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ABSTRACT  
 
Previously, researchers have examined phase interactions in multi-phase systems such as 
geomaterials at different degrees of saturation. Some studies have measured the angle made by the 
solid-liquid and liquid-air interfaces using physical laboratory tests. The lack of technological 
advancements that enabled microstructural inter-phase examination has largely impeded results 
from such efforts. In addition, the measurement of contact angle has largely been dominated by 
user interference. Recent developments in image acquisition and associated advanced image 
processing platforms have enabled automated quantification of microstructural features. This 
study proposes two image-based contact angle-measurement approaches: the “liquid-pixel” and 
“regression” approaches. The study also investigates “center” identification for contact angle 
measurement. Statistical evaluation of the measurements is performed for both methods and the 
observed results are discussed. It is concluded that the “non-zero-intercept” approach, one 
variation within the regression-based techniques, gave the most reliable angle measurement.   
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INTRODUCTION 
 
The advent of microstructural imaging technologies such as industrial X-ray micro-CT and bench 
top synchrotron X-ray CT has facilitated the development of soil mechanics research at the pore-
scale. Microstructural examination of multi-phase media has benefited, in particular, from such 
advancements (Andrew et al. 2014; Manahiloh and Meehan 2015, 2016; Manahiloh and 
Muhunthan 2012; Wildenschild and Sheppard 2012).  

Hydraulic conductivity and suction have a dominant influence on multiphase flow in 
partially saturated media (Andrew et al. 2014). These macroscale parameters are in turn controlled 
by pore-scale topology, interfacial tension, and contact angle (Andrew et al. 2014). Contact angle 
has been defined as the angle measured from the liquid-solid interface to the liquid-air interface 
(Jury and Horton 2004), and it is believed to be an intrinsic property of any two contacting phases 
in a solid-liquid-air system (Lu and Likos 2004). Following Jury and Horton’s (2004) definition 
of contact angle and accounting for solid particle and liquid phase curvature for unsaturated soil 
systems, the contact angle can be defined as the angle between a lines tangent to the solid-liquid 
and a liquid-air interfaces. Generally speaking, contact angle is a widely used measure of the 
wettability of surfaces (Anderson 1986).  

A review of available literature reveals a number of contact angle measurement techniques. 
Some commonly utilized approaches include the dynamic sessile drop method (Dickson et al. 
2006; Espinoza and Santamarina 2010), the captive bubble method (Chiquet et al. 2007), and 
methods that use micro-model studies (Chalbaud et al. 2009). Manahiloh and Meehan (2015, 2016) 
highlighted that the utility of such measurement methods is limited to cases where the solid is a 
flat plate. For the majority of geomaterials that come in contact with water, nonlinear interfacial 
surfaces dominate the solid-liquid interactions. In an attempt to develop a contact angle 
measurement method that could work for curved interfaces, Manahiloh and Meehan (2015, 2016)  
used an image-based angle measurement approach and demonstrated this direct technique on a X-
ray micro-CT images of an unsaturated granular specimen comprised of spherical glass beads.  In 
their work, the contact angle quantification was not automatic. Instead, a series of user-influenced 
image post-processing algorithms were employed to draw tangent lines for the solid-liquid and 
liquid-air interfaces and to measure the angles in between.  

In this work two angle measurement approaches are developed and used to compute 
interphase contact angle from images of an unsaturated granular media. The advantages and 
disadvantages of each method are discussed and practical recommendations, for the most 
appropriate use of the methods, are made. 
 
MATERIALS AND METHODS 
 
Materials. A three-phase microstructural image of an idealized unsaturated granular media is 
segmented into pixels containing three gray-values, as shown in Figure 1 and used for analysis. 
The unsaturated granular media is assumed to idealize a random mixture of granular solid particles, 
liquid, and gas phases. Image segmentation is one of the key steps in image processing. It uses 
predefined algorithms to cluster gray values of pixels into finite number of classes. In the three-
phase segmented image shown in Figure 1, the dark black, gray, and white pixels represent the 
solid, liquid, and gas phases of the idealized unsaturated granular media, respectively.  
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Figure 1. Segmented image of an idealized unsaturated granular medium. 

Establishing the “Center” for Contact Angle Measurements. The first step in estimating the 
interfacial contact angles is to identify a “center” for each contact point. The term “center”, in this 
study, refers to the coordinates of the points where three phases meet in a given segmented image. 
A given two-dimensional (2D) image (e.g., Figure 1) may contain multiple center points, 
distributed over the area of the image. In order to estimate the coordinates of all the centers, 
algorithms that follow certain criteria need to be establish. One simple way to identify a center is 
to define a two-by-two pixel “window” (W) and evaluate the gray values of all pixels (P) of the 
image as the window scans the entire image. For example, for a pixel located on row i and column 
j of the image matrix, this window (W) can be written as: 
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As the “window” moves throughout the image, if the frequency of the gray values read at 
all phases are found to be equal or greater than one, the center coordinates of such a window will 
be taken as the location of one “center” in the image.  

