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Abstract 

X-ray computed tomography (CT) images of three-phase silica sand and glass bead specimens are 
analyzed and used to evaluate the segmentation performances of Otsu-, and recursion-based 
multilevel algorithms. A global image segmentation technique that combines iterative and 
recursive algorithms, namely a refined statistics-based global segmentation is proposed for 
segmenting multi-phase granular geomaterials. The performance of the proposed algorithm is 
tested by segmenting partially saturated silica sand and glass bead specimens. For the tested silica 
sand specimen, the refined statistics method estimated void ratio and degree of saturation were 
0.67 and 39.35%. The estimates for the glass bead specimen yielded 0.64 and 43.49%, 
respectively. The true void ratio (0.66) and degree of saturation (37.71%) were determined with a 
user-controlled Image processing software package—Image-Pro. It was found that the proposed 
method estimated the void ratio and the degree of saturation with 1.52 and 4.35 percent errors for 
the silica sand and with 15.63 and 0.34 percent errors for the glass bead, respectively. The 
computational time of the proposed method was found to be shorter than other methods considered. 
Overall, it is concluded that the proposed technique performed better in segmenting three-phase 
granular geomaterials.  
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Introduction 

Image segmentation is a general term applied to the techniques utilized to separate an area of 

interest, a pattern, or a subset of pixels with common features in an image (Liao et al. 2001). For 

images acquired via X-ray computed tomography (CT) scanning, each pixel contains gray-level 

intensity information. The intensity of each pixel can vary from black (weakest shade of gray) to 

white (strongest shade of gray) (Madra et al. 2014). The intensity value for each pixel is saved as 

an aggregate of bits. For an 8-bit image, the intensity value varies from 0 to 255. The common 

practice in image segmentation is to extract the pixels with the desired color or gray intensities. 

For images of a partially saturated granular geomaterial, three-phase segmentation aims at 

separating the gaseous-fluid, solid, and liquid-fluid phases, which may partially fill the pores. 

Since the pioneering work of Brice and Fennema (1970), image segmentation techniques 

have undergone immense evolution, including in the direction of histogram thresholding. 

Thresholding is a simple concept that introduces one or more intensity values to an intensity 

distribution (i.e., image histogram) of an image where these values separate the objects of 

interest (i.e., foreground) from the background. Depending on the constituent elements (i.e., 

phases) of an image, thresholding techniques could be bi-level or multi-level (Leedham et al. 

2003). Bi-level thresholding techniques introduce one threshold value to the histogram and give 

a two-phase segmented image (Kohler 1981; Pal and Pal 1993). Foreground and background are 

the terms applied to the pixel values greater than and less than the threshold value, respectively 

(Abdullah et al. 2012; Kurita et al. 1992). Multi-level thresholding methods, on the other hand, 

introduce more than one threshold value to the histogram (Arora et al. 2008; Kapur et al. 1985). 

Regardless of the approach, the number of segmented regions is always equal to the number of 

thresholds plus one. 
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Thresholding techniques are divided into two general classes: global and local 

thresholding. While global thresholding techniques use the statistical information of an intensity 

value distribution for the total pixels in a given image, local thresholding methods use the 

statistical information of a set of neighboring pixels to classify a pixel (Singh et al. 2011). The 

main problem associated with global thresholding techniques is that the effects of noise (i.e., 

random variation in pixel intensity) cannot be eliminated by these methods (Leedham et al. 

2003). However, for segmentation of images with clear distinct phases, as is the case in granular 

materials, global thresholding techniques provide sufficiently accurate results. Numerous global 

thresholding techniques such as Otsu’s (1979) method have been proposed by several 

researchers. In the presented work, the concepts of Otsu’s (1979) method are employed to 

modify the pre-existing technique and propose a new, three-phase segmentation technique, 

Refined statistical-based method, for partially saturated geomaterials. 

Before proceeding any further, it is important to mention that the images of this study 

have a relatively low resolution. Regardless, the images still have sufficient resolution that 

enabled the clear identification of the three phases. The authors also acknowledge that global 

segmentation is not the absolute ideal segmentation approach in multiphase image processing. 

