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Abstract 

The effectiveness of five global thresholding techniques, to accurately segment different 
geomaterials, was evaluated in this work. X-ray CT images -taken from two-phase pervious 
concrete, glass bead, and silica sand specimens- were analyzed for evaluating five chosen 
methods. The core algorithms for these methods were coded using a Matlab programming 
language and packaged into a standalone application software. Three hundred and thirty-five 
image slices were provided for the pervious concrete specimen and the cropped size of this 
specimen was approximately 68 mm in diameter. The method proposed by Kapur et al. (1985) 
yielded the best results qualitatively and quantitatively (e=0.28) to the laboratory and Image-Pro 
measured void ratios of 0.26 and 0.30, respectively. Eleven image slices were analyzed for a 10 
mm in diameter glass bead specimen. Once again, the method proposed by Kapur et al. (1985) 
gave the best results with a void ratio of 0.91, as compared to the Image-Pro void ratio of 0.89. 
Ten image slices, with a cropped diameter of 4.48 mm, were used for the analysis of the silica 
sand specimen and the Otsu (1979) method was the most successful image segmentation 
technique, yielding a void ratio of 0.85 (Image-Pro e=0.77). From the results, it can be said that, 
no single image segmentation technique performs well over a wide range of material and that the 
performance of each image segmentation technique varies depending on the type and state of the 
analyzed media. 
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Introduction 

Some of the most utilized segmentation techniques use the concept of thresholding. Thresholding 

techniques could be either bi-level or multi-level [1]. For bi-level thresholding, an image is 

segmented into two different regions. Pixels with gray values greater than a threshold value are 

classified as foreground (object) pixels and pixels with gray values less than a threshold value 

are classified as background pixels. On the other hand, in multi-level thresholding, a gray-level 

image is segmented into several distinct regions. Multi-level thresholding results in more than 

one threshold value for the image [2]. The field of image thresholding has been well researched, 

yielding many different models that can be used to achieve the same result of effectively 

segmenting an image.  

Thresholding techniques can be categorized as global or local. Global thresholding is used when 

a chosen threshold value depends only on gray-level values and relates to the characteristics of 

pixels. There are numerous global thresholding techniques such as Otsu’s method [3] that will be 

discussed further in this paper. The biggest issue that global thresholding methods face when 

utilizing an image’s gray-level histogram is that not all features of interest form prominent peaks, 

in the image histogram, due to noise [1]. In the presented work, to ensure that the efficiency of 

the global thresholding techniques is not compromised, the images analyzed will be freed from 

any noise that could significantly affect the quality of the thresholding results.  

Local thresholding techniques are applied when a threshold value depends on both the gray-level 

value and local property of a pixel. In other words, a different threshold value is determined for 

each pixel based on the grayscale information (e.g., range and variance) for the neighboring 

pixels [4]. This approach divides an image into several subregions and chooses a threshold for 
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each of these subregions. After such thresholds are applied, a gray-level filtering technique is 

used to eliminate discontinuous gray-levels among the subregions.  

Global thresholding techniques, in segmenting two-phase porous media, have been discussed in 

the literature [3; 5-9]. From the vast range of global thresholding techniques, the Otsu (1979), 

Pun (1980), Kapur et al. (1985), Johannsen and Bille (1982), and Kittler and Illingworth (1986) 

methods are selected, based on their prior applicability success over a wide range of image types, 

and tested for their effectiveness in accurately segmenting geomaterials. Ensuing sections 

provide further details on these techniques, including the mathematical algorithms and 

theoretical concepts behind the selected methods.    

Image acquisition and processing 

Image acquisition 

There are various types of images, such as magnetic resonance images (MRI), thermal images, 

and light intensity (visual) images. Light intensity images are the most commonly encountered 

type of images. As indicated in the name, light intensity images represent the variation of light 

intensity on the scene [2]. All images, regardless of type, can be viewed as digital images. A 

digital image is represented by a two-dimensional discrete function, f(x,y), which is digitized in 

both spatial coordinates and magnitude of feature value (e.g., light intensity, depth, and 

temperature intensity) [2]. The values of x and y in a discrete function represent row and column 

indices, respectively. A point marked by these indices is known as a pixel. The pixel equivalent 

in three-dimensional space is referred to as a voxel [10]. 

Images can be obtained through X-ray computed tomography (CT), which is an advanced 

imaging technique that allows for nondestructive and noninvasive imaging of specimens to 
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depict cross-sectional and three-dimensional internal structures [11]. Such a system is especially 

useful for highly porous materials [12]. There are numerous X-ray CT systems in the market 

today ranging from benchtop synchrotron microtomography scanners to industrial X-ray image 

acquisition systems. Figure 1 provides a general scheme for specimen installation in an X-ray CT 

chamber. X-ray beam, originating from an X-ray source, passes through a specimen and hits a 

detector where data that is useful in projecting the internal structural details of the scanned media 

is created. The specimen is rotated about an axis perpendicular to the beam and a detector 

processes attenuation coefficients of the X-rays as they emerge from the specimen. Each image 

slice represents a portion of the specimen and combining all of the slices together yields the 

virtual three-dimensional representation of the imaged specimen [13].  

Image Segmentation 

Image processing deals with utilizing algorithmic programs to identify and extract information 

from images. Almost all image processing tools convert an 8-bit or 16-bit image into its binary 

format after segmentation is performed. Binary images take smaller storage space, are easier to 

manipulate, and can be processed faster when a thresholding algorithm is applied. This 

binarization is what is commonly referred to as image segmentation and it represents the 

foundation for computer vision and object recognition. In image segmentation, the overall 

histogram of an image is partitioned into two regions, with the goal of separating objects of 

interest (i.e., the foreground) from the background [14]. The quality of the segmented image is 

controlled by how well the threshold that separates the foreground from the background is 

estimated.  
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Figure 1. Schematic of Specimen Installation in X-ray CT Chamber 

Advancements in image acquisition and processing technologies, over the last few decades, have 

allowed for tremendous growth in both the theory and application of image segmentation 

techniques. These techniques are very popular in many fields, such as medical [15], forensic [16, 

17], and agricultural [18]. Scanned documents, including text, line drawings, or other graphics 

may be restored using the techniques of image segmentation if portions of these documents are 

degraded (e.g., aging resulting in ink fading) [4]. 

To further understand image segmentation, refer to Figure 2 which shows the general structure of 

an image segmentation system. The first step, preprocessing, is essential to eliminate any noise 

(random variation in pixel intensity) in the image before the segmentation step begins. For image 

preprocessing, color spaces within the image are transformed into specifically given color spaces 

for identifying different portions of an image [19]. The image is then smoothed through 

techniques such as a Gaussian filter [20] to minimize any noise. After applying a chosen image 

segmentation algorithm, post processing work entails of region merging, image marking, and 
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region extraction. This portion of the process combines unreasonably discontinuous regions to 

allow for a successfully segmented image [19].   

 

Figure 2. Image Segmentation System Structure (Yang and Kang 2009) 

The three main categories of image segmentation are edge-based segmentation, special theory-

based segmentation, and region-based segmentation [19]. Since the focus of this paper is on 

thresholding techniques, the region-based segmentation category is the one of interest (Table 1). 

The sub-classes of region-based segmentation are thresholding and region operating. The 

thresholding sub-class further divides into Otsu, optimal thresholding, and thresholding image 

techniques. The region operating sub-class divides into region growing, region splitting and 

merging, and image matching. In other words, the thresholding and region operating sub-classes 

can be categorized as global and local thresholding methods, respectively.  

  



- 7 - 
 

Table 1. Region-Based Segmentation Category (Yang and Kang 2009)  
Sub-Classes Interpretation 

 
Thresholding 

Otsu Extract the objects from the 
background by setting reasonable 

gray threshold Ts for image pixels. 
Optimal thresholding 
Thresholding image 

Region 
operating 

Region growing 
Partition an image into regions that 

are similar according to given 
criteria, such as gray character, color 

character, texture character, etc. 