 In order to find the “centers” in an image, one needs to use two numbering systems (one 
counting pixels in the image and the other counting the number of corners) and a defined 
coordinate system. Figure 2 shows the respective pixel and corner numbers, and the coordinates 
of each for a three-by-three image matrix. In the figure, pixels and corners are indicated by the 
letters P and E, respectively. Figure 2 also shows that, for m rows and n columns of pixels, there 
are m-1 rows and n-1 columns of corners and each corner is surrounded by 4 pixels. Following our 
simplistic definition of a “center” as the corner at which three different gray-valued pixels meet, 
in Figure 2, the corner E(2,2) with coordinates: [x, y] = [2.5, 2.5] qualifies for a center. The simplest 
way of finding this corner is to evaluate all two-by-two matrices (i.e., “windows”) and find the 
matrices for which the frequency for all phases are equal to or greater than one. It should be noted 
that in Figure 2, E(2,2) is the estimated location of a center, and the exactness of it being the real 
center is restricted by the quality of the image. In this regard, low-resolution images could lead to 
identification of erroneous centers. The higher the resolution of the image, the higher the accuracy 
of the center identification process that is performed. 

In order to reduce computational time, the image processing algorithm could be instructed 
to not evaluate submatrices for windows that could be written as W=λnI, with λ being one of the 
pixel values assigned to each phase and I being a two-by-two identity matrix. 

Any disturbance (noise) resulting from image segmentation could be another source of 
error in center determination. Depending on the technique that is adopted for image segmentation, 
some degree of disturbance is introduced near the boundaries close to the phase-separation 
thresholds. Such an error becomes more pronounced at corners where the three-phases meet (i.e., 
the centers). Such a point is shown in Figure 3 (look at the central square with a corner point shown 
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with a dot). The profile of the solid-liquid boundary gets noisy upon segmentation, especially near 
the three-phase junction point (i.e., the center).  

Another source of error in finding the center is the possibility of finding more than one 
center point for a single contact angle. Figure 4 shows two cases in which the algorithm detects 
more than one center point. Such a problem could be solved in two ways. In the first method, a 
single center can be obtained by averaging the coordinates of the multiple centers obtained for 
immediate-neighbor windows. The advantage of this method is that it is quick. In the second 
method, the last liquid pixel that is attached to the solid phase is the target pixel. Once the centers 
that pertain to a single contact point are detected, the histogram of an n-by-n submatrix will be 
identified for each of the centers. Then the corner surrounded by pixels with the least liquid-phase-
frequency is selected as the correct center. The value of the integer n depends on the rate of 
disturbance in the window near the center. For example: in Figure 4(a), n = 2 and in Figure 4(b), 
n = 4 to enable detection of the proper center. 

 

 

 
Figure 2. Numbering systems and 

coordinate system for a schematic image. 
 Figure 3. Noise (disturbance) during 

segmentation. 
 

 
 

Figure 4. Multiple centers found for a single contact angle. 
 

CONTACT ANGLE MEASUREMENT METHODS 
 

“Liquid-Pixel” Approach (Method 1): Having determined the center points for contact angle 
measurement, one needs to develop an automated method to estimate contact angle. One simple 
method is to count the liquid pixels (LP) that are located at a radial distance r from the center point. 
This method, however, becomes ineffective for small values of r. For example, for r = 1, the 
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contact angle will always be estimated as π/2. In order to avoid such an error, the radial distance 
at which the liquid pixel counting is done needs to be larger.  

The coordinates of a point on the circumference of a circle, with radius r and center 
coordinates (Xc, Yc), can be defined by the following expressions: 

cos( )
sin( )

c

c

X r X
Y r Y

α
α

= × + 
= × + 

 (2) 

where, α is the angle subtended by a line that connects the “center” to a “scanning” point and a 
horizontal line. Xc and Yc can be estimated by one of the two methods described in the previous 
section. The “scanning” point is a point on a circle of radius r, on which pixel values are evaluated 
as the image processing algorithm “scans” each pixel and evaluates its gray-value. The pixel value 
for the scanning points located on the circle is obtained for increments of

(degrees) 360 / Nαα∆ = . 
Here, Nα represents the number of scanned points on the circumference of the circle and its value 
controls the accuracy of the angle measurements. For Nα = 360, the image processing algorithm 
scans points at a one degree interval. The higher the value of Nα , the more scanning points that 
are utilized and the higher the accuracy of the angle measurement. In this study, a value of Nα = 
10,000 was utilized, which means that 10,000 points are scanned over the circumference of the 
circle of interest. Once all scanning is done for the points of interest, the algorithm counts the 
number of points with liquid gray values (NLP). The value of the contact angle (θ ) is then estimated 
using the following expression: 

( )
2LP

rad
N

Nα

πθ ×
=  (3) 

For a circle with r = 5, Figure 5 shows the above procedure while scanning is proceeding 
(5a) and after the scanning is completed (5b). For the image shown in Figure 5, the procedure 
discussed above yields a contact angle value of θ(rad) = (1191× 2π)/10000 = 0.2382 π, which is 
equivalent to 42.88˚. This approach may not be effective when there is a lack of a smooth transition 
between pixel boundaries, such as when r is very small. As an example, Figure 6 compares the 
contact angle values computed for r = 4.5, r = 5.5, and the average of contact angles calculated 
for 20 concentric circles with radii between 5 and 10, which yield measured contact angles of 
37.26°, 44.06°, and 39.65°, respectively. 

 
Figure 5. “Scanning”: (a) In progress, and (b) Completed. 

It is evident, from the angle measurements shown in Figure 6, that the contact angle that is 
obtained varies as a function of the size of the circles. This contact angle is also dependent on the 
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location of the center. The location of the center, in turn, was shown to depend on the method of 
center selection. A separate analysis was performed to check the sensitivity of the obtained contact 
angle values to changes in center location (Figure 7). This figure shows angle values obtained for 
different radii and different methods of finding the center. It can be inferred from Figure 7 that the 
contact angle is sensitive to both the size of the circle and the approach adopted in locating the 
center.  In Figures 7 (a-c), the center was obtained by averaging the coordinates of the two corners 
where three-phases meet. In Figures 7(d-e), the center was obtained by looking for the corner of 
the last liquid-pixel. In general, it was observed that the corresponding contact angle measurements 
decreased when the center was obtained by the “liquid-pixel” approach. 
 

 
Figure 6. Measuring contact angle: (a) r = 4.5, (b) r = 5.5, and (c) r = the average of contact 

angles calculated for 20 circles with radii between 5 and 10. 

To summarize, two important factors influence the values for contact angle. One is the 
disturbance (noise) introduced to center points during the image segmentation. The second factor 
was the size (radius) of the circle selected for contact angle evaluation. On one hand, there is a 
legitimate need for the circle to be close to the center point. On the other hand, the resolution of 
images may not be high enough to allow the higher values of r (i.e., more pixels fit a given circle 
when image resolution is high, resulting in large r as compared to the r associated with the same 
area in low resolution images). For low-resolution images, the pixelation that occurs in the 
boundaries of the phases, especially at the three-phase corners, prevents the identification of the 
smooth boundaries for image processing purposes. 
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Figure 7. Calculating contact angle: (a and d, r = 5), (b and e, r = 10), and (c and f, 5≤r≤  10). 

 
 “Regression” Approach (Method 2): Low-resolution images necessitate algorithmic definition 
of smooth phase boundaries in areas that are close to the “center”. In order to do this, two separate 
linear regressions could be performed, one for a set of points located at the liquid-gas boundary, 
and another for a set of points located at the solid-liquid boundary.   

The areas of interest (AOI) on which contact angles are measured are very small compared 
to the dimension (size) of the whole image. This vast size difference might result in a false fit in 
the linear regression that refers to a global coordinate system (Figure 8). Therefore, it becomes 
necessary to define a local coordinate system for each identified center point. The local coordinates 
for the nth point on the phase transition boundary can be obtained by subtracting the global 
coordinates of the center from the global coordinates of each point. Figure 8 conceptually 
illustrates the idea of global and local coordinates (obtained with Equation 4). 

n n c

n n c

x X X
y Y Y

= − 
= − 

 (4) 

The coordinates of the points used for linear regression can be obtained by looking at 
circles with different radii. The locus of the points located on the circumference of the circles with 
different radii are scanned with small angular increments using Equation 3. Two different linear 
regression methods can then be applied to find the equation of the smooth line tangent to the 
boundaries of phases at a given contact point.  

 
Figure 8. Conceptual illustration of the global and local coordinates. 
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Zero-Intercept Approach. The first regression approach is based on the assumption that the center 
point is precisely identified and the disturbance due to image segmentation is negligible. Under 
such circumstances, the best-fit line should pass through the center point. Therefore, the linear 
regression is performed with a zero-intercept assumption (Note: This method is referred to here as 
the “zero-intercept” approach). Then, with the zero-intercept assumed, two regression lines will 
be fit to the points making up the solid-liquid and liquid-air boundaries. The equations of these 
fitting lines take the following forms, respectively. 

In Equation 5, the indices S-L and G-L indicate the boundaries between solid and liquid, 
and liquid and gas phases, respectively. In these equations, m and n are the slopes of the respective 
lines obtained by linear regression. 
 

S L S LY mX− −=  (5) 

G L G LY nX− −=  (6) 
Non-Zero-Intercept Approach. The second regression approach accounts for the image being low-
resolution and for the introduction of considerable “center” noise during image segmentation. In 
this case, the estimated coordinates of the center will be used as a reference to the coordinates of 
the regression points (i.e., they will serve as the origin of the local coordinate system) and won’t 
be considered as a regression point. In this approach, the fit is not forced to pass through the origin 
(in this case the center) and the associated regression may result in lines that have a slope and a 
non-zero y-intercept. The equations for the two lines (i.e., the solid-liquid and liquid-air interface 
lines), can be written as shown in Equations (7) and (8). 

0( )S L S L S LY mX Y− − −= +  (7) 

0( )G L G L G LY nX Y− − −= +  (8) 

Even though there are non-zero intercepts here, the intercepts don’t take a role in obtaining 
the angle formed between two lines. In order to find the angle between two lines, the only required 
parameters are the slopes of the lines. Therefore, for both approaches, the angle formed by the 
intersection of the two lines (i.e., the contact angle) can calculated as: 

arctan
1

m n
m n

θ −
=

+ ×
 (9) 

In order to examine whether any disturbance has occurred for the contact point or not, one 
can compare the coefficient of determination (R2) for both the “zero-intercept” and “non-zero-
intercept” approaches. Figure 9 compares the contact angle values obtained for two different center 
points using the two regression approaches. The results are interpreted by examining their 
respective coefficients of determination. Nine circles with different radii from 2 to 10 have been 
used to obtain the regression data. 

The results show that the value of R2 is higher for the “non-zero-intercept” approach. This 
implies that the center needs to be eliminated from the linear regression. The relatively lower R2 

values obtained for the “zero-intercept” approach show that the disturbance to the center point due 
to image segmentation is significant and affects the contact angle results. Similar observations 
were made when the two alternative approaches were applied to other contact angle measurements. 
Table 1 summarizes five angle measurements that were performed on digital images using the 
“liquid-pixel” and “the regression-based” approaches. For the “liquid-pixel” approach, 
measurement of angles was made by considering r = 5, 10, and the average of angles measured on 
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20 equally spaced circles with radii between 5 and 10. For the “regression-based” approach, the 
“zero-intercept” and the “non-zero-intercept” approaches were employed. 

The results in Table 1 show that when r values are small, the effect of pixelation increases 
the error in measured results using the “liquid-pixel” method. Therefore, in such instances, this 
method could become unreliable. The values of the contact angle for a “liquid-pixel” approach 
with r = 10 and the “regression-based” approach with “zero-intercept” are very close to each other. 
However, the coefficient of determination for “zero-intercept” regression is lower than that of 
“non-zero-intercept”. Therefore, the “non-zero-intercept” regression seems to be the most reliable 
option for contact angle calculation. The lower angle values obtained in the “non-zero-intercept” 
regression approach indicate that the contact angles were measured near the center and the effect 
of disturbance near the center, which is caused by image segmentation, has been eliminated. 
 

(a) (b)

2 (G-L)=0.73447R
2 (S-L)=0.83907R

Zero-Intercept Nonzero-Intercept

2 (G-L)=0.8632R
2 (S-L)=0.84086R

2 (G-L)=0.37388R 2

2

(G-L)=0.5104
(S-L)=0.92863

R
R

64.47θ = 56.34θ =

29.26θ = 32.15θ =

 
Figure 9. Regression-based contact angle measurements for two different center points: (a) 

“zero-intercept” approach, and (b) “non-zero-intercept” approach. 
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Table 1. Comparison between Different Approaches 

No. 
“Liquid-Pixel-Based” Approach “Regression-Based” Approach 

r = 5 r = 10 Average θ for 20 
circles (5<r<10) Zero Intercept Nonzero 

Intercept 
1 41.58 35.67 35.9 36.6 30.6 
2 64.65 58.86 62.6 61.7 57 
3 29.55 36.43 37.9 37.9 33.4 
4 53.14 47.37 46 46.7 39.5 
5 77.97 60.01 63.4 63.8 52.2 

CONCLUSIONS 
Two novel methods of contact angle measurement were proposed. The first method, which is 
called a “liquid-pixel” approach, counts the liquid pixels that lie on a scanning circle of radius r 
and uses these values to calculate the contact angle. It was highlighted that such a technique 
depends on the ease of finding the center and the radial distance where liquid pixels were counted. 
Further, it was discussed that the center is prone to image noise, which is common for images that 
have been subjected to segmentation. Two regression-based angle quantification methods were 
introduced. It was shown, with statistical evidence, that the “non-zero-intercept” approach is 
superior to the “liquid-pixel” and “zero-intercept” regression approaches.   
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