oV H  could be 

found from available shear wave velocities of the layers. For k layers, ( )s oV H  can be expressed as: 

1
( )

( )

k

n s n
n

s o
o

H V H
V H

H
=

×
=
∑

 

(11) 

where Hn is the depth measured from the ground surface to the kth layer. In this work, as 

mentioned before, data was collected at 2 m intervals up to the depth of 10 m. Therefore, in 

Equation (11), n = 5 & Ho = 10 m will be substituted to calculate (10)sV . 

The average velocity to 30 m depth, (30)sV , is widely used for classifying sites and predicting 

their response to earthquakes. (30)sV  is computed by dividing a distance of 30 m by the travel 

time from the surface to 30 m. This value is usually used in microzonation to predict the 

potential of sites to amplify seismic shaking. In most practical cases, samples are not collected 

for depths greater than 30 m. In addition, ordinary SPT tests are carried out for depths less than 

or equal to 10 m below the ground. All SPT tests, from field studies in Urmia, were performed to 

obtain N values for depths not exceeding 10 m. Accordingly, adoption of a statistical means was 

necessary in calculating (30)sV  from (10)sV . Boore [58] proposed four methods of extrapolation 

that can be used to predict (30)sV  from available data. One of the methods performs extrapolation 

using the correlation between (30)sV  and ( )s oV H  as given in Equation 12, where ( )s oV H  represents 

the value of shear wave velocity for a point located at any depth Ho below the ground. 
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( )log (30) logs osV a b V H= +  ((12) 

In the Equation, a and b are extrapolation coefficients that are constant over the depth Ho. The 

values of a and b at Ho = 10m are equal to 0.042 and 1.029, respectively [58]. 

N60, σ´v, Fc, and PI, and (30)sV  are introduced to NNs in the training step. Fig. 7 shows the 

designed NNs used to find a correlation between the input variables and (30)sV . Table 3 shows the 

parameters used in the NNs for training and testing sets. 

 

Fig. 7 - Structured NNs used to find a correlation between the input variables and (30)sV  

Table 3 - Values of evaluation parameters and properties of the NNs designed for (30)sV  

estimation  

(30)sV  R MAE RMSE 
Number of 

hidden layers 

Number of neurons on Activation 

Function IL HL1 HL2 OL 

Train 0.95 30.29 39.44 2 4 6 12 1 tansig 

Test 0.93 33.73 44.19 - - - - - - 
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The values of MAE & RMSE for training and test steps indicate how well NNs perform in 

estimating (30)sV . For example, the results obtained in this work for RMSE (i.e., 39.4374 and 

44.1928) are indicative of a good performance of the training and testing steps. The trained NNs 

are linked to GIS by using Python scripts, and the values of (30)sV  are obtained as a continuous 

spatial information over the entire domain of the site. The NNs-GIS interaction is designed in 

such a way that the resolution of the details will be dynamically improved as additional data is 

introduced to the GIS layers. Fig. 8 shows the microzonation map obtained for (30)sV , following 

the algorithm presented before. 

 

Fig. 8 - Microzonation of Urmia for (30)sV  
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Microzonation for USCS soil classification 

Soil classification is a systematic method of grouping soils of similar behavior, describing them, 

and classifying them.  Classification is necessary in the sense that engineers, who deal with the 

state of practice pertinent to the different soil types across the globe, receive the same 

information regarding each soil group. Soil classification systems provides the platform upon 

which helpful details that follow the interpretation of laboratory tests and field observations can 

systematically be added to each soil group. One of the most common soil classification methods 

is the Unified Soil Classification System (USCS).  

Over the engineering field of practice around the world, a number of soil classification systems 

exist [59-61]. The USCS [60] is one of the most widely used classification systems; it groups 

soils into three major classes and further subdivides each to subclasses based on a specified 

criteria. USCS distinguishes sands from gravels by grain size and further classifies some as 

"well-graded" and the rest as "poorly-graded". Fig. 9 shows a simplified flowchart, from USCS, 

which can be followed when classifying coarse grained soils. A similar flowchart exists for fine 

grained soils as well.  