However, this paper aims to prove a point that global segmentation techniques can be expanded 

upon to provide results that are equally accurate as those of other successful techniques, such as 

watershed segmentation and active converging contours. In addition, even though Otsu’s method 

is not considered the state-of-the-art technique, it is considered to be a highly effective 

segmentation method, thus serving as a good benchmark to surpass.  

Usage of global segmentation techniques prevent the need for specialty software (e.g., 

Volume Graphics®, Image-Pro®, and Avizo®) that may not be readily, or easily available. In 
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this study, a simple Gaussian filter is used for image enhancement. This filtering technique was 

found to handle the task satisfactorily, albeit not as precise as the more sophisticated filtering 

techniques such as the edge detection based anisotropic diffusion (Catte et al. 1992; Perona and 

Malik 1990; Sheppard et al. 2004) and nonlocal means filter (Buades et al. 2005). For this work, 

porosity was chosen as a benchmark parameter for evaluating segmentation performance. In 

reality, it may be argued that porosity is not the best choice as a benchmark parameter compared 

to permeability and capillary pressure. However, evaluation of such parameters requires special 

software programs with pre-programmed pore-morphology analyzing capabilities, that of which 

was neither available nor the focus of this study.  

Image Acquisition  

In today’s market, various X-ray CT systems ranging from benchtop synchrotron 

microtomography to industrial X-ray image acquisition systems are available as nondestructive 

options for imaging granular geomaterials (De Chiffre et al. 2014). Fig. 1 shows a generalized 

setup of image acquisition systems. An X-ray beam, originating from an X-ray source, penetrates 

through a specimen seated on a pedestal with four degrees of freedom (i.e., horizontal, vertical, 

rotational). As the beam passes through the specimen, a projection of the specimen’s internal 

absorption coefficients is rendered. During data acquisition, the part of the specimen through 

which X-ray beam passes is rendered when the pedestal completes a full 360° rotation.   

An image is represented through the digitalization of a two-dimensional discrete function, 

f(x,y). Solving the discrete function yields a two-dimensional matrix where each element of such 

matrix is known as a pixel (Pal and Pal 1993). The values of x and y in a discrete function 

represent the row and column indices, respectively. Mathematically, image pixels form a square 
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or rectangular- array. In three-dimensional space, a pixel becomes a voxel (Manahiloh et al. 

2012; Manahiloh et al. 2015, 2016).  

 

FIG. 1 General specimen installation in an X-ray CT chamber 

The use of X-ray CT images and the techniques of image processing has gained interest 

in the geo-engineering fields. The advancements in image acquisition and processing has enabled 

advances in quantitative interpretations that are related, but not limited to: strain localization 

phenomena such as shear banding (Alshibli and Hasan 2008; Alshibli and Alramahi 2006; 

Alshibli et al. 2000; Masad and Somadevan 2002); distribution analysis of asphalt, soil, 

aggregate, and rocks microstructure  (Chandan et al. 2004; Gebrenegus 2009; Ghalib and Hryciw 

1999; Kim et al. 2003; Masad and Button 2000; Masad et al. 2002; Masad et al. 2002; Masad et 

al. 1999; Razavi 2006; Wang et al. 2004; Zelelew and Papagiannakis 2011); and multiphase 

porous media (Al-Raoush and Willson 2005; Al-Raoush and Willson 2005; Carminati et al. 

2007; Culligan et al. 2006; Iassonov et al. 2009; Kaestner et al. 2008; Lehmann et al. 2006; 

Manahiloh et al. 2012; Sheppard et al. 2004; Wildenscheld et al. 2002). Almost all known 

quantitative analysis from image processing undergoes a very important step, namely image 

segmentation. 
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Image Segmentation 

Typically, grayscale images are converted into binary images -using a manually or automatically 

selected threshold- to increase implementation efficiency. Binary images are segmented images 

in which there are only two possible values for each pixel: zero or one (Abdullah et al. 2012). In 

a segmented binary image, any pixels assigned a value of zero correspond to the background and 

pixels with a value of one correspond to the objects of interest (i.e., foreground). Compared to 

grayscale images, 1-bit monochrome binary images use less storage space since pixels in a 

binary image have two possible values rather than the 256 possible values in the case of an 8-bit 

grayscale image. Consequently, binary images provide faster processing speeds when 

thresholding algorithms are utilized (Arifin and Asano 2006). 

In general, the structure for image segmentation can be viewed as a three-step process: 

preprocessing, segmentation algorithm application, and postprocessing (Yang and Kang 2009). 

When viewing an image’s gray-level histogram, it may be apparent that some of the features do 

not form distinguishable peaks, because of noise in the image (Leedham et al. 2003). The first 

step, preprocessing, uses image processing tools such as a Gaussian filter (Tsai 1995) to 

minimize image noise that would hinder segmentation performance. In the second step, using a 

predetermined threshold value, the image is segmented into different, identifiable regions. 

Lastly, postprocessing is used to extract valuable information from portions of the segmented 

image, e.g., to count the number of liquid and air pixels for calculating the degree of saturation in 

partially saturated granular geomaterials. Postprocessing is also useful for combining 

unreasonably discontinuous regions in the segmentation (Yang and Kang 2009). Note that the 

first and third steps may not be used, because these steps depend on the quality of the original 

image and the effectiveness of the applied thresholding algorithm, respectively.    
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Implementation of Thresholding Techniques  

Table 1 provides some examples of thresholding techniques that have been applied for porous 

media analysis since 1978. These techniques are applicable in both two-dimensional and three-

dimensional image processing. As listed in the table, images of granular soils and glass bead 

specimens were used for validating the thresholding algorithms chosen by the authors. In an 

attempt to further the field of image segmentation of partially saturated granular media, this 

study proposes a new, three-phase image segmentation technique in which a refined statistics-

based thresholding algorithm is employed.  

TABLE 1 Examples of past studies for granular media thresholding  
Reference Material Thresholding type 
Ridler and Calvard (1978) Glass beads 2D  
Kurita et al. (1992) Glass beads, sandstone 2D 
Wildenschild et al. (2002) Sand 3D  
Van Geet et al. (2003) Limestone, sandstone 3D  
Vogel et al. (2005) Sintered glass 3D  
Culligan et al. (2006)  Glass beads 3D 
Nunan et al. (2006)  Aggregates 2D 
Carminati et al. (2007)  Soil 3D 
Jassogne et al. (2007)  Soil 2D 
Schaap et al. (2007)  Glass beads 3D 
Kaestner et al. (2008)  Soil 3D 
Lee et al. (2008)  Soil 2D 
Baveye et al. (2010) Soil 3D 
Schlüter et al. (2010) Soil 2D 
Ojeda-Magaña et al. (2014) Soil 3D 

As previously indicated, the algorithms representing the modification and extensions of 

Otsu’s (1979) method, as well as the one proposed here, were coded with MATLAB© 

(Mathworks 2015). Three of the techniques, Otsu’s (1979) three-phase method, the iterative Otsu 

method, and the refined statistics-based method, were modified for proper application in 

MATLAB©. For coding purposes, the range of grayscale pixel intensities for the analyzed 8-bit 

images is 1-256, rather than 0-255. 
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In this study, three-phase images (solids, water, and air) of unsaturated granular 

geomaterials were used. Each technique searches for two optimum threshold values, namely 

threshold one (t1) and threshold two (t2). Pixels greater than t1 refer to solid particles and were 

rendered with white color during segmentation. Pixels less than t2 refer to air pixels and were 

rendered black during segmentation. Any pixels between t1 and t2 refer to water pixels and were 

colored gray. Once a technique chose the pixel values yielding the optimal thresholds, three-

phase segmentation was performed, and the void ratio and degree of saturation were calculated 

from the segmented images. Void ratio was determined by dividing the number of void pixels by 

the number of solid pixels. Degree of saturation was determined by dividing the number of water 

pixels by the number of void pixels, expressed as a percentage. Since the scanned images 

represent a three-phase system, void pixels consist of water and air pixels.  

Otsu (1979) proposed one of the oldest and most widely used global thresholding 

techniques, where an optimal threshold value is selected as the pixel value located at a sharp 

valley between peaks representing the objects and background of an image’s gray-level 

histogram (Otsu 1979). The basis of this technique separates the two classes by minimizing 

within-class variance or maximizing between-class variance for optimal threshold selection. In 

other words, the optimal threshold value is the pixel value that results in the minimized 

summation of the foreground and background spreads (Sahoo et al. 1988).  