Region splitting and 
merging 

Image matching 

 

Image segmentation is a very useful tool for obtaining and analyzing the properties of porous 

media, such as soils, rocks, concrete, and glass. Rather than performing laboratory experiments 

on a physical specimen of a two-phase porous media, images of the media can be used in 

conjunction with thresholding techniques, to quickly and accurately yield material properties 

such as void ratio (e).  

Implementation of Thresholding Techniques 

Through previously conducted literature review, five global thresholding techniques, namely 

Otsu (1979), Pun (1980), Kapur et al. (1985), Johannsen and Bille (1982), and the Kittler and 

Illingworth (1986) methods, were chosen for application to multiple porous media. Table 2 lists 

some of the commonly applied thresholding techniques for two-dimensional “slice-by-slice” 

processing of porous media, which also includes the five implemented techniques of this study.  
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Table 2. Commonly Applied Thresholding Techniques for Porous Media  
Technique Material Thresholding Technique 

Baveye et al. (2010), [21] 
Carminati et al. (2007), [22] 

Soil 
Soil 

3D Thresholding 
3D Thresholding 

Culligan et al. (2006), [23] Glass Beads 3D Thresholding 
Jassogne et al. (2007), [24] Soil 2D Thresholding 

Johannsen and Bille (1982), [7] - 2D Thresholding 
Kaestner et al. (2008), [25] Soil 3D Thresholding 

Kapur et al. (1985), [6] - 2D Thresholding 
Kittler and Illingworth (1986), [8] - 2D Thresholding 

Kurita et al. (1992), [26] Glass Beads, Sandstone 2D Thresholding 
Lee et al. (2008), [27] Soil 2D Thresholding 

Nunan et al. (2006), [28] Aggregates 2D Thresholding 
Ojeda-Magaña et al. (2014), [29] Soil 3D Thresholding 

Otsu (1979), [3] - 2D Thresholding 
Pun (1980), [5] - 2D Thresholding 

Ridler et al. (1978), [30] Glass Beads 2D Thresholding 
Schaap et al. (2007), [31] Glass Beads 3D Thresholding 
Schlüter et al. (2010), [32] Soil 2D Thresholding 
Van Geet et al. (2003), [33] Limestone, Sandstone 3D Thresholding 

Vogel et al. (2005), [34] Sintered Glass 3D Thresholding 
Wildenschild et al. (2002), [35] Sand 3D Thresholding 

Each of the five chosen algorithms were programmed with MATLAB [36]. A subroutine that 

calculates and reports the void ratio from X-ray CT images was created and applied. Generally, 

the subroutine reads an image slice, crops it to a circle of appropriate size (so that the number of 

pixels are not over- or under-estimated), segments it by applying a chosen thresholding 

technique, and counts the number of void and solid pixels in the segmented image. Void ratio is 

determined by dividing the number of void pixels by the number of solid pixels. Since the 

scanned images represent a two-phase system, the total number of pixels are composed of air and 

solids. Once all of the image slices are processed, results are combined and reported as the void 

ratio of the specimen. 
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For computational efficiency, each analyzed image was converted to an 8-bit image, meaning 

that the grayscale pixel intensities range from 0-255, where pixels closer to the 0 end are colored 

black and pixels closer to the 255 end are white. For MATLAB coding purposes, this range is 

taken to be from 1-256. Since the segmentation program is applied for two-phase images, void 

pixels are equal to air pixels. Therefore, any pixels less than a threshold value are black which 

corresponds to air and any pixels greater than a threshold value are white which corresponds to 

solids. In the images analyzed in this study, the process of reducing the bit depth from 16-bit to 

8-bit does not result in a significant loss of information. This could be attributed to the fact that 

the specimens were made of “larger” sized granular media and important details were well 

preserved in the 8-bit images. 

Otsu (1979) calculates optimal threshold through separability of the two classes, namely the 

foreground and background, by minimizing within-class variance or maximizing between-class 

variance. Optimal threshold is located where the summation of the foreground and background 

spreads are at a minimum [3]. Equations 1-4 are used for this method, where the optimal 

threshold value (t) is taken as the pixel value yielding the maximum value from Equation 4. 
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In the above equations, c is the highest possible pixel value in an image (here, since 8-bit images 

are processed in MATLAB, the highest possible value is 256); i represents a pixel value within 

the range of one up to c; p represents the individual pixel frequencies; mean, meanli, and meangi 

represent the mean of an image’s pixel intensities ranging from one to c, one to t-1, and t to c, 

respectively. 

In the Pun (1980) method, an assumption is made that the relationship between the numbers of 

pixels at a specific gray-level is statistically independent from the number of pixels at a nearby 

gray-level. Realistically, this assumption is not necessarily true, but is taken to be factual since 

this thresholding algorithm’s derivation is greatly simplified while providing reasonable results 

[5]. Equations 5-8 are utilized for the Pun (1980) method, where the optimal threshold value (t) 

is determined when the criteria set by Equation 8 is achieved. 
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In Equations 5-8, pi is the probability of occurrence of gray-level i; n(i) corresponds to the total 

number of pixels at a specific pixel value i; n represents the total number of pixels in an image; 

m is the smallest pixel value that satisfies Equation 6; α is the anisotropy coefficient representing 
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the ratio of the average quantity of information of white and black pixels; c is the highest 

possible pixel value in an image.  

The Kapur et al. (1985) method first derives two probability distributions (foreground and 

background) from the original gray-level distribution of an image and then determines the 

entropies associated with each distribution. The optimal threshold is taken as the gray-level that 

has the greatest summation of the two entropies [6]. Equations 9-15 represent this algorithm, 

where the optimal threshold value (t) refers to the pixel value that results in the maximum value 

of Equation 15. 
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In the above equations, pi is the probability of occurrence of gray-level i; c is the highest possible 

pixel value in an image; Ha and Hb represent the two probability distributions derived from the 

original gray-level distribution of the image.  
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The fourth algorithm, Johannsen and Bille (1982), is represented by Equations 16-18. Through 

utilizing the entropy of the gray-level histogram of an image, this method determines the optimal 

threshold value by dividing the set of gray-levels into foreground and background classes, in 

order to minimize the interdependence between them [9]. The minimum value produced from 

Equation 18 corresponds to the optimal threshold value (n*). 
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For Equations 16-18, pi corresponds to the probability of occurrence of gray-level i; pn represents 

the probability of occurrence of the pixel value following the one being analyzed (e.g., if i=25, pn 

represents the probability for pixel value 26); n = t+1; c is the highest possible pixel value in an 

image; S(n) and S(n) represent the two parts that the set of gray-levels are divided into. 

The fifth and final method that will be used for analysis is the Kittler and Illingworth (1986) 

method. The Kittler and Illingworth (1986) method determines the optimal threshold value by 

viewing the gray-level histogram as an estimation of the probability density function 

representing the gray-levels of the foreground and background pixels in an image. This method 

assumes that these two categories of pixels are normally distributed with priori probability, 

mean, and standard deviation [9]. The algorithm for the Kittler and Illingworth (1986) method is 

presented by Equations 19-26, where the optimal threshold value (t) is the minimum value of the 

criterion function of Equation 26.  
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For Equations 19-26, P1 and P2, μ1 and μ2, σ1
2 and σ2

2, and σ1 and σ2 represent the priori 

probability, mean, variance, and standard deviation of the foreground and background pixels, 

respectively; c is the highest possible pixel value in an image.  

Results and Discussion 

The five thresholding techniques described in the preceding section were applied to X-ray CT 

images obtained for three different specimens. These specimens were composed of pervious 
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concrete, glass bead, and silica sand. In order to qualitatively analyze the results of the five 

techniques, and present that discussion here, the segmentation results of each method is 

represented by the first image slice for the image set of each specimen.  

The subroutines of the five thresholding techniques were deployed as a standalone executable 

software program, thus removing the need for MATLAB. Besides allowing non-MATLAB users 

the opportunity to utilize these subroutines, creating a standalone program allows for all of the 

methods to be neatly displayed on one screen, rather than running multiple scripts. The images to 

undergo segmentation must be cropped to ensure that calculations are performed only for the 

specimen. In other words, images are composed of pixels whose information is stored in a matrix 

that can either be square-shaped or rectangular-shaped. If a specimen is circular-shaped, portions 

of the four corners of the image would not include any of the specimen, as seen in Figure 3, 

which represents the first image slice of the pervious concrete specimen.  

