
 
 

Microstructure based effective stress formulation for partially 

saturated granular soils 

K.N. Manahiloh1, B. Muhunthan2, and W.J. Likos3 

Abstract  

The principle of effective stress states that the strength and volume change behaviors of soil are 
governed by intergranular forces expressed in terms of a continuum quantity called effective 
stress. Although the principle of effective stress is regarded as one of the most fundamental 
concepts in soil mechanics, its applicability to partially saturated soil has been debated. The 
central issue is whether a measure can be developed for three-phase soils that plays an equivalent 
role as the effective stress does in two-phase soils. This study attempts to forward such a 
measure by incorporating soil microstructure in the effective stress formulation. A novel suction-
controlled experimental setup is developed and integrated with an X-ray CT scanning system to 
image and model microstructural features. A tensorial quantity, called fabric tensor of the liquid 
phase, that characterizes the complex fabric resulting from saturated pockets and networks of 
liquid bridges is identified and introduced in the proposed formulation. It is shown that fabric 
tensor of the liquid phase varies randomly, in both the wetting and drying phases of the partial 
saturation, and has an intrinsic association with the evolution of the effective stress tensor. It is 
also shown that this random variation can be depicted by applying techniques of digital image 
processing. It is concluded that, for partially saturated granular soils, the consideration of fabric 
tensor of the liquid phase in effective stress formulations is imperative.  
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Introduction 

Terzaghi’s principle of effective stress for saturated soils is regarded as one of the fundamental 

concepts in geotechnical practices and the marker for the birth of classical soil mechanics. This 

principle assumes two-phase media whose mechanical and hydraulic behaviors are unified by the 

effective stress (Terzaghi 1936).  

'
ij ij w ijuσ σ δ= −         (1) 

Where: σij, and '
ijσ  are the total and effective stresses; and uwδij is the pore-water pressure. 

For saturated soils, the validity of the effective stress principle has been experimentally 

verified (e.g. Rendulic 1936; Bishop & Eldin 1950; Laughton 1955; Skempton 1961; Wood 

2005). However, as can be inferred from Equation 1, Terzaghi’s effective stress principle does 

not capture the full behavior of as soil becomes partially saturated. In partially saturated soils, 

individual solid particles may be partially exposed to water and/or to air. Moreover in a state of 

partial saturation fluid exists at differing pressures depending on the degree of saturation at 

different locations throughout the soil microstructure. This variation in turn results in matric 

suction tensor (ua – uw)δij: a phenomenon that directly influences the net forces acting at particle-

particle contacts. 

Effective stress formulations for partially saturated soils 

The study on the mechanical behavior of unsaturated soils, in relation to the effective stress, has 

shown significant developments since the 1950s (Croney et al. 1958; Bishop 1959) and 1960s 

(Lambe 1960; Aitchison 1961; Jennings 1961). Croney et al. (1958) suggested an effective stress 

formulation for unsaturated soils in which the pore-water pressure in the Terzaghi's expression 

for saturated soils is modified by a bonding factor β' as  

' ' wij ij ijuσ σ β δ= − ×          (2) 
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Where '
ijσ  and σij are the effective and total normal stresses. β' is a measure of the number of 

bonds under tension effective in contributing to soil strength (Croney et al. 1958). 

Bishop (1959) extended Terzaghi's unified effective stress principle to unsaturated soils by 

describing the stress state as a function of the pore-air pressure (ua), pore-water pressure (uw) and 

a parameter (χ) referred to as the “Bishop parameter” and related to the degree of saturation, S, of 

the soil as 

' ( )a a wij ij ij iju u uσ σ χδ δ= − + −        (3) 

Jennings (1961) outlined two methods of measuring χ by comparing the behavior of a soil 

specimen under changes in externally applied pressure. Essentially similar experimental 

approaches for the measurement of the factor χ, and thus the relationship between χ and S, were 

suggested by other researchers (Bishop et al. 1960; Bishop & Donald 1961). The parameter χ 

attains values of 1 and 0 for fully saturated and fully dry soil conditions respectively. On the 

other hand, Coleman (1962) described χ as a parameter strongly related to the soil structure 

rather than to volumetric parameters like the degree of saturation. Following Coleman’s 

assertion, recent studies (e.g. Khalili & Khabbaz 1998 ; Khalili et al. 2004) related χ to the ratio 

of soil matric potential to the air-entry value or the suction ratio. Lu and Likos (2004) referred to 

the product χ(ua−uw)δij as the suction stress and regarded the Bishop’s effective stress approach 

as a macroscale interpretation attempting to describe the microscale contribution of interparticle 

pore-water menisci located between soil particles and physicochemical forces to the net 

interparticle stress. Furthermore, Lu and Likos (2004) extended Bishop’s effective stress 

formulation and gave tensorial representation of suction stress for isotropic and anisotropic soils 

as Equations 4 and 5 respectively. 

( )a w iju uχ δ−          (4) 
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( )ij a w iju uχ δ−          (5) 

The validity of Bishop’s effective stress formulation for unsaturated soils over the whole 

range of saturation was contested by Jennings and Burland (1962). They claimed, even though 

the formulation is statically correct as indicated by Bishop and Donald (1961), it was not shown 

that the soil behavior is unaffected by changes in (σa – ua)δij and χ(ua – uw)δij such that their sum 

(= '
ijσ ) is constant. They also showed that attempts to link the stress and deformation behavior of 

an unsaturated soil with a single-valued effective stress equation, as is the case of Bishop, have 

resulted in limited success. They found out that oedometer and all-around compression tests 

performed on unsaturated and saturated soils indicated no unique relationship between volume 

change and effective stress for most soils.  