Equations 1-4 are used for Otsu’s (1979) three-phase method, where the optimal 

threshold values (i.e., t1 and t2) are taken as the pixel values yielding the maximum value of 

Equation 4. Note that these four equations are first applied to the entire range of pixels 

represented by the gray-level histogram to obtain threshold one. Threshold two is then 
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determined by applying the same four equations, but this time to a refined histogram ranging 

from the smallest pixel value to the value of threshold one.  
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In the above equations, m is the highest possible pixel value in an image (here, since 8-bit 

images are processed in MATLAB, the highest possible value is 256); i represents a pixel value 

within the range of one to m; f represents the individual pixel frequencies; mean, meanli, and 

meangi represent the mean of an image’s pixel intensities ranging from one to m, one to t-1, and t 

to m, respectively; t refers to the optimal threshold value of either t1 or t2. 

As with the previous method, the iterative Otsu method calculates threshold one (t1) with 

Equations 1-4. The initial value for threshold two (t2) is calculated with Equations 5-7. The 

reason for expanding Otsu’s (1979) three-phase method into the iterative Otsu method is because 

the procedure followed for finding the threshold two value through Otsu’s (1979) three-phase 

method does not necessarily result in the optimal value. The usage of Equations 8-10 determines 

a threshold value referred to as threshold new (tnew). Equations 8-10 are then used again in a 

loop (threshold new is assigned as threshold two) and the loop terminates once the value of 

threshold new is within two gray-level pixel values of the previous iteration. Once this criterion 

is met, the threshold new values will be assigned as the optimal value of threshold two.  
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Equations 11-12 represent the refined statistics-based method where the optimal values 

for threshold one and two are determined for extracting three phases of a partially saturated 

granular media by assuming that the thresholding values are located within unknown numbers of 

standard deviation from the left and right of the mean pixel intensity values. This proposed 

method follows the concept that numerous distributions have a tendency to follow the Dirac delta 

function with the peak located near the mean pixel intensity values (Arora et al. 2008). The mean 

(μ) and standard deviation (σ) of the frequencies of all of the pixels in the image are determined. 

As mentioned in the work of Arora et al. (2008), many images contain normally distributed 

histograms. An estimation of such a histogram is a Gaussian distribution. Such histograms have 

high frequency values concentrated around a certain value (i.e., the mean pixel intensity value). 

Also, on a visual standpoint, it is much easier to distinguish objects from the background at 

intensity values near the mean. However, not all images have histograms with normal 

distributions. Fitting parameters, k1 and k2, are then utilized to provide effectively segmented 

images with asymmetric or skewed histograms. Through alteration of the fitting parameters, the 

concepts applied for normally distributed histograms adapt to non-uniform distributions.   
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Arora et al. (2008) provides similar equations to those in Equations 11-12. However, the 

methodology of that work tries to find two or more thresholding values to represent an image 

with multiple shades of intensity. Here, the three different phases of partially saturated granular 

geomaterials are to be accurately captured, which implies the usage of two thresholding values 

and imposes a trial-and-error approach. Arora et al. (2008) chose a value of one for both k1 and 

k2 for simplicity. The images used in that study were random (e.g., woman, peppers, jet, house). 

The proposed method does not provide successful segmented images for the geomaterials of this 

study when the values of k1 and k2 are equal to one. By adjusting these parameters, it is seen 

that the method is more sensitive to the value of k1 than the value of k2. A trial-and-error 

process was implemented to search for k1 and k2 values to obtain a segmented image that 

effectively captures all of the portions of the raw image. For the geomaterials used in this study, 

it is recommended that k1 range from zero to two and that k2 range from zero to three, while 

ensuring that k2 is always greater than k1. These conditions for the fitting parameters vary 

depending on the type of images being analyzed. Overall, the proposed method provides a faster 

processing time than both the Arora et al. (2008) method and Otsu’s (1979) three-phase method 

and superior thresholding values compared to Otsu’s (1979) three-phase method. 

The proposed method utilizes modified-statistical information, in comparison to the 

Arora et al. 2008, to provide higher-quality segmented images and faster processing time. The 

key difference in the image segmentation step between these two methods is that the Arora et al. 

2008 method was tested on generic images whereas the proposed method was specifically 

created for analyzing various geomaterials. As previously mentioned, the algorithm proposed by 

Arora et al. (2008) is capable of finding multiple thresholding values (as many as the user 

desires) to apply for image segmentation. However, in the presented work, it is specifically 



12 

shown that modifying the Arora et al. (2008) algorithm leads to more reliable thresholds for 

three-phase geomaterials. In contrast to the Arora et al. (2008) method, a sensitivity analysis was 

conducted on the images of the geomaterials used in this study to recommend a range of values 

for the fitting parameters, k1 and k2. Adding restrictions to these values can significantly reduce 

processing time, lead to more accurate threshold selection, and improve segmentation. 
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Results and Discussion 

The three thresholding techniques described in the preceding section were applied to X-ray CT 

images obtained for two different partially saturated specimens made out of silica sand and glass 

beads. For presentation purposes, and for comparison of the performance of each thresholding 

technique, the first image slice of the image set for each specimen was used.  

A standalone executable software program, with a graphical user interface (GUI) and 

embedment of the aforementioned techniques, was developed and used to run image analyses. In 

addition to its user-friendly environment, this application was packaged in a way so that 

MATLAB© software would not be required to perform the analyses. Before segmenting an 

image, it is necessary to ensure the raw images are cropped into an exact area-of-interest (AOI). 

For the images analyzed here, since the cross-sectional area of the scanned specimens was 

circular, all images needed to be cropped using a circular AOI window. That way, pixels that 

were not in the AOI would not be included in the statistical analysis. Otherwise, the calculated 

values for void ratio and degree of saturation would suffer from significant errors.  
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Codes can be written to perform either automatic or manual cropping. Automatic 

cropping has proven to be undependable, due to being greatly affected by the conditions in which 

a specimen is scanned and how the scanned images are rendered. For example, an X-ray CT 

system may include a specimen’s container during scanning, and a scale representing particle 

sizes might be placed on image slice renderings. Automatic cropping procedures attempt to 

locate the boundaries of a specimen based on pixel information and will incorrectly assume that 

the cropped boundaries include portions of the container and the scale. This occurrence also 

holds true if the specimen is not centered during imaging. The standalone software allows users 

to draw the cropping window on top of the opened X-ray image and save it. The same crop 

window can then be used to crop all of the remaining images.   

The silica sand specimen had an original and cropped diameter of 6.35 mm and was 

newly prepared in a laboratory setting. Ninety image slices were obtained for this specimen 

through X-ray CT scanning. In order to quantitatively verify the accuracy of the results of the 

three techniques, the void ratio and degree of saturation for this specimen were also determined 

with the image processing software, Image-Pro© (Image-Pro Plus). These values were found to 

be 0.66 and 37.71%, respectively. Fig. 2 shows the first silica sand image slice with the applied 

manual crop as displayed in the standalone software developed as part of this study.  

 

FIG. 2 First cropped image slice of a partially saturated silica sand specimen  
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FIG. 3 Partially saturated silica sand results of thresholding techniques (Displayed image slice 
segmented with Otsu’s (1979) three-phase method) 

Fig. 3 represents the quantitative results from the applied thresholding techniques. The 

void ratio and degree of saturation of the specimen, and average values of threshold one and 

threshold two for the techniques are displayed in the figure. The values of threshold one and 

threshold two for the first image slice are also provided for each technique. The raw and 

segmented X-ray CT images of the first slice are displayed together with its corresponding gray-

level histogram. In this specific case, Otsu’s (1979) three-phase segmentation technique was 

applied. Fig. 4 presents the segmented images for the same image slice when different 

thresholding methods were applied. 

Fig. 4 shows that Otsu’s (1979) three-phase method, the iterative Otsu method, and the 

refined statistics-based method calculated void ratios of 0.88, 0.88, and 0.67, respectively. The 

two Otsu-based methods produced the same average threshold one value of 172. In this context, 

“average” refers to the average of threshold values calculated for all images in the set. As a 
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result, Otsu’s (1979) three-phase method and the iterative Otsu method yielded the same number 

of solid pixels, thus explaining the same void ratio value between these methods. The three 

methods had average threshold two values of 151, 109, and 88, respectively. The value for the 

degree of saturation varied with threshold two due to the degree of saturation being a relationship 

between water and void pixels. Specifically for the Otsu-based methods, due to the number of 

solid pixels remaining the same, a lower threshold two value resulted in a higher degree of 

saturation and vice versa. The degrees of saturation for Otsu’s (1979) three-phase method and 

the iterative Otsu method were determined as 16.94% and 41.45%, respectively. Quantitatively, 

these methods overestimated void ratio. This led to the solid particles in Figs. 4a and 4b being 

slightly too eroded. Otsu’s (1979) three-phase method greatly underestimated the degree of 

saturation with more than 50% error, as compared to the degree of saturation obtained from 

Image-Pro© (visible in Fig. 5a). The iterative Otsu method slightly overestimated the degree of 

saturation, compared to Image-Pro, by approximately 10%. However, as observed in Fig. 4b, the 

segmented silica sand specimen has portions containing water not appearing in the original 

image slice or portions lacking water and thus containing more voids.  

 
(a) (b) (c) 

FIG 4 Segmented images of a partially saturated silica sand slice: (a) Otsu’s (1979) three-phase 
method, (b) iterative Otsu method, (c) refined statistics-based method 

On average, the refined statistics-based method had the smallest threshold two value and 

a degree of saturation value of 39.35%. The k1 and k2 parameters for this method were chosen 
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as 1.9 and 2.5, respectively. A trial-and-error process was utilized to obtain parameters that 

resulted in segmented images which effectively captured the three phases of the raw images. For 

this method, the average value of threshold one was found to be 158, indicating that more solid 

pixels and fewer void spaces were captured in the segmentation. By comparing the results of 

Figs. 4a-4c, it is apparent that Fig. 4c accurately contains more bridges of water between the 

solid particles and fewer voids within the solid particles, as seen in the original slice (Fig. 2). 

Quantitatively, the void ratio and degree of saturation results of the proposed method are very 

accurate to the results of Image-Pro, with approximately 1.52% and 4.35% error, respectively. 

The effectiveness of the proposed method was tested against the Arora et al. (2008) method 

while qualitatively keeping the segmentations the same (Fig. 5). Note that the values of k1 and 

k2 differ between the methods since the role of these parameters in the algorithms are not the 

same. The proposed method was found to have significantly faster processing time than both the 

method of Arora et al. (2008) and Otsu’s (1979) three-phase method, as shown in Table 2. For 

these reasons, the proposed method proved to be superior to the Arora et al. (2008) method. In 

conclusion, the segmentation of the silica sand specimen was best captured by the refined 

statistics-based method, both qualitatively and quantitatively.    

 
(a) (b) 

FIG. 5 Segmented images of a partially saturated silica sand slice: (a) Arora et al. (2008) 
method, (b) refined statistics-based method 
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TABLE 2 Processing time comparison for the silica sand specimen 

Method Processing 
time (s) 

Percent decrease 
Arora et al. 

(2008) to refined 
statistics-based) 

Percent decrease 
Otsu (1979) to 

refined statistics-
based) 

Arora et al. (2008) 
(k1=0.62, k2=3.85) 

 
5.79 

 
 

70.12% 

 
 

70.63% Otsu (1979) three-phase  5.89 
Refined statistics-based  

(k1=1.9, k2=2.5) 
 

1.73 

The glass bead specimen had an original and cropped diameter of 10 mm; ninety image 

slices, the first of which is depicted in Fig. 6, were obtained for this specimen through X-ray CT 

scanning, as with the silica sand specimen. Fig. 7 provides the quantitative results of the applied 

thresholding techniques (first image slice used for calculating t1) and the segmentation of the 

first image slice with Otsu’s (1979) three-phase method applied. Lastly, Fig. 8 presents the 

segmentation of the first glass bead image slice per thresholding technique. The Image-Pro void 

ratio and degree of saturation values were found to be 0.64 and 43.49%, respectively. 

Following the same algorithmic trend as observed with the results of the silica sand 

specimen, Otsu’s (1979) three-phase method and the iterative Otsu method yielded the same void 

ratio of 0.85 and average threshold one value of 159. Respectively, the degrees of saturation 

were 14% and 15.26%. By analyzing Figs. 8a-8b, the segmentations failed to capture the 

majority of the water pixels seen in the original slice. This is due to the methods determining 

threshold two values that were too high. A higher threshold two-value results in a segmented 

image containing fewer water pixels and more air pixels, thus providing a lower degree of 

saturation.  
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FIG. 6 First cropped image slice of a partially saturated glass bead specimen 

 
FIG. 7 Partially saturated glass bead results of thresholding techniques (Displayed image slice 

segmented with Otsu’s (1979) three-phase method) 

 
(a) (b) (c) 
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FIG. 8 Segmented images of a partially saturated glass bead slice: (a) Otsu’s (1979) three-phase 
method, (b) iterative Otsu method, (c) refined statistics-based method 

Even though the iterative Otsu method did a slightly better job at capturing the water 

pixels than Otsu’s (1979) three-phase method, the degree of saturation was still approximately 

three times smaller than the Image-Pro value. The void ratio and degree of saturation for the 

refined statistics-based method, with k1=1.35 and k2=1.75, were 0.74 and 43.64%, respectively. 

For this method, the average values of threshold one and threshold two were 141 and 50, 

respectively. The proposed method’s average threshold two value is more than two times smaller 

than those of the two techniques based on Otsu (1979). This decrease led to significantly more 

water pixels being captured, as visible in Fig. 8c. Quantitatively, the degree of saturation of the 

proposed method was very accurately determined, in comparison to the Image-Pro value, with 

approximately 0.34% error. As with the silica sand specimen, the superiority of the refined 

statistics-based method to the Arora et al. (2008) method was evaluated. Once again, the 

processing time for the proposed method was much faster (Table 3) with the segmentation of the 

glass bead specimen remaining the same between the Arora et al. (2008) and proposed methods 

(Fig. 9). Overall, the segmentation of the glass bead specimen was best captured by the refined 

statistics-based method. 

TABLE 3 Processing time comparison for the glass bead specimen 

Method Processing 
time (s) 

Time reduction by 
Refined-statistics from: 

Arora et al. (2008) Otsu (1979) 
Arora et al. (2008) 
(k1=0.19, k2=4.55) 6.21 

84.54% 80.49% Otsu (1979) three-phase 4.92 
Refined statistics-based 
(k1=1.35, k2=1.75) 0.96 

 



20 

 
(a) (b) 

FIG. 9 Segmented images of a partially saturated glass bead slice: (a) Arora et al. (2008) 
method, (b) refined statistics-based method. 

Table 4 lists the final results of the refined statistics-based method for the partially 

saturated granular media. Tables 5-8 provide statistical results for the three methods applied to 

each geomaterial. The proposed method’s results for the silica sand specimen showed that there 

were moderately low percent errors of 1.52 and 4.35 for void ratio and degree of saturation, 

respectively, in comparison to the values provided by Image-Pro. Interestingly, the results of the 

glass bead specimen showed that the percent error associated with void ratio was a high 15.63 

and the percent error associated with the degree of saturation was a very low 0.34.  

As indicated previously, threshold one separated solid pixels from water and air pixels 

and threshold two separated water pixels from air pixels. The percent errors for the silica sand 

specimen suggested that the fitting parameters, k1 and k2, for the refined statistics-based method 

had a greater influence on threshold two and had a low effect on threshold one. On the other 

hand, the chosen fitting parameters for the glass bead specimen had a great influence on 

threshold one and not so much on threshold two.  

These findings led to the hypothesis that the proposed refined statistics-based method was 

more accurate at determining one geomaterial property rather than multiple properties (e.g., void 

ratio and degree of saturation). More images of partially saturated granular media would have to 

be analyzed to test the validity of this hypothesis. Regardless, the freedom and flexibility of 
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choosing fitting parameters proved this method’s superiority to the other two Otsu-based 

methods. Being able to apply a range of fitting parameters allows the proposed method to be 

adaptable to a wide range of images. 

TABLE 4. Refined statistics-based method results for the partially saturated granular media 

Granular 
media 

Segmentation 
technique 

Void 
ratio 

Degree of 
saturation 

% 
error 
(void 
ratio) 

% error 
(degree of 
saturation) 

Silica sand 
Refined-statistics  
(k1=1.9, k2=2.5) 0.67 39.35% 1.52% 4.35% 

Glass bead Refined-statistics 
 (k1=1.35, k2=1.75)  0.74 43.64% 15.63% 0.34% 

TABLE 5. Void ratio statistical results and comparisons for the silica sand specimen 

Geomaterial Segmentation 
technique 

Void 
ratio Error Standard 

deviation 
Coefficient of 
variation (CV) 

Silica sand 

Otsu’s (1979)  0.88 0.045 

0.099 12.22% 
Iterative Otsu  0.88 0.045 

Refined-statistics 
(k1=1.9, k2=2.5) 0.67 0.0001 

Image-Pro 0.66 0.000 

TABLE 6. Void ratio statistical results and comparisons for the glass bead specimen 

Geomaterial Segmentation 
technique 

Void 
ratio Error Standard 

deviation 
Coefficient of 
variation (CV) 

Glass bead 

Otsu’s (1979)  0.85 0.044 

0.052 6.38% 

Iterative Otsu  0.85 0.044 
Refined-statistics 

(k1=1.35, 
k2=1.75) 

0.74 0.01 

Image-Pro 0.64 0.000 

TABLE 7. Degree of saturation statistical results and comparisons for the silica sand specimen 

Geomaterial Segmentation 
technique 

Degree of 
saturation Error Standard 

deviation 
Coefficient of 
variation (CV) 

Silica sand 

Otsu’s (1979)  16.94% 0.043 

0.11 34.05% 

Iterative Otsu  41.45% 0.0014 
Refined-
statistics 
(k1=1.9, 
k2=2.5) 

39.35% 0.00027 

Image-Pro 37.71% 0.000 
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TABLE 8. Degree of saturation statistical results and comparisons for the glass bead specimen 

Geomaterial Segmentation 
technique 

Degree of 
saturation Error Standard 

deviation 
Coefficient of 
variation (CV) 

Glass bead 

Otsu’s (1979)  14.00% 0.087 

0.14 56.32% 

Iterative Otsu  15.26% 0.080 
Refined-
statistics 
(k1=1.35, 
k2=1.75) 

43.64% 0.000 

Image-Pro 43.49% 0.000 

Conclusions 

A refined statistics-based method was proposed and used for effective segmentation of three-

phase images of partially saturated granular geomaterials. Two other methods, namely the Otsu’s 

(1979) three-phase and the iterative Otsu, were utilized to test the performance of the proposed 

algorithm. Since these three techniques dealt with three-phase (solids, water, and air) image 

segmentation, two threshold values, threshold one and threshold two, were required for proper 

image segmentation. Therefore, pixels greater than threshold one were solid pixels, any pixels 

less than threshold two were air pixels, and all other pixels between the two threshold values 

were water pixels. The algorithms for the three thresholding techniques were coded into 

MATLAB© to ultimately determine index properties of the analyzed media, such as void ratio 

and degree of saturation. 

Otsu’s (1979) three-phase method was first evaluated as a thresholding option because it 

is one of the oldest, simplest, and most successful methods for determining automatic threshold 

values for different image types. An optimal threshold value was found by minimizing the 

within-class variance of the foreground and background classes of an image’s gray-level 

histogram. For the two geomaterials analyzed, this method yielded reasonable threshold one 

values but not so much for threshold two. Hence, the iterative Otsu method stemmed from Otsu’s 

(1979) three-phase method in an attempt to more accurately calculate threshold two. The 
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algorithm’s loop terminated once the threshold value was within two gray-level pixels of the 

previous iteration. 

Since the proposed method is a refinement of the Arora et al. (2008) method, the 

proposed method was found to require shorter processing time without diminishing segmentation 

quality. The percent errors associated with the silica sand specimen showed that segmentation 

results were more heavily influenced by threshold two than threshold one. The reverse was found 

to be true for the glass bead specimen. These findings suggested that the proposed method was 

more accurate at determining one geomaterial property rather than multiple properties.   

The refined statistics-based method proved to be a very successful technique for image 

segmentation. The technique allowed user input to adapt the algorithm to be more suitable for the 

image of focus. The freedom and flexibility of this algorithm confirmed the superiority of the 

proposed method to the techniques based on Otsu (1979). The conclusions about the proposed 

technique could very well contribute to advancements in the field of three-phase image 

segmentation of granular media in the near future.  
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