If the image slice in Figure 3 is not cropped, the thresholding algorithms would mistake these 

black corners as air, thus greatly overestimating the specimen’s void ratio. Image slice 

renderings could include the container that the specimen was scanned in and a scale for the sizes 

of the particles, depending on how the specimens were scanned and how the image slices were 

presented. Regardless, these inclusions would result in inaccurate results, further solidifying the 

need for image cropping. Automatic image cropping on the basis of pixel information would not 

always be accurate, especially if a scale is included for each image slice and if the soil specimen 

is not centered in the image.  
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Figure 3. First Scanned Image Slice of Pervious Concrete Specimen 

The pervious concrete specimen was originally 100 mm in diameter and was newly prepared in a 

laboratory setting. Three hundred and thirty-five image slices were obtained for this specimen 

through X-ray CT scanning. The laboratory measured gravimetric void ratio was 0.26. Figure 4 

shows the first image slice with the applied manual crop as displayed in the standalone software 

developed as part of this study. The calibrated size of this cropped specimen was approximately 

68 mm in diameter. 

 

Figure 4. First Cropped Image Slice of Pervious Concrete Specimen  
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Figure 5. Pervious Concrete Results of Thresholding Techniques (Displayed Image Slice 

Segmented with the Otsu (1979) Method) 

Figure 5 above shows the quantitative results from the applied thresholding techniques. The void 

ratio, threshold value for the first image slice (T1), and the average threshold value (AT1) for the 

set of image slices per method is displayed in the figure. Also, for visual purposes, the figure 

depicts the cropped image of the original first image slice, its gray-level histogram, and the 

resulting segmented image with the Otsu (1979) method applied. To assist with qualitative 

analyses, Figure 6 presents the segmentation of the first image slice per thresholding method. 
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Figure 6. Segmented Pervious Concrete Slice with Different Thresholding Methods Applied:   

(a) Otsu (1979) Method, (b) Pun (1980) Method, (c) Kapur et al. (1985) Method,                       

(d) Johannsen and Bille (1982) Method, (e) Kittler and Illingworth (1986) Method 

The void ratio for Otsu (1979), Pun (1980), Kapur et al. (1985), Johannsen and Bille (1982), and 

the Kittler and Illingworth (1986) methods were 1.076, 1.33, 0.28, 0.20, and 0.21, respectively. 

As previously mentioned, the laboratory measured void ratio was found to approximately be 

0.26. For the first image slice, the Pun (1980) method had the highest threshold value (T1=186), 

followed by Otsu (1979) (T1=183), Kapur et al. (1985) (T1=152), Kittler and Illingworth (1986) 

(T1=149), and the Johannsen and Bille (1982) methods (T1=131). On average, the threshold 

values for the entire image set for these five techniques were 148, 145, 122, 109, and 111, 

respectively.  

From a quantitative standpoint, for the pervious concrete specimen, the results from Otsu (1979) 

and the Pun (1980) methods were the least accurate of the five thresholding techniques. 

Qualitatively speaking, the segmentation of this image slice by these two methods eroded away 

too much of the solid particles, more so with the Pun (1980) method. The average threshold 

values for these methods were very close to one another and helped validate this argument. Since 



- 18 - 
 

their algorithms determined the thresholds to be this high, the methods yielded unrealistic void 

counts for the specimen. Therefore, it can be deduced that an acceptable segmentation technique 

must have an average threshold value much lower than what was seen with these two methods. 

The void ratios from Kapur et al. (1985), Johannsen and Bille (1982), and the Kittler and 

Illingworth (1986) methods were very similar to one another. Relatively speaking, the best 

segmentation technique for this image set was the Kapur et al. (1985) method. Quantitatively, 

this technique’s void ratio was the closest to the laboratory measured void ratio. For further 

validation, the image processing program, Image-Pro®, yielded a void ratio of 0.30 which was 

also relatively close to the result from the Kapur et al. (1985) method. Image-Pro was selected as 

a validation measure because of the degree of control users can have in deciding the optimum 

threshold for the image slices analyzed. Once the appropriate threshold is identified, on a number 

of slices, automated macros are run to analyze the whole image stack. Qualitatively, this method 

came the closest to accurately capturing the size and shape of the solid particles in the original 

image, whereas the other two methods had the solid particles being more filled and widened.   

The original glass bead specimen was 10 mm in diameter and eleven image slices (first cropped 

image slice depicted as Figure 7) were obtained for this specimen through X-ray CT scanning. 

The cropped images contained the entire specimen, so the diameter remained as 10 mm. Figure 8 

provides the quantitative results of the applied thresholding methods (first image slice used for 

T1) and the qualitative results of the first image slice with the Otsu (1979) method applied. 

Figure 9 presents the segmentation of the first image slice with each thresholding method 

applied. 
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Figure 7. First Cropped Image Slice of Glass Bead Specimen  

  

Figure 8. Glass Bead Results of Thresholding Techniques (Displayed Image Slice Segmented 

with the Otsu (1979) Method) 
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Figure 9. Segmented Glass Bead Image Slice with Different Thresholding Methods Applied:          

(a) Otsu (1979) Method, (b) Pun (1980) Method, (c) Kapur et al. (1985) Method,                       

(d) Johannsen and Bille (1982) Method, (e) Kittler and Illingworth (1986) Method 

Quantitatively, the void ratio of 17.96 obtained through the Kittler and Illingworth (1986) 

method was very inaccurate. From Figure 9e, it can be seen that this technique poorly segmented 

the image, treating the majority of solid pixels as void pixels. The threshold value of 146 for the 

first image slice and the average threshold value of 147 for the set of image slices were far too 

large. The Johannsen and Bille (1982) method yielded the smallest void ratio of 0.61, followed 

by Otsu (1979) (e=0.80), Kapur et al. (1985) (e=0.91), and the Pun (1980) methods (e=1.14). 

The corresponding threshold values for the first image slice were 76, 105, 117, and 127, 

respectively. The average threshold values for the set of image slices were 72, 104, 116, and 127, 

respectively. For a basis of comparison, Image-Pro yielded a void ratio of 0.89. Thus, the Kapur 

et al. (1985) method provided the best segmentation, quantitatively. 

By qualitatively analyzing the segmentation results, it can immediately be seen that Pun (1980) 

and the Kittler and Illingworth (1986) methods yielded unacceptable segmentations. The 

specimen segmented by the Pun (1980) method had small black dots scattered across the glass 
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beads, indicating more voids and hence a higher threshold value than what is realistic. The 

Kittler and Illingworth (1986) method yielded the highest threshold value of all the techniques 

which explained why this method barely captured any of the glass beads. For the Johannsen and 

Bille (1982) method, the glass beads were slightly too filled and widened. This was visually 

identifiable since this segmentation resulted in the formation of contact points where gaps should 

have resided. Otsu (1979) and the Kapur et al. (1985) methods were the two best segmentation 

options which also had void ratios closest to the Image-Pro void ratio. The Otsu (1979) method 

resulted in unwanted contact points between the glass beads in various locations of the specimen, 

although not as profound as with the Johannsen and Bille (1982) method. So, overall, the Kapur 

et al. (1985) method yielded the best results quantitatively and qualitatively for the glass bead 

specimen.  

The third and last specimen analyzed was silica sand with a specimen diameter of 6.35 mm. Ten 

image slices were utilized (first cropped image slice represented by Figure 10) for the analysis. 

The specimen was cropped to a diameter of 4.48 mm. Figure 11 shows the results from the 

standalone program with T1 calculated for the first image slice and the segmentation of this slice 

displayed with the Otsu (1979) method as well. Figure 12 presents the segmentation of the first 

image slice with each thresholding method applied. 
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Figure 10. First Cropped Image Slice of Silica Sand Specimen  

 

Figure 11. Silica Sand Results of Thresholding Techniques (Displayed Image Slice Segmented 

with the Otsu (1979) Method) 
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Figure 12. Segmented Silica Sand Image Slice with Different Thresholding Methods Applied:           

(a) Otsu (1979) Method, (b) Pun (1980) Method, (c) Kapur et al. (1985) Method,                       

(d) Johannsen and Bille (1982) Method, (e) Kittler and Illingworth (1986) Method 

From Figure 11, the void ratio of 9.031 obtained through the Kapur et al. (1985) method seems 

too high, meaning that the corresponding threshold values of 195, for the first image slice and the 

whole set of image slices, were not realistic. This value suggested that the original silica sand 

specimen was significantly composed of more air than sand particles, which was not the case. 