Alternative forms, that use independent stress state variables, were proposed to capture the 

mechanical and volumetric behavior of unsaturated soils (Coleman 1962; Aitchison 1973; 

Fredlund & Rahardjo 1993; Houlsby 1997; Li 2003a; Berney et al. 2004). In such formulations, 

constitutive relationships were implemented for soil structure and flow laws were applied for the 

fluids to characterize unsaturated behavior. Many of the proposed relationships (Aitchison 1961; 

Jennings 1961; Aitchison 1973; Richards 1985), incorporate a soil parameter in order to come up 

with single-valued effective stress equations (i.e. one stress state variable). However, 

experiments (Fredlund & Rahardjo 1993) have demonstrated that relationships derived from 

measured soil properties do not turn out to be single-valued.  

The problem with single-valued effective stress equations is that the effective stress will have 

different magnitudes for different problems (volume change or shear strength), different stress 

paths, and different soil types (Coleman 1962; Jennings & Burland 1962; Burland 1964). Even 

though the use of more than one stress state variable is tacitly agreed up on by many researchers, 
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the minimum number of variables for the investigation of saturated and unsaturated behaviors 

had been a topic of debate for many years (Zhang & Lytton 2006). (Coleman (1962); Burland 

(1965); Matyas and Radhakrishna (1968); Barden et al. (1969); Brackley (1971); Fredlund and 

Morgenstern (1977)) argue that it is important to use two or more stress state variables. Fredlund 

and Morgenstern (1977), conducting null tests, suggested that the possible combinations of stress 

state variables given by Equation 6 could be used in cases where the air pressure (ua), the pore-

pressure (uw), and the total stress (σ) are assumed as references respectively. Houlsby (1997) 

illustrated the choice of stress variables as being arbitrary as long as corresponding strain 

variables satisfy work conjugacy. 

( ) and ( )
( ) and ( )
( ) and ( )

ij a ij a w ij

ij w ij a w ij

ij a ij ij w ij

u u u
u u u
u u

σ δ δ

σ δ δ

σ δ σ δ

− −


− − 
− − 

      (6)  

Referring to the preceding discussion it can be said, no matter how the unsaturated behavior 

is pictured, clear assumptions, scope descriptions and objectives must be put before further 

analyses are carried out. In this respect, Houlsby (2004) stressed the importance of clear 

assertions with regard to the specific aspect of mechanical behavior under investigation and he 

highlighted the importance of separating the effective stress formulation in to two stages: 

definition and hypothesis.  

In general effective stress formulations suggested by past studies fall under the umbrella of: 

the single variable effective stress of the Bishop's type; formulations that involve multiple 

independent stress state variables (e.g. Fredlund & Rahardjo 1993); formulations that involve 

critical state considerations (Alonso et al. 1987; Alonso et al. 1990; Toll 1990; Wheeler & 

Sivakumar 1993, 1995; Vaunat et al. 2000); or formulations that combine unified effective stress 

of the Bishop type with additional stress variables which are functions of parameters such as 
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suction, soil fabric and saturation (e.g. Li 2003a; Alonso et al. 2010). Nuth and Laloui (2008) 

chronologically classified the evolution of effective stress formulations for unsaturated soils as 

follows. 

i. Bishop’s single effective stress of the form: 

( ) 
' (  )ij a ij a w ijij u u uσ σ δ χ δ− −+=      (7) 

ii. Independent stress variables with possible combinations: 

( ) and ( )
( ) and ( )
( ) and ( )

ij a ij a w ij

ij w ij a w ij

ij a ij ij w ij

u u u
u u u
u u

σ δ δ

σ δ δ

σ δ σ δ

− −


− − 
− − 

      (8) 

iii. Effective stress of the Bishop type combined with other stress state variables taking either 

of the following forms: 

 
' ( ) ( )

Form A: 
( , )

ij ij a ij ij

ij r ij

u s

s S

σ σ δ µ δ

ξ ξ δ

− = + 
 

=  
           (9) 

'
2( ) ( , )

  Form B: 
( , )

ij ij a ij r ij

ij r ij

u s S

s S

σ σ δ µ δ

ξ ξ δ

− = + 
 

=  
        (10) 

Where µ1 and µ2 are defined as functions of suction (s) and degree of saturation (Sr). 

Successful implementation of unsaturated soil mechanics into engineering practices demands 

better understanding of parameters that control unsaturated behavior. Equally important is to 

understand how each parameter influences the volumetric or strength properties of the 

unsaturated media. For example, better realization of matric suction and fabric (skeletal or pore-

fluid) enables better conceptualization of the bulk soil behavior. In this regard, understanding 

and quantifying the evolution of the pore-water fabric for unsaturated soil with changes in 

suction and saturation could help explain many of the anomalies that have plagued existing 

unsaturated effective stress formulations (Jennings & Burland 1962; Nuth & Laloui 2008).  
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Ongoing work has indicated that models incorporating only net normal stress and matric 

suction in their formulation are unlikely to fully capture all aspects (e.g. nonlinearity, hysteresis, 

etc.) of unsaturated soil behavior. As suction, saturation, wetting direction, and intergranular 

stress are all inherently coupled, formulations that include both suction and saturation in their 

formulation are most likely to capture unsaturated soil behavior in a robust way. In this respect it 

becomes imperative to understand and include the effects of suction and soil fabric in the 

effective stress formulation. Incorporating suction and fabric, Li (2003a) followed the virtual 

work principle and forwarded an effective stress formulation for unsaturated granular assemblies 

at a microstructural level. This approach is direct and opens the window for consideration of 

pore-fluid in the effective stress quantification. Because of the appropriateness of the 

fundamental principles applied, the virtual work approach is followed in this paper. Slight 

modifications are made while modeling the pore-water and attempts are made to support the 

mathematical formulation with experimental results and digital image processing of the 

microstructure from X-ray CT scanned images.  

While we recognize that many problems in unsaturated soils involve fine grained soils and 

that inclusion of physicochemical forces are imperative for a fuller description of their 

mechanics, granular particles are specifically chosen to elicit the influence of fabric elements on 

the effective stress tensor. Within the above scope, this study seeks to advance the applicability 

of effective stress concepts for unsaturated soils with due regard to pore-fluid fabric and suction 

contributions at a microstructural level. The particular objective of this paper is to integrate 

microstructural features and measurements into a new effective stress formulation for 

unsaturated granular soils. 
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Matric suction 

In geotechnical engineering suction can be defined as a quantity that quantify the 

thermodynamic potential of soil pore water relative to a reference potential of free water. Pore 

water potential may be imparted by capillary, osmotic and short-range adsorption effects. In 

granular assemblies, Figure 1, surface tension and interface curvature predominantly contribute 

to suction. Assuming the concentration of solute remains constant throughout (i.e. negligible 

osmotic contribution) the difference between water pressure (uw) and air pressure (ua), resulting 

from the surface tension and net negative pore pressure, is generally referred to as matric suction. 

In the absence of external load, the liquid bridge menisci (see Figure 1b) give rise to interparticle 

interactions. Molenkamp and Nazemi (2003a) named the resulting tensor “effective suction 

tensor”. In a more recent study by Li (2003b, 2007a, 2007b), the suction tensor was shown to 

have a deviatoric part, that depends on the granular fabric, in addition to its isotropic part. 

  

(a) (b) 

Figure 1. (a) Regimes of soil water characteristic curve (SWCC) for partially saturated granular 
soil. (b) Meniscus between two granular particles (Fig. b modified from Gili 1988) 
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When granular materials are subjected to external loads, it is evident that granular fabric and 

the liquid bridge network will change. This evolution affects the state of stress and 

corresponding non-linear and hysteretic material behavior. Moreover, the wetting and suction 

histories have effects on shear strength and volume change behaviors (Ho 1988; Rahardjo 1990; 

Fredlund & Rahardjo 1993; Pereira 1996; Shuai F. 1996). Historically, suction was included in 

the effective stress formulation since the works of Aitchison and Donald (1956). 

Soil fabric 

Fabric is defined as a term referring to parameters like size, shape and arrangement of the solid 

particles, the organic inclusions and the associated voids (liquid or gas). Comprehensive 

description of fabric and its effect on the state of stress in different saturation regimes can be 

derived from micromechanics. Since early estimates of the liquid bridge force between 

monosized smooth spheres (Fisher 1926), several researches have advanced solutions for 

interactions between liquid bridges and rough rigid spheres or other geometries (Pietsch 1968; 

Lian et al. 1993; Likos & Lu 2004). In this regard: two-particle models have been extended to 

regular packings of isodiametral spheres to derive simple microstructural constitutive models for 

unsaturated granular media (Biarez et al. 1993; Molenkamp & Nazemi 2003a; Hicher & Cheng 

2008); and particle-based computational simulations have been used to explore bulk behavior of 

unsaturated media for irregularly packed and polydisperse populations of spheres in 2-D and 3-D 

(Jiang et al. 2004; El-Shamy & Groger 2008). While such models have advanced our 

understanding of unsaturated soil microstructure and the applicability of effective stress 

concepts, they lack support from direct observation and quantification of microstructural 

features. 
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Mathematically, fabric had been defined (Scott 1963; Mitchell 1976; Muhunthan 1991) in a 

number of ways and a number of researchers (e.g. Cowin & Satake 1978; Nemat-Nasser & 

Mehrabadi 1983; Kanatani 1984, 1985) studied fabric tensor based on solid particles. An 

interesting remark by Muhunthan (1991) was that defining tensor parameters on the void phase 

of a partially saturated media has a potential of delivering a unified measure for all particulate 

media. Moreover, the advent of industrial X-ray CT and its applicability to the scanning of 

geomaterials has enabled distinct imaging of the solid, liquid and gas phases at a microstructural 

level. In this study, statistical correlations applicable to solid particles are assumed to 

appropriately describe directional quantities on the liquid phase. 

Displacement field in granular assembly 

In this section the displacement field, an important component in the formulation of the virtual 

work, is derived.  To do so consider two particles A and B, with centroids at XA and XB 

respectively and touching at point C located at XC, in contact in a granular assembly as shown in 

Figure 2. Let &AB BA
i if f be the forces exerted by particles A and B on each other. Equilibrium 

condition requires that 

0AB BA
i if f+ =        (11) 

 

Figure 2. Solid particles in contact 
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If, in the assembly under a state of equilibrium, there are n numbers of particles in contact with 

particle A at point β representing the counter for the n contact points, we can write 

1
0

n
A

if
β

β =

=∑         (12) 

Total moment in the assembly of particles in contact with A can be described as 

1 1
( ) ( )

n n
A A A A A A

i j j j i if x x f x xβ β β β

β β= =

− = −∑ ∑      (13) 

Where, the moment contribution from each contact point is given by 

( ) ( ) ( )AB AB A BA BA B C B A
i j j i j j i j j

Particle A Particle B

f x x f x x f x x− + − = −
 

    (14) 

Considering all particles in the assembly touching at contact point C and denoting the total 

number of contact points in the assembly by N, the total moment may be written as  

1 1
( )

N N
C B A C C

i j j i j
C C

f x x f d
= =

− =∑ ∑       (15) 

Where, ( ) ( )A BC CB A C
j j jx x d r r− = = −  is referred to as the branch vector and it connects the 

centroid of particles A and B. 

Consider a virtual displacement field which introduces the relative displacement 
C
ij∆ of the 

contact point C.  

i.e. C CB CA
ij i iu u∆ = −        (16) 

Where  and CA CB
i iu u are displacements of the contact point C when viewed as belonging to particle 

A and B respectively and written as 

 
( )
( )

CA A AC C A
i i ij j j
CB B BC C B
i i ij j j

u u x x
u u x x

ω
ω

= + − 
= + − 

      (17) 
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Where AC CA
ij ijω ω= − and BC CB

ij ijω ω= −  represent the rotation of C relative to A and B respectively; 

A
iu and B

iu are the displacements of the centroid of A and B respectively. Inserting Equation 17 

into the expression for C
ij∆ leads to 

{ } { }
{ }

( ) ( )

    ( ) ( )

C B BC C B A AC C A
ij i ij j j i ij j j

B A BC C B AC C A
i i ij j j ij j j

u x x u x x

u u x x x x

ω ω

ω ω

∆ = + − − + −

= − + − − −
   (18) 

In Equation 18, denoting iu  at the contact point C by ( )C C
i iu u x= ; the rotation of contact point C 

as viewed from A and B by = ( )AC BC C
ij ij ij xω ω ω=  and assuming the displacement iu and the 

associated rotations  and AC BC
ij ijω ω  conform to some smooth fields iu and ijω hence a uniform 

strain field exists (i.e. continuous deformation is assumed so that a differentiable function can be 

obtained) one can get 

   ( ) ( ) ( ) ( )C B C A C CA C A CB C B
ij i i i i ij j j ij j ju u u u x x x xω ω∆ = − − − + − − −    (19) 

Where ( ) ( )( )( ) and ( )( )B C C B C A C C A Ci i
i i j j i i j j

j j

u uu u x x x u u x x x
x x

∂ ∂
− = − − = −

∂ ∂
represent the contact to 

centroid distances of particles A & B respectively. Inserting these set of equation into the 

expression given by Equation 19 leads to 

{ } { }

( )

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

( ) ( )

C C B C C A C C C B C C Ai i
ij j j j j ij j j ij j j

j j

C C B C A C C C A C Bi
ij j j j j ij j j j j

j

C C C B Ai
ij ij j j

j

u ux x x x x x x x x x x x
x x
u x x x x x x x x x x
x

u x x x x
x

ω ω

ω

ω

∂ ∂
∆ = − − − + − − −

∂ ∂

∂
∆ = − − + + − − +

∂

 ∂ ∆ = − − ∂  

 

( )( ) ( )C C C Ci
ij ij j

j

u x x d
x

ω
 ∂ ∆ = − ∂  

           (20) 
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Furthermore a linear boundary displacement can assumed in the uniform strain field such that 

i ij j iu x cφ= +         (21) 

Where φij is an arbitrary second order constant tensor and ci is a constant vector. With this 

assumption applied to Equation 20 it can be shown, to a first order of approximation, that the 

displacement field is given by 

( ) ( ),( ) ( )C C C C C Ci
ij ij j i j ijk k j ij j

j

u x x d u e d d
x

ω ω φ
 ∂ ∆ = − = − + = ∂  

  (22) 

The principle of virtual work 

Virtual work principle is applied to relate contact forces to the overall stress in partially saturated 

granular assemblies. To accomplish this, basic assumptions of: regarding soil skeleton as an 

assembly of arbitrary rigid body particles in contact to each other; neglecting the effect of 

microcouples produced at particle contacts; ignoring body forces; continuous displacement of 

particles in an assembly during macroscopic deformation have been made. Referring to the 

partially saturated granular assembly and its associated microstructural force system shown in 

Figure 3, it can be said that virtual work can be done by three groups of forces in the 

representative elementary volume (REV). The total virtual work done can be assumed to be the 

sum of the work done by the paired internal contact forces fi and -fi; the boundary contact forces 

îf  that result from direct contact with particles from other REV; and surface traction pi that 

result from pore pressure ua or uw. Each component will be discussed in subsequent sections of 

this paper. 
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Figure 3. The force system of a three-phase granular assembly 

Virtual work done by internal contact forces: We have defined C
if and C

if− as the contact 

forces exerted on particle A and B by each other at contact point C. And C C
i ij jdφ∆ =  as indicated 

in Equation 22 represents the virtual relative displacement at C. The virtual work done, by the 

paired and opposite contact forces C
if and C

if− , is thus given as: 

( )C C C C
i i ij i jf f dφ∆ =        (23) 

The total work done by all internal contact forces at particle “A” will then be the sum of all 

contributions from each contact and this may be expressed as: 

( ),
1 1 1

N N NC C C C C C
i i ij i j i j ijk k i jf f u e fφ ω∆ = ∆ = − + ∆∑ ∑ ∑    (24) 

Where N represents the total number of internal contact points of particle A with its neighbors. 

Substituting the expression defined for C
j∆ into Equation 24 one may write the expression of 

the work done by all internal contact forces in the granular assembly as 

{ } ( ),
1 1 1 1 1 1

( ) ( ) C C C C
N N P N P NC C C C P P P PC C CA B A B

ij i j j ij i j i j ij i j i j ijk k i jf r r f r f r f r u e f rφ φ φ ω− = + − = = − +∑ ∑ ∑ ∑ ∑ ∑  (25) 
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Where P is the total number of particles in the REV; CP
if is the force acting on particle P at C; and 

CP
jr is the vector that connects the centroid of P to C. 

Virtual work done by boundary contact forces: The second group of forces that contribute to 

the total virtual work consists of the contact forces on an imaginary bounding surface that 

separates neighboring REVs (see Figure 3). The virtual work done by these groups of forces îf

can be written as follows (Li 2003a): 

,
1 1

ˆ ˆ
k k

b
i i i j i jW f u u f xβ β β β

β β= =

= =∑ ∑       (26) 

Where k is the total number of concentrated contact forces acting on the boundary of the REV; 

îf
β is the magnitude of the contact force; and jxβ is the position vector at contact point β. 

