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Abstract

Episodic memory is supported by a distributed network of brain regions, and this complex

network of regions does not operate in isolation. To date, neuroscience research in this area

has typically focused on the activation levels in specific regions or pairwise connectivity

between such regions. However, research has yet to investigate how the complex interac-

tions of structural brain networks influence episodic memory abilities. We applied graph the-

ory methods to diffusion-based anatomical networks in order to examine the structural

architecture of the medial temporal lobe needed to support effective episodic memory func-

tioning. We examined the relationship between performance on tests of verbal and non-ver-

bal episodic memory with node strength, which indexes how well connected a brain region

is in the network. Findings mapped onto the Posterior Medial memory system, subserved by

the parahippocampal cortex and overlapped with findings of previous studies of episodic

memory employing different methodologies. This expands our current understanding by

providing independent evidence for the importance of identified regions and suggesting the

particular manner in which these regions support episodic memory.

Introduction

Converging evidence from both animal and human work suggests that episodic memory is

instantiated in the brain via a network of regions centered on the medial temporal lobe (MTL)

[1, 2], including the hippocampus and the parahippocampal, perirhinal, and entorhinal corti-

ces [1]. In addition, retrosplenial cortex is highly interconnected with MTL regions, and strong

evidence supports its critical role in episodic memory [3]. The prevailing model of episodic

memory involves two parallel pathways, each subserving different aspects of memory and each

facilitating communication between hippocampus and largely distinct sets of cortical associa-

tion areas [1, 4, 5]. In both pathways, the hippocampus is a point of convergence for different

types of contextual information about stimuli [2, 5]. The first pathway is referred to as the pos-

terior medial (PM) memory system, operates via retrosplenial and parahippocampal cortices,

and facilitates the flow of spatial information about the context of a stimulus [6]. The second

pathway is referred to as the anterior temporal (AT) memory system, operates via perirhinal

cortex, and facilitates the flow of non-spatial information about the attributes of a stimulus [6].
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Functional connectivity analyses centered on retrosplenial/parahippocampal cortex and peri-

rhinal cortex reveal that each are functionally correlated to distinct sets of neocortical associa-

tion areas [5].

Although much is known about the specific brain regions supporting episodic memory, far

less is known about how the connectivity level of these regions with the larger brain network sup-

ports episodic memory. Typical approaches involve examination of pairwise coupling (either

structural or functional) with relevant regions (e.g., hippocampus). However, this approach

does not capture the complex interactions that occur due to information exchange with multi-

ple brain regions. Therefore, examination of only individual paths will provide a fundamen-

tally incomplete picture. In contrast, methods like graph theory take the organization of brain

networks into account and can index the importance of a brain region for a particular aspect

of network processing [7]. For example, graph theory methods can quantify the extent to

which brain regions are well connected in the network and, thus, facilitate evaluation of how

this connectivity contributes to their influence on cognitive processes like episodic memory.

Recently, a number of studies have employed graph theory methods to examine how func-

tional networks relate to memory. For example, such methods have been used to provide evi-

dence for the importance of hippocampus and its role in functional networks supporting

episodic memory [8, 9]. In particular, right hippocampus exhibited greater centrality (i.e., net-

work importance) and communication efficiency during retrieval of vivid versus dim visual

memories [9], whereas left hippocampus exhibited significant reorganization of its connectiv-

ity profile between remembered and forgotten conditions [8]. The functional networks sup-

porting spatial and temporal memory retrