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ABSTRACT 

The principle of effective stress states that the strength and volume change behaviors of soil are 
governed by intergranular forces expressed in terms of a continuum quantity called effective stress. 
Past research on effective stress formulations has identified a tensorial quantity that characterizes 
the liquid phase of unsaturated granular geomaterials. This quantity was named fabric tensor of 
the liquid phase and was shown to be anisotropic and to have an intrinsic association with the 
evolution of the effective stress tensor. It was also shown that its variation is random and can be 
depicted with microstructural image analysis. In this study, two past micromechanical effective 
stress formulations are discussed in comparison with Bishop’s effective stress. The extended 
Mohr-Coulomb and effective stress approaches are used in interpreting shear strength parameters 
and effective stress parameter for partially saturated granular soils. Correlations are identified for 
some material variables. The nonlinearity observed in the angle of friction associated with the 
matric suction was discussed in relation to the fabric tensor of the liquid phase.  
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INTRODUCTION 

Nearly a century has passed from the first time that Terzaghi (1925) (Terzaghi 1925) proposed his 
"effective stress" in soil mechanics. He defined effective stress as the stress that governs the 
volumetric and strength behavior of a two-phase-soil, consists of a liquid phase and a rigid solid 
phase. He described the effective stress as the difference between total stress and pore water 
pressure. Although, his effective stress is instrumental in capturing the behavior of two-phase-
soils, the definition of effective stress for unsaturated soils has remained challenging. 
The shear strength of a saturated soil can be described using the Mohr-Coulomb criterion and the 
effective stress variable as (Terzaghi 1939): 

( ) tan ( u ) tanwf f fc cτ σ φ σ φ= + = + −′ ′ ′ ′ ′
 (1) 

In Equation (1): τf, c', (σ - uw)f, and σ and are the shear stress, effective cohesion, effective normal 
stress, and total normal stress at failure, respectively. φ' is the effective angle of internal friction.  

For unsaturated soils, the failure criterion should capture the transition from saturated zone 
to partially saturated zone, and different degrees of saturation as well. Blight (1967) performed a 
series of consolidated-drained triaxial tests for unsaturated silt showed that, as the water inside the 
soil dries out and matric suction is introduced to the soil, the stress associated with failure increases 
to higher values. This observation, shown schematically in Figure 1, suggests that soils have higher 
strength when unsaturated. 

In an attempt to forward a quantity similar to Terzaghi’s effective stress, Bishop (1959) 
proposed effective stress equation that accounts for the negative water pressure that presents in 
partially saturated soil: 

( ) ( )f a a wf f fu u uσ σ χ= − + −′
 (2) 

In Equation 3, χ is a material parameter that varies among different soils. Jennings and Burland 
(1962) performed a series of oedometer tests and reported that the volumetric behavior of the soil 
cannot be captured with Bishop’s effective stress. They showed that the soil undergoes a 
significant reduction in volume when it is soaked suddenly (i.e. collapsing behavior).  

 
Figure 1. Change in strength behavior of soil with different matrix suctions (ua-uw). 
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Bishop and Blight (1963) proposed an indirect method to obtain χ for soils. In their method, χ was 
estimated at failure conditions. It means that it is not possible to obtain χ unless unsaturated soil 
tests are performed up to failure and some sort of a failure criterion is adopted. 

Fredlund and Morgenstern (1977) criticized the equation proposed by Bishop, from 
independent state variable point of view. They emphasized that the inclusion of a material variable 
(i.e. χ) makes Bishop’s effective stress a material-dependent state variable. They introduced three 
independent stress state variables, (ua- uw), (σ- ua) and (σ- uw), and highlighted that two of the three 
can be combined to capture the strength and volumetric behavior of an unsaturated soil.  

Fredlund et al. (1978) Extended Mohr-Coulomb criterion (Equation 3) for unsaturated soil 
based on the observed influence of matric suction on shear strength of soils. They proposed that, 
as soil dries out, the increase in matric suction introduces an apparent cohesion on top of the 
intrinsic cohesion of the soil. 