Virtual work done by pore pressure on particle surfaces: This group of forces is composed of 

pore-pressures acting on particle surfaces. The pore-pressure is distributed force acting on an 

area and thus its computation demands integration over the particle-pore contact area. Following 

the formulation by Li (2003a), the virtual work done by the particle surface traction, ip  from this 

group can be written as 

, ,
1 1 1 1

( )P P
P P P P

P P P P
c cP P

i i i i j j ijk k j i j j i ijk k i jS S S S
p u dA p u x e r dA u x p dA e p r dAω ω= − = −∑ ∑ ∑ ∑∫ ∫ ∫ ∫

 

(27) 

Where PS is the surface area of particle P in contact with pore-fluid (water or air) and P
jr is the 

radial vector from the particle centroid Pc
jx to a point on PS . If we assume the surface traction to 

be composed of contributions from air and water, we can let 

[ ] [ ](1 ) (1 )i r w r a ij j r w r a ip S u S u n S u S u nδ= + − = + −    (28) 

When inserted into Equation 27, this leads to 
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( ){ }

( ){ }

,
1 1

1
                  

P
P P

P

P P
c

i i i j j a a w r iS S

P
P

ijk k a a w r i jS

p u dA u x u u u S n dA

e u u u S n r dAω

= − −

− − −

∑ ∑∫ ∫

∑∫
   (29) 

Total virtual work: Summing the contributions from internal contact forces, boundary contact 

forces, and the pore-pressure yields the total virtual work done, W, in the REV and this can be 

written as  

,
1 1 1 1

ˆC C
P

k PP N P P
ij i j i j i j i iS

W f r u f x p u dAβ β

β

φ
=

= + +∑ ∑ ∑ ∑∫        

( ){ }
( ){ } ( ){ }

, ,
1 1 1

,
1 1

ˆC C

P
P P

kP N P P
i j ijk k i j i j i j

P P
c P

i j j a a w r i ijk k a a w r i jS S

u e f r u f x

u x u u u S n dA e u u u S n r dA

β β

β

ω

ω

=

 
= − + +∑ ∑  

 
 + − − − − − 
 

∑

∑ ∑∫ ∫
  (30) 

At particle and system equilibrium, the magnitudes of the resultant moment on each particle 

and total virtual work done in the microstructural system are both zero. The superposition of 

these two conditions transforms the formulation to the virtual work equation for the soil skeleton. 

Particle equilibrium (i.e. no translation and rotation) condition leads to zero resultant moment 

given as 

1
0C C

P

N
P P P

ijk i j i jS
e f r p r dA + ≡ 

 
∑ ∫      (31) 

Applying this to the total virtual work equation and considering system equilibrium 

conditions (i.e. W = 0), we get what is referred to as the virtual work equation for the soil 

skeleton as follows 

, , ,
1 1 1 1

ˆ0 C C P
P

k PP N P P c
i j i j i j i j i j j iS

u f r u f x u x p dAβ β

β =

≡ − + +∑ ∑ ∑ ∑ ∫     

( ){ }
1 1 1 1

ˆC C P
P

k PP N P P c
i j i j j a a w r iS

f r f x x u u u S n dAβ β

β =

⇔ = + − −∑ ∑ ∑ ∑ ∫    (32) 
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Multiplying both sides by 1
V
−  and solving for 

1

1 ˆ
k

i jf x
V

β β

β =

− ∑  yields: 

{ }
1 11 1

1 1 1ˆ (1 )C C P
P

k PP N P P c
i j i j j r w r a iS

f x f r x S u S u n dA
V V V

β β

β =

− = − + + −∑ ∑∑ ∑ ∫    (33) 

Application of Cauchy’s formula and Gauss’s divergence theorem: Consider a continuum 

subjected to overall surface traction Ti on its surface S and total stress τij over its volume V as 

shown in Figure 4. 

X

Y

O

Boundary of REV = S

dS

Volume of REV = V

dV

Ti

niτi

 

Figure 4. Representation of the REV as a continuum 

It is possible to relate the overall stress to the contact forces by employing Cauchy’s stress 

formula and Gauss’s divergence theorem as

 
, ,

,

i j ki j k ki j k ki k jS S V V

i j ki j kS V

dS dS dV dV

dS dV

T x x n x x

T x x

τ τ τ

τ

= = +

⇒ =

∫ ∫ ∫ ∫
∫ ∫

    

i j jiS V
dS dVT x τ⇒ =∫ ∫             (34) 

Where τij is the total stress in the continuum and kn  is the unit outward normal on S at jx .
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Recalling the assumption of the REV as statistically homogeneous, the total stress in the 

REV (σij) can be computed as an average quantity as  

1
ij ijV

dV
V

σ τ−
∫        (35) 

Applying divergence theorem, we can rewrite σij as 

1
ij j iS

T x dS
V

σ −
= ∫        (36) 

Remember that, in both equations, the negative sign is added to comply with the soil 

mechanics "compression-positive" sign convention. 

Assuming that the air-water interface moves with the soil skeleton (i.e. its relative velocity 

will be negligible or zero), its contribution to the virtual work can be ignored (Houlsby 1997). 

Referring to Figure 3, surface traction Ti can be thought to be composed of the boundary contact 

forces, the pore-water pressure, and the pore-air pressure. In this regard, one can rewrite σij as 

}
1

  -      -  
    

                     

1 1 ˆ
k

ij j i j i w j i a j iS S S
Pore water Pore air

pressure overBoundary contact pressure over
surface Sforces surface S

dS dS dST x f x u n x u n x
V V

β β

β

σ
=

−
= = − + +


∑∫ ∫ ∫



 





 (37) 

Following the divergence theorem and noting that δij is the kronecker delta we may rewrite 

the last two expressions in the right hand side of Equation 37 as 

( ) ( )1 1    w a j i ij w aS V
dSu u n x u u dV

V V
δ+ = +∫ ∫      (38) 

Moreover, considering the REV and introducing the degree of saturation Sr, the total pore-

water and the pore-air pressures may be quantified as 

 1
ij w r w ijV

u dV S u
V

δ δ=∫       (39) 

( )1   1ij a r a ijV
u dV S u

V
δ δ= −∫       (40) 

Substituting Equations 39 and 40 into 38 yields  
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( ) ( ){ }1 1ij w a r w r a ijV
u u dV S u S u

V
δ δ+ = + −∫     (41) 

Again inserting Equation 41 into the expression for the total stress (i.e. Equation 37) one gets 

( ){ }
1

1 1 ˆ 1
k

ij j i j i r w r a ijS
dST x f x S u S u

V V
β β

β

σ δ
=

−
= = − + + −∑∫   (42) 

Solving for the contribution by boundary forces (i.e. 
1

1 ˆ
k

i jf x
V

β β

β =

− ∑ )  

( ){ }
1

1 ˆ 1
k

j i ij r w r a ijf x S u S u
V

β β

β

σ δ
=

−
= − + −∑     (43) 

Recalling the expression we derived, using the virtual work principles (Equation 33), for the 

same quantity represented by Equation 43, and equating the two 

{ } ( ){ }
1 11 1

1 1 1ˆ (1 ) 1C C P
P

k PP N P P c
i j i j j r w r a i ij r w r a ijS

f x f r x S u S u n dA S u S u
V V V

β β

β

σ δ
=

− = − + + − = − + −∑ ∑∑ ∑ ∫   

( )
1 1 1

1 11C C P
P

PP N P P c
i j ij r w r a ij j iS

f r S u S u x n dA
V V

σ δ ⇒ − = − + − + ∑ ∑   
 

∑ ∫  (44) 

Furthermore, if we introduce a second order tensor 
1

1
P

P

P
c

ij ij j iS
F x n dA

V
δ = +  

∑ ∫
 
that 

characterizes the distribution of pore-fabric, the above expression reduces to 

 ( )
1 1

1 1C C
P N P P

i j ij r w r a ijf r S u S u F
V

σ− = − + − ∑ ∑      (45) 

Microstructure based effective stress for partially saturated granular soils 

The following discussion will be based on Terzaghi’s and Bishop’s effective stress formulations 

for saturated and unsaturated soils respectively and proposes a definition to the effective stress 

pertinent to the microstructural context of this study. 

Revisiting the effective stress formulations for saturated and unsaturated soils by Terzaghi 

(Equation 1) and Bishop (Equation 3) respectively, one can see that both formulations followed 

an argument in classical soil mechanics that the deformation and failure characteristics of a soil 
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are governed by the forces and constitutive properties at the particle contacts. Accordingly they 

inherently defined the "effective stress, '
ijσ ”, as the fraction of the total stress carried by the soil 

solids (skeleton).  

If we write the total stress in partially saturated soils as a sum of the stress carried by the 

distinct phases (i.e. solids, liquid and air) we get: 

total solids liquid airσ σ σ σ= + +      (46) 

Solving for the portion of stress carried by the soil skeleton: 

( )solids total liquid airσ σ σ σ= − +      (47) 

Comparison of this expression with the skeletal stress equation (Equation 45) obtained by 

combining the principles of virtual work and continuum theory on an REV, yields: 

• 
1 1

1
C C

P N P P
i jf r

V
∑ ∑ as the stress carried by the solids 

• r w ijFS u as the stress carried by the liquid and 

• ( )1 r a ijS u F− as the stress carried by the air 

Following Terzaghi’s and Bishop’s approach and expressing the effective stress as the skeletal or 

solid-phase stress we may write, with no loss of legitimacy, 

( )' 1ij ij r w ij r a ijS u F S u Fσ σ= − − −       (48) 

Rearranging yields the effective stress formulation as proposed by this paper. 

( ) ( )'
ij ij a ij a w r iju F u u S Fσ σ= − + −      (49) 

Experimental determination of the fabric tensor  

This section discusses a combined experimental and analytical approach to quantify component 

parameters in the proposed effective stress formulation. First, a brief description of the 

experimental setup is given. Then the procedures followed to quantify fabric tensor at different 

locations of the specimen will be discussed. Finally data obtained from the experimental and 
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(a) 

analytical operations are presented and interpreted in terms of the proposed effective stress 

formulation.  

An integrated system that consists of an X-ray CT scanner, a sample cell, 3-D imaging 

software, and automated imaging algorithms is utilized for data collection and nondestructive 

characterization. Laboratory tests include saturation and drying of specimens inside a specially 

designed suction-controlled cell with concurrent X-ray CT scanning. The integrated sample cell 

and X-ray CT system used in this study are shown in Figure 5. 

In the scanning process the relative position of the sample between the detector and the X-ray 

source governs the spatial imaging resolution. In the experiments reported here, object and 

detector distances were set to be 62 mm and 1048 mm respectively to produce a corresponding 

spatial resolution of 30 µm. Information on the scan energy and flux is given in Table 1. 

Glass beads, of sizes between 0.25 mm and 0.60 mm were graded as shown in the grain size 

distribution curve (ASTM C136-06)  in Figure 6, with specific gravity of 2.50 were used to 

prepare a partially saturated specimen for the study. The specimen was compacted to an initial 

void ratio of 0.40. The height of the compacted specimen was measured to be 225 mm. The 

inside diameter of the sample cell was 12.46 mm and the total mass of the glass beads used was 

49 grams. Pore-water was doped with CsCl (3% by weight) to increase the attenuation of X-rays 

on the liquid phase and ensure better contrast of the liquid phase (Willson et al. 2012). 
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Figure 5. Experimental setup consisting of specially designed sample cell and X-ray CT 
scanning system 

Table 1. X-ray CT scan data 

 

 

Figure 6. Grain size distribution for the glass bead material 

The partially saturated specimen was scanned in four stages, two along a drying path and two 

along a wetting path, to obtain images of granular and fluid microstructure along the entire range 

Stage
Energy 
(keV)

Current 
(µA)

1 155 145
2 155 145
3 165 145
4 170 145
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of the soil water retention curve (SWRC). Matric suction was applied to the specimen by 

integrating a high-air-entry cellulose membrane into the base of the sample column and applying 

suction using a hanging column system (ASTM D6836-02). In all stages reference datum was 

fixed and the location of water inside the specimen was carefully marked and used in calibrating 

the variation of suction inside the cell. The matric suction was quantified by correlating 100 kPa 

to 1020 cm of H2O. A small opening was provided at the top of the sample cell to ensure the air 

pressure was atmospheric.  In the presented work, where the suction range is small but sufficient 

for granular soil characterization, the deformation (swelling/collapse) of the soil during the 

drying and wetting processes was assumed insignificant. 

The degree of saturation was obtained from digital image processing by means of local 

methods of thresholding and counting procedures. Macros in which the grey values of the air and 

liquid phase are specified were used to tell the image processing platform (Image-Pro Plus®) 

which voxel to count and accumulate. Finally, the degree of saturation values were expressed as 

percentages by taking the ratios of the voxel counts corresponding to the liquid phase, VL, and 

void (air plus liquid) phase, VV.  
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Figure 7. Schematics for the suction and wetting direction controlled experimental setup and the 
points represented by each stage 

Figure 7 shows schematically how the four scanning stages were implemented. Stage 1 

represents the initiation of drying of the specimen from its fully saturated condition. In this stage 

the suction head was set to 7 cm. In Stage 2 the water reservoir in the hanging column was 

lowered to a total head difference of 21.5 cm and hence cause further drying the sample. Stage 3 

represents initiation of re-wetting of the sample. This was achieved by raising the water reservoir 

such that the head difference at equilibrium was reduced to 12 cm. Finally, in Stage 4 the suction 

head was further reduced to 4 cm to continue the wetting path. Data for measured suction and 

calculated saturation are presented in Table 2.The resulting SWRC, fitted with Van Genuchten’s 

(1980)  model, is shown in Figure 8. In the equation associated with the image, Θs and Θr are the 

saturations corresponding to the full and residual water contents respectively. ψ is the matric 

suction, α is a parameter related to the inverse of the air-entry suction, and n is a non-

dimensional measure of the pore-size distribution. 
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Table 2. Measured suction and calculated degree of saturation 

Stages Suction 
(kPa) 

Saturation 
(%) 

St
ag

e 
1 

(D
ry

in
g)

 0.000 97.34 
0.069 97.18 
0.201 97.04 
0.333 95.70 
0.466 85.50 

St
ag

e 
2 

 
(D

ry
in

g)
 

0.588 66.75 
0.686 44.94 
0.784 35.17 
0.882 31.79 
1.176 21.24 
1.471 18.67 
1.765 6.74 
2.059 3.80 

St
ag

e 
3 

(W
et

tin
g)

 1.127 1.28 
0.833 7.63 
0.588 12.42 
0.294 60.04 

St
ag

e 
4 

 
(W

et
tin

g)
 

0.343 38.40 
0.294 53.81 
0.196 82.21 
0.147 84.30 
0.098 86.40 
0.000 86.40 
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Figure 8. Soil water retention curve for the well graded glass bead 

Following the procedures discussed in Manahiloh and Muhunthan (2012), the components of 

a second order fabric tensor Nij were calculated for the liquid phase at the locations of the points 

given in Table 2. It should be noted that the fabric tensor Fij, in the effective stress formulation, 

is a quantity different from Kanatani’s fabric tensor of the second kind. Fij can be related to Nij 

by using tensorial operations (Boehler 1987) and this task is left for future work.  

For demonstration consider the raw X-ray CT image shown in Figure 9a. By using 

thresholding and masking techniques, the liquid phase can be separated as shown in the 

segmented image in Figure 9b. The segmented liquid-phase image can then be discretized with 

watershed algorithms into a finite number of liquid cells as shown in Figure 9c. Each liquid cell 

can then be represented by a line element (i.e. by applying thinning techniques) aligned to the 

longest chord of a circumscribing ellipsoid  as shown in Figure 9d and Figure 10. In Figure 10, 
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n1 and n2 represent the Cartesian components for a unit vector in the direction of the longest axis 

of the fitted ellipse and they can be written as 

( )
1 cos kn θ=  … (a)  ( )

2 sin kn θ= … (b)    (50) 

  

(a) (b) 

  

(c) (d) 

Figure 9. (a) Raw X-ray CT image; (b) Image segmented for liquid phase; (c) watershed applied 
to discretize the liquid phase; (d) Line represented liquid cells 
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Figure 10. Alignment angle vector and components 

The relative alignment, from the vertical, of the lines representing each discrete liquid cell 

can be quantified and used in the computation of the components of the second order fabric 

tensor as given in Equations 51 to 53. In the equations M represents the finite number of 

discretized liquid cells for which directional data is collected.  

 Adopting the approach of Oda and Nakayama (1989)  and applying the automated image 

processing algorithms of Manahiloh and Muhunthan (2012), the components of the fabric tensor 

for the unsaturated glass bead system were calculated.  

2 ( )
11

1

1 cos
M

k

k
N

M
θ

=

= ∑       (51) 

( ) ( )
12

1

1 cos sin
M

k k

k
N

M
θ θ

=

= ∑      (52) 

2 ( )
22

1

1 sin
M

k

k
N

M
θ

=

= ∑       (53) 

Results are given in Table 3, where the last column reports values of the “vector magnitude” 

- an index that characterizes the intensity of preferred cell orientation (Curray 1956).  Vector 

magnitudes (∆) of 0 and 1 indicate no and maximum preference in orientation. Since its single 

value, obtained from Equation 54, is comprised of the contributions from the individual 
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components of the fabric tensor, it was chosen as a measure characterizing the variation of the 

fabric tensor.  

( ) ( )
1 2

2 2( ) ( )

1 1

1 cos 2 sin 2
M M

k k

k kM
θ θ

= =

 ∆ = +  
∑ ∑    (54) 

Plot of suction as a function of vector magnitude are shown in Figure 11and Figure 12 for the 

drying and wetting directions respectively. The figures present information on the trend followed 

in the variation of the vector magnitude as the suction/saturation changes. It can be seen that the 

vector magnitude stayed above 0.5 in both drying and wetting directions. Additionally, the 

orientation distribution of liquid cells varies randomly. This is an indication that suction greatly 

affects the preferred orientation of liquid cells inside a partially saturated specimen. Figure 13 

and Figure 14 present the variations of the fabric tensor components, for both wetting and drying 

directions, as functions of suction and saturation respectively.  The figures are presented to 

demonstrate the randomness of the variation of the component fabric tensors. However, on both 

figures one can observe that the magnitudes of N11 are greater in drying than wetting; the 

magnitudes of N22 are greater in wetting than drying and the magnitudes of N11 are greater than 

N22 in both wetting and drying.  
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Table 3. Fabric tensor components and vector magnitude 

 

 

Stages 
Suction 

(kPa) 

Saturation 

S (%) 
N11 N12 N22 ∆ 

St
ag

e 
1 

 

(D
ry

in
g)

 
0.000 97.34 0.72182 0.00168 0.27818 0.666 

0.069 97.18 0.66940 0.00350 0.33060 0.582 

0.201 97.04 0.68784 -0.00234 0.31216 0.613 

0.333 95.70 0.78398 -0.00308 0.21602 0.754 

0.466 85.50 0.73296 -0.00150 0.26704 0.683 

St
ag

e 
2 

(D
ry

in
g)

 

0.588 66.75 0.72642 -0.01248 0.27358 0.673 

0.686 44.94 0.81694 0.00746 0.18306 0.796 

0.784 35.17 0.76434 0.00200 0.23566 0.727 

0.882 31.79 0.83458 0.00432 0.16542 0.818 

1.176 21.24 0.88418 0.00202 0.11582 0.877 

1.471 18.67 0.83952 0.01764 0.16048 0.825 

1.765 6.74 0.96930 0.00008 0.03070 0.969 

2.059 3.80 0.98818 0.00012 0.01182 0.988 

St
ag

e 
3 

(W
et

tin
g)

 1.127 1.28 1.00000 0.00000 0.00000 1.000 

0.833 7.63 0.97002 -0.00020 0.02998 0.970 

0.588 12.42 0.93424 -0.00006 0.06576 0.932 

0.294 60.04 0.73030 -0.00132 0.26970 0.679 

St
ag

e 
4 

(W
et

tin
g)

 

0.343 38.40 0.81464 0.00862 0.18536 0.793 

0.294 53.81 0.84844 0.00016 0.15156 0.835 

0.196 82.21 0.69000 0.00232 0.31000 0.616 

0.147 84.30 0.69384 -0.01088 0.30616 0.623 

0.098 86.40 0.68858 -0.01536 0.31142 0.615 

0.000 86.40 0.73368 -0.00252 0.26632 0.684 
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Figure 11. Variation of fabric tensor, as indexed by vector magnitude, along the drying path of 
the SWRC 
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Figure 12. Variation of fabric tensor, as indexed by vector magnitude, along the wetting path of 
the SWRC 
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Figure 13. Variation of fabric tensor components as a function of suction 

 

Figure 14. Variation of fabric tensor components as a function of saturation 
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It is evident from above observations that the orientation distribution of the liquid phase 

quantified by the fabric tensor continually varies. Such behavior influences the evolution of the 

effective stress to a greater extent and therefore effective stress formulations need to include this 

dynamic behavior. The effective stress formulation presented in this paper accounts for the fabric 

tensor and intrinsically relates its variation with suction and degree of saturation. 

Summary and Conclusions 

A new effective stress formulation that takes account of soil microstructure was proposed. In the 

derivation, following the work of Li (2003a), virtual work principles were adopted and Gauss’s 

divergence theorem was implemented on Cauchy’s stress formula to relate surface area and 

volume-related parameter definitions. The formulation meets the description of “Class iii” stress 

formulations as summarized by Nuth and Laloui (2008). 

For fully saturated soils in which S =1 and Fij = δij, the proposed formulation reduces to the 

Terzaghi’s and Bishop’s (in which χ becomes 1) effective stress formulations as 

( )'
ij ij a ij a w iju u uσ σ δ δ= − + −      (55) 

It was shown that the effective stress is influenced by a second order fabric tensor that 

represents the spatial distribution of the liquid phase in the partially saturated system. This is in 

accordance with the Li (2003b) description of ijF as the fabric tensor of the liquid phase. 

In Li (2003a), a fabric tensor included in the effective stress formulation was expressed as an 

inherent function of the degree of saturation. Unlike Li (2003a), however, the formulation 

presented here has analytically de-coupled the two and expressed the fabric tensor independent 

of the degree of saturation. Variation of fabric tensor, and intrinsically the effective stress, was 

quantified as a function of suction and saturation. 
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The experimental description in the second half of this paper was presented neither as a 

direct means of quantifying Fij nor a validation for the “correctness” of the proposed effective 

stress formulation. The intent was to show a procedure (that utilizes the advancements in the 

field of microstructural imaging and image processing) "potentially-expandable" towards the 

greater tasks of: (i) coming up with a working definition/interpretation of Fij; (ii) developing a 

practical means of incorporating this definition into an effective stress formulation; and (iii) 

applying the formulation to models and designs that solve real-world-problems associated with 

unsaturated soils. 
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