For the other image segmentation techniques, the method with the highest void ratio was the Pun 

(1980) method (e=1.96), followed by Otsu (1979) (e=0.85), Kittler and Illingworth (1986) 

(e=0.68), and the Johannsen and Bille (1982) (e=0.66) methods. The threshold values for the first 

image slice for these methods were 181, 141, 100, and 39, respectively. The average threshold 

values for the four methods were 180, 142, 97, and 85, respectively. Comparing to the void ratio 

of 0.77 that was obtained from Image-Pro, the Otsu (1979) method was the best segmentation 

technique for the silica sand specimen.  

Qualitatively, starting with the Pun (1980) method, the segmented image slice in Figure 12b 

shows that the solid particles are too eroded away, in comparison to the original image slice. In 
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other words, the chosen threshold value was too high since the segmented image visually 

contained too much air. The Johannsen and Bille (1982) method had the lowest threshold value 

which caused the solid particles to be too filled (Figure 12d). Lastly, Otsu (1979) and the Kittler 

and Illingworth (1986) methods provided similar qualitative results. However, the Otsu (1979) 

method was more capable of capturing the visible cracks in the silica sand particles. As a result, 

the Otsu (1979) method was chosen as the best image segmentation technique for the silica sand 

specimen.  

Table 3 provides a summary of the final void ratio results for the porous media analyzed in this 

study. Tables 4-6 provide statistical descriptors and comparisons of the five techniques for each 

of the porous media analyzed. Note that for Table 5 the Kittler and Illingworth (1986) method 

was excluded from the statistical comparison due to the produced void ratio being a wild outlier. 

The same reasoning applied for why the Kapur et al. (1985) method was not included in Table 6. 

The results of these tables collectively show that the methods as a whole work best for the glass 

bead specimen due to this specimen having the lowest coefficient of variation. This is followed 

by the silica sand specimen and the pervious concrete specimen. Individually, the application of 

the Kapur et al. (1985) method to the glass bead specimen yielded the least segmentation error 

(1.71%). Contrarily, the best segmentation technique with the greatest segmentation error 

(10.49%) was the Otsu (1979) method for the silica sand specimen.  

Table 3. Final Void Ratio Results for the Porous Media Specimens 

Porous Media Best Segmentation 
Technique 

Chosen Technique’s 
Void Ratio 

Image-Pro 
Void Ratio 

Percent 
Error 

Pervious Concrete Kapur et al. (1985) 0.28 0.30 6.89% 

Glass Bead Kapur et al. (1985) 0.91 0.89 1.71% 

Silica Sand Otsu (1979) 0.85 0.77 10.49% 
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Table 4. Statistical Results and Comparisons for the Pervious Concrete Specimen*1 

Porous 
Media 

Image Segmentation 
Technique 

Void 
Ratio Error Standard 

Deviation 

Coefficient 
of 

Variation 
(CV) 

Pervious 
Concrete 

Otsu (1979) 1.076 0.61 

0.46 74.25% 

Pun (1980) 1.33 1.065 
Kapur et al. (1985) 0.28 0.00042 

Johannsen and Bille (1982) 0.20 0.0010 
Kittler and Illingworth 

(1986) 0.21 0.0081 

Image-Pro 0.30 _____ 
 

Table 5. Statistical Results and Comparisons for the Glass Bead Specimen*1 

Porous 
Media 

Image Segmentation 
Technique 

Void 
Ratio Error Standard 

Deviation 
Coefficient of 

Variation (CV) 

Glass 
Bead 

Otsu (1979) 0.80 0.0090 

0.19 21.82% 
Pun (1980) 1.14 0.059 

Kapur et al. (1985) 0.91 0.00024 
Johannsen and Bille (1982) 0.61 0.078 

Image-Pro 0.89 _____ 
 

Table 6. Statistical Results and Comparisons for the Silica Sand Specimen*1 
Porous 
Media 

Image Segmentation 
Technique 

Void 
Ratio Error Standard 

Deviation 
Coefficient of 

Variation (CV) 

Silica 
Sand 

Otsu (1979) 0.85 0.0066 

0.54 51.49% 
Pun (1980) 1.96 1.41 

Johannsen and Bille (1982) 0.66 0.012 
Kittler and Illingworth (1986) 0.68 0.0078 

Image-Pro 0.77 _____ 
 

Conclusions 

                                                           
1 Comparisons made relative to Image-Pro Plus determined void ratios. 
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Five automatic thresholding techniques, Otsu (1979), Pun (1980), Kapur et al. (1985), Johannsen 

and Bille (1982), and the Kittler and Illingworth (1986) methods, were chosen for image 

segmentation of two-phase porous media. Since these techniques dealt with two-phase image 

segmentation, one threshold value was determined to separate the foreground/objects and 

background/air classes from each other. Pixels less than a threshold value were referred to as 

void/air pixels that were colored black and pixels greater than a threshold value were referred to 

as solid pixels colored white. The algorithms for the five chosen thresholding techniques were 

coded in MATLAB to ultimately determine material properties such as void ratio (e) for image 

slices obtained from an X-ray CT device. 

The determination of an optimal threshold value varied from technique to technique due to 

differences in mathematical algorithms. The Otsu (1979) method found the optimal threshold 

value through minimization of the within-class variance of the foreground and background 

classes of an image’s gray-level histogram. The Pun (1980) method made the assumption that 

pixel information was statistically independent from one another. The Kapur et al. (1985) 

method chose the optimal threshold value through determining two probability distributions 

representing the foreground and background classes. The Johannsen and Bille (1982) method 

determined the threshold value to be the gray-level pixel value resulting in the minimal 

interdependence between the foreground and background classes. Lastly, the Kittler and 

Illingworth (1986) method considered the gray-level histogram to be an estimation of the 

probability density function of the foreground and background classes. This method assumed 

that the pixels within these two classes were normally distributed and thus calculated the 

threshold value through utilization of pixel probability, mean, and standard deviation.  
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In order to analyze the effectiveness of the thresholding techniques, the techniques were applied 

to pervious concrete, glass bead, and silica sand specimens. Three hundred and thirty-five image 

slices were provided for the pervious concrete specimen and the cropped size of this specimen 

was approximately 68 mm in diameter. The method proposed by Kapur et al. (1985) yielded the 

best results qualitatively and quantitatively (e=0.28) to the laboratory measured void ratio of 0.26 

and the Image-Pro void ratio of 0.30. Eleven image slices were utilized for the 10 mm in 

diameter glass bead specimen. Once again, the method proposed by Kapur et al. (1985) gave the 

best results with a void ratio of 0.91, as compared to the Image-Pro void ratio of 0.89. Ten image 

slices with a cropped diameter of 4.48 mm were used for the analysis of the silica sand specimen 

and the Otsu (1979) method was the most successful image segmentation technique, yielding a 

void ratio of 0.85 (Image-Pro e=0.77).  

Interestingly, the results of the applied image segmentation techniques for the three porous media 

specimens do not follow a specific type of trend. The analysis of the pervious concrete specimen 

showed that the Kapur et al. (1985) method was the best technique whereas the Pun (1980) 

method was the least accurate for this specimen. For the glass bead specimen, the Kapur et al. 

(1985) method proved most successful and the Kittler and Illingworth (1986) method was clearly 

the least successful. Lastly, the segmentation of the silica sand specimen was best captured by 

the Otsu (1979) method and was least captured by the Kapur et al. (1985) method (in contrast 

with the pervious concrete and glass bead specimens). Therefore, it was difficult to make pre-

analysis assumptions on which of the five techniques performed the best; the performance of the 

techniques varied based on the type of porous media analyzed. Regardless, the five evaluated 

image segmentation techniques could very well open up more possibilities in the field of two-

phase image segmentation of porous media in the near future.   
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