 

Fig. 9 - USCS soil classification approach for coarse-grained soils 
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Fine grained soils (i.e. silts and clays) are further classified into "high-" or "low-plasticity” by 

conducting Atterberg limit tests. Fig. 10 shows the "Plasticity Chart" that was first introduced by 

the work of Arthur Casagrande [62]. Figs. 9 and 10 illustrate the important input variables in the 

USCS system. Closer observation of the inputs in USCS could lead to the conclusion that four 

major parameters are sufficient to be used as input variables for NNs. In light of this observation, 

it can be said that the plastic limit (PL), liquid limit (LL), and the percentage soil grains that 

passed Number-200 (F200) and Number-4 (F4) sieves are the most influential parameters. 

In the data used for soil classification in this study, the above four important parameters were 

determined from laboratory tests. The statistical indices for these parameters are summarized in 

Table 4. 

 

Fig. 10 - USCS soil classification approach for fine grained soils 

PL, LL, F200, F4, and the USCS soil classification obtained after analyzing data from each log are 

introduced to NNs to accomplish the training. Five classes of soils were identified by analyzing 

field collected samples and collecting information regarding the PL, LL, F200, and F40. A numeric 

value was assigned to each of these five classes to enable smooth interpolation between soil 
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types. Table 5 shows the assigned numbers for each class and their associated names as per the 

USCS. 

Table 4 –Statistical indices, obtained from lab tests, used for soil classification 

Variables 

Statistics 

Max Min Mean 
Standard 

deviation 

F4 100 24 87.17 17.32 

F200 98 5 68.57 27.61 

LL 83 0 10.19 17.35 

PL 65.8 0 4.56 7.4 

 

Table 5 – Numeric values assigned for the six soil classes 

 Assigned numeric value 1 2 3 4 5 

Soil class in USCS CL CL-ML ML SM GM 

 

Fig. 11 shows that the NNs developed to find a correlation between the input variables and soil 

classes. Table 6 presents the parameters used in the NNs for training and testing sets. 
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Fig. 113 - Structured NNs used to find a correlation between the input variables and soil 

class 

Table 6 – Evaluation parameters and properties of the NNs designed for soil classification  

Soil 
class 

R MAE RMSE 
Number of 

hidden 
layers 

Number of neurons on 
Activation 
Function IL HL1 HL2 OL 

Train 0.99 0.01 0.09 2 4 6 6 1 tansig 

Test 0.98 0.02 0.21 - - - - - - 

 

The value of RMSE for training and testing steps indicates an excellent performance of NNs in 

estimating soil class in the USCS classification system. The same approach is followed to 

estimate soil class for the entire site. Since the numeric value designation for soil classes 

(consecutive numbering in this work) plays a vital role, the obtained microzonation might be 

slightly different if different intervals are assigned between the classes. In cases where irregular 

intervals are to be used, a weighted scaling of results may be necessary. Fig. 12 shows the USCS 

classification map for the top 2 m layer of Urmia which is obtained by the algorithm introduced 

in this paper. The exact same algorithm and procedure could be applied to do soil microzonation 

of the remaining 4 layers (i.e., up to a total depth of 10 m). The results for all of the 5 layers 
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could be overlapped and used to draw soil profiles at any specific location. The NNs-generated 

soil classification and the microzonation map are found to be in good agreement with the results 

obtained by performing laboratory and field tests.  

 

Fig. 12– Microzonation of Urmia for soil classification 

Conclusions 

An “intelligent” algorithm, that integrated NNs and GIS was developed and used to produce 

microzonation maps for shear wave velocity and soil classification. This novel system was 

designed in a way that microzonation maps are dynamically refined and updated as new data was 

added to the database. In the proposed algorithm, geographical data layers were checked for null 
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data points and data lags were estimated using interpolation. The spatial information was 

extracted, and the complete database was imported to NNs for training. The trained NNs were 

embedded to the GIS platform by using Python scripts to carry out the microzonation. The 

successful application of the proposed algorithm was illustrated using two examples: 

microzonation of shear wave velocity and soil classification. The performance of the dynamic 

algorithm was checked with the mean absolute error (MAE) and the root mean squared error 

(RMSE). The values of the obtained MAE and RMSE were indicative of good performance by the 

integrated NNs-GIS system. The approach applied in this paper could be adopted for 

microzonation of liquefaction potential, landslide risks, settlements, etc. The detailed soil 

condition maps generated with the proposed algorithm could be used in construction site 

selection, risk analysis, and geotechnical engineering designs. 
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