(u u ) tan ( u ) tanb
a w af f fcτ φ σ φ= + − + −′ ′

 (3) 

In the equation 
(u u ) tan b

a w fc c φ= + −′′ ′
is called apparent cohesion. Figure 2 illustrates 

the simplified boundaries for the Extended Mohr-Coulomb failure surface. Note in Figure 2 that, 
when soil is saturated, (ua – uw) = 0 and therefore, Equation 3 reduces to the conventional Mohr-
Coulomb failure criterion of saturated soil.  

 
Figure 2. Boundaries of the Extended Mohr-Coulomb failure envelop. 

 
Vanapalli et al. (1996) showed that the angle of friction in the matric suction plane, φb, in the 
extended Mohr-coulomb envelop becomes nonlinear once the matric suction surpasses the air-
entry suction of a soil. This non-linear behavior is illustrated in Figure 3.  
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Figure 3. Nonlinearity of φb. (modified from Vanapalli et al. (1996)). 

In this study, we aim at comparing and relating, the extended Mohr-Coulomb criterion with a 
similar criterion obtained by using the effective stress approach. For the effective stress, we have 
adopted a microstructural-based effective stress formulation that was forwarded by previous 
researchers  (Li 2003a). We have attempted to develop correlations between the angles of friction 
in the net stress and matric suction planes with the fabric tensor of the liquid phase.  

MICROMECHANICAL EFFECTIVE STRESS EQUATIONS 

Li (2003a) performed a micromechanical analysis to derive a quasi-effective stress equation for 
unsaturated soil. He used a multi scaling method to describe the microstructure of the unsaturated 
soil. Figure 4 shows stress state for unsaturated soil at different scales. The concept of 
representative volume element (RVE) provides a tool for mathematical analysis in continuum 
mechanics. RVE is the smallest scale of a continuum that is representative of the whole continuum. 
For an idealized unsaturated granular soil, Figures 4a and 4b show stresses acting on an RVE and 
on the surface of a particle, respectively. Figure 4c shows the geometric boundaries for different 
phases of an unsaturated soil. 

 
Figure 4. stress state for unsaturated soil at different scales (a) RVE scale (b) Particle level 

(c) geometric boundaries for different phases of unsaturated soil. 
 



– 5 – 

Assuming a smooth linear function (i.e. a first order approximation) for displacements of a point 
(such as point α) in Figure 4(b), and assuming that the resultant moment for a particle in 
equilibrium to be equal to zero, Li (2003a) wrote the total virtual work done in the RVE as sum of 
virtual works done by three sources; internal contact forces ( )f α , boundary contact forces ˆ( )f β

, and pore pressure ( )ip  on particle surfaces. Total virtual work equation was given as: 

1 1 1 1

ˆ d
p pm

m
m

N N k N
m m c
j i j i i jSm m

f r f x x p Aα α β β

α β= = = =
= +∑∑ ∑ ∑ ∫

 
(4) 

Where 
PN and 

mN are the number of particles in the RVE, and the number of contacts on 

particle m, respectively. 
m
jf α

and
m

ir α

denote the force on point α of particle m, and the vector that 

connects the centroid of the particle m to α . k  is the number of boundary contact points. 
ˆ

jf β

and

ixβ

are the force acts on the boundary contact point β , and the position vector of this point, 

respectively. 
mc

ix is the position vector of the centroid of the particle m. jp  is the particle surface 

traction arising from pore pressures and, 
mS is the surface of the particle m. 

For any element in a continuum, the stresses on any plane (tn) can be written as in Equation 
5. Figure 5 shows the Cauchy stress components diagrammatically. 

( )i ij jnt nτ=
 (5) 

The total stress in the RVE can be defined as the average of stresses acting on the RVE. Li 
(2003a) used divergence theorem on Cauchy’s stress (Equation 6) to correlate the total stresses on 
the volume of the RVE to the average of the surface tractions (Ti) acting on the surface (S): 

 
Figure 5. Components of stress for Cauchy’s formula. 

 

1 1d dij j i
V S

ij V T x V
V V

τσ − −
=∫ ∫

 
(6) 
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Surface tractions, on the RVE, were taken as composed of three components: pore pressures, 

boundary contact forces (
ˆ

jf β

), and surface tension with intensity (ua - uw) λi that is acting on a 
perimeter line (Γ) formed by the liquid-air meniscus (see figure 4c). λi defines the properties (i.e. 
the intensity and direction) of the surface tension. Li (2003a) applied the three components of the 
surface traction to Equation 6 and formulated the total stress as following: 

( )
1

1 1 dˆ
ij a ij r ij j ia w

k

j i u S x
V V

u uf xβ β

β
σ δ δ λ

Γ
=

−  = + − + Γ 
 

− ∫∑
 

(7) 

Where δij is the Kronecker delta, and Sr is the degree of saturation. Combining Equations 
4 and 7, Li (2003a) expressed a quasi-effective stress quantity as: 

( ) ( )
1 1 1

1 1 1d dij a ij r ij j i

p pm
m

ma w

N N N
m m c
j i i jSm m

u S x
V V V

u uf r x p Aα α

α
σ δ δ λ

Γ
= = =

−  − + + Γ − 
 

−= ∫∑∑ ∑ ∫
 

(8) 

The pore pressure ( )jp  acting on the surface ( )mS of particle m is composed of three components 

as shown in Figure 6. The first two components are air pressure and water pressure. Figure 6a 
shows that the difference between air and water pressure on the surface of the particle produces a 
pressure (ua-uw) around the perimeter of the wet particle surface. Figure 6b shows the air and water 
pressures acting on the liquid-air meniscus and the resultant force that act along a line that separates 
the three phases of the unsaturated soil. The interface between air and water phases is called 
contractile skin (Fredlund and Morgenstern 1977) and this additional force is known as surface 
tension. Figure 7 shows an analogy between the rope of a hiker, climbing the hillside, and the 
surface tension produced by (ua-uw). It can be inferred from the figure that any force that is induced 
in contractile skin (due to the pressure deficiency), eventually gets transferred to the boundary of 
the wetted area on the particle surface (Γm). 

 
Figure 6. Components of stress acting on the particle surface. 
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Figure 7. Analogy between the rope of a hiker and the surface tension. 

Considering the three components of pore pressure acting on particle surface, Li (2003a) evaluated 

jp over the surface particle m as: 

( )( )d d d d
m m m m

w
j a j j jS S Sa wp A u n A n Au u λ

Γ
= − + + Γ−∫ ∫ ∫ ∫  (9) 

Where 
m
wS  is the wet surface of the particles. Li (2003a) assumed that the integral of a constant 

hydrostatic pressure (e.g. air pressure) over the entire surface of a particle is equal to zero. 
Therefore, equation 10 reduces to: 

( )

( )( )
d d d d

d d d

m m m m
w d

m m m
w

j w j a j jS S S

a j j jS S

a w

a w

p A u n A u n A

u n A n A

u u

u u

λ

λ

Γ

Γ

= − − + Γ

= − + + Γ

−

−

∫ ∫ ∫ ∫

∫ ∫ ∫
 (10) 

However, the integral 
d

m jS
n A∫ cannot be ignored without any justification. The authors of this 

work argue that this integral can be zero only when the particle under consideration has complete 
symmetry.  A 2D illustration of this is shown in figure 8. For the conceptual 2D circular particle 
shown in Figure 8 (b), there is a counter balance pressure for any pressure located in the 
circumference of the circle. On the other hand, the horizontal and vertical equilibrium equations 
are not satisfied for the conceptual 2D triangular particle shown in figure 8 (b). 

 
Figure 8. Integral of hydrostatic pressure over the boundary of (a) circular shape (b) 

triangular shape. 
 
Applying Equation 10 into Equation 8 leads to the comprehensive micromechanical formulation 
for unsaturated soil defined by Li (2003a). 
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( ) ( )
1 1

1 u uij

p mN N
m m

a a wi j ij ij ij
mV

f r u Fα α

α
σ σ δ

= =
′ = = − + −∑∑

 
(11) 

In Equation 11, Fij was referred to as the fabric tensor and denotes the following: 

1 1
due to pressure deficiency due to pressure deficiency in contractile skin    on particle surface

1 1d d d
P

m
m
w

N
c

r ij j j jS
m

p

m
m

N
c

ij j j
m

S x n A
V V

F xδ λ λ
Γ

= Γ=

 
= + + Γ +  

 
Γ∑ ∫ ∫ ∑ ∫



 

 

(12) 

As can be seen in the expression, Fij is a function of particle geometry and volumetric quantities 
such as the degree of saturation. It was shown that fabric tensor of the liquid phase is anisotropic 
and has an intrinsic association with the evolution of the effective stress tensor Manahiloh et al. 
(2015). It is also shown that this variation is random and can be depicted by applying techniques 
of digital image processing.  
The intensity and direction of surface tension could not easily be captured with conventional 
testing and measurements. Manahiloh et al. (2015) assumed that the air-water interface moves with 
the soil skeleton, and the relative velocity of the contractile skin is negligible or zero. Therefore, 
the contribution of contractile skin to the virtual work can be ignored (Houlsby 1997). This 
assumption eliminates the λi from the preceding derivation steps. Accordingly, Equation 8 reduces 
to: 

( )

{ }

1

1

1

1 (1 )

ˆ

ˆ

ij a ij r ij

r w r a ij

a w

k

j i

k

j i

u S
V

S u S u
V

u uf x

f x

β β

β

β β

β

σ δ δ

δ

=

=

−
= + −

−
= + + −

−∑

∑
 

(13) 

They also assumed that the pore pressure inside the RVE remain the same and defined jp as shown 
in Equation 14. 

{ }d (1 ) d
m mj r w r a jS S

p A S u S u n A= + −∫ ∫  (14) 

Applying similar assumptions and equating boundary force contributions derived from virtual 
work and continuum approaches, the micromechanical effective stress formulation was shown to 
reduces to: 

[ ]
1 1

1 (1 )ij ij r w r a

p mN N
m m

i j ij
m

S u S u
V

f r Fα α

α
σ σ

= =
′ = = − + −∑∑

 
(15) 

In this case, the fabric tensor Fij took the form shown in Equation 16. 

1

1 d
P

m
m

N
c

ij i jS
m

ij x n A
V

F δ
=

= + ∑ ∫
 

(16) 

In order to compare Equation 15 with classical macro-mechanical definition of the effective stress, 
this equation can be rearranged as follows: 

( ) ( )ij ij a a w rij iju u u SF Fσ σ′ = − − −
 (17) 
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THE MEANING OF FABRIC TENSOR 

Two micro-mechanical formulation of effective stress, described in previous section, are used to 
interpret the strength of the granular partially saturated materials. Comparing the bishop type 
effective stress with Li’s equation (Li 2003a) one can surmise that the material parameter defined 
by bishop depends on the fabric of the water and solid particles: 

( ) ( ) ( ) ( )u u u uij a a w a a wij ij ij ij iju F uσ χσ δ σ δ′ = =− + − − + −
 (18) 

Which immediately suggests that χ is direction dependent and equals to the fabric tensor: 
ij ijFχ =  (19) 

Substituting this equation to the Mohr-coulomb failure envelope equation yields: 

( ) ( )( ) ( ) ( )u u tan tan u u tana a w a a wij ij ij ij ij ijf fff
c u F c u Fτ σ δ φ σ δ φ φ+= + − + − = + − −′ ′ ′ ′ ′  (20) 

Comparing this equation with the extended Mohr-Coulomb criterion, one can reache at a 
correlation between fabric tensor and the increase in shear strength captured by bφ as: 

tan tanb
ijFφ φ= ′  (21) 

In order to follow the same procedure for the equation obtained by Manahiloh et al. (2015), 
Equation 17 can be rearranged as follows: 

( ) ( )

( ) ( ) ( )
ij ij a a a a w r

ij a a a w r

ij ij ij ij

ij ij ij ij

u u u u u S

u u u u S

F F

F F

σ σ

σ

δ δ

δ δ

′ = − − + − −

= − + − − −
 

(22) 

Comparing Equation 22 with bishop’s effective stress leads to: 

( ) ( )ij a ra wij ij ijSu F u u Fχ δ − −= −
 (23) 

Substitution of Equation 23 into the Mohr-coulomb failure criterion, and combining the resulting 
equation with extended Mohr-coulomb failure envelope equation, one can write: 

( )
( )

tan tanr

f

a ij ijb
ij

a w
S

u F
F

u u
δ

φ φ
 −
 −
 
 

= ′
−

 (24) 

Both Equations 19 and 23 show that the material variable χ is direction dependent and needs to be 
found for the weakest plane.  
In Equations 21 and 24, it can be seen that the left hand side of the equations has scalar value while 
the right hand side shows tensorial characteristics. This imbalance followed from direct 
comparison of the Extended Mohr-Coulomb equation with Equation 20. However, 
mathematically, the two sides need to be “equivalent” index-wise. From geotechnical point of 
view, it can be concluded that bφ is dependent on the evolution of fabric, which is captured by Fij. 
Thus Equations 21 and 24 should be modified by accounting this dependence as follows: 
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( )tan tanb

ij ijf Fφ φ   = ′  (25) 

If one considers limit equilibrium on the verge of failure, one can expect that the fabric tensor is 
direction dependent and has principal values (Equation 26) that can be obtained by solving its 
eigenvalue problem. 

1

2

3

0 0
0 0
0 0

F
F

F

 
 
 
    

(26) 

Which, according to Equations 19 and 21, leads to the values of χ and tan bφ as given by Equations 

27 and 28. Similarly, according to Equations 23 and 24, χ and tan bφ attain the values given by 
Equations 29 and 30, respectively. 

3Fχ =  (27) 
 

3tan tanb Fφ φ= ′  (28) 

( ) ( )3 31a ra w Su F u u Fχ − −= −  (29) 
 ( )

( )
3

3
1

tan tanr

f

ab

a w
S

u F
F

u u
φ φ

 −
−  

 
= ′

−
 (30) 

Further investigation of the fabric tensor, requires the development image processing algorithms, 
and experimental testing systems and their integration with high-resolution CT-scanners to capture 
the evolution of the fabric during hydro-mechanical loading. The authors hypothesize that the 
successful implementation of the micromechanically driven equation for effective stress appears 
pivoted on finding efficient ways of capturing the evolution of the fabric tensor while specimens 
are loaded to failure. High-resolution X-ray CT image acquisition systems can accommodate large 
samples and the associated loading set up. Shearing devices such as the traditional triaxial testing 
device have metallic parts that stand in the way of X-rays and prohibit the acquisition of good 
resolution images. Such systems could be designed by replacing the metal pieces with high-
strength, low-density materials and could be used to overcome the issue of X-ray attenuation on 
the metal parts. The microstructural information obtained from such loading-imaging integration 
could help in the micromechanical quantification of the soil behavior. 

CONCLUSIONS 

Micromechanical examination of effective stress in unsaturated soils was revisited in this work. 
The extended Mohr-Coulomb and the effective stress approaches were compared and parameters 
were interrelated. To this end, two micromechanically driven effective stress expressions were 
investigated comparatively. Mathematically, it was shown that the conventional material 
parameters that capture the strength behavior of unsaturated soils are functions of the geometry of 
the particles and water as described by the fabric tensor. The nonlinearity in the angle of friction 
associated with matric suction (φb) is attributed to the evolution of fabric tensor as the loading 
conditions and saturation direction (wetting/drying) changes. It was shown that material variables 
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that characterize the shear strength of an unsaturated soil (e.g. φb and χ) are direction dependent 
and could be obtained by evaluating the eigenvalues and eigenvectors of the fabric tensor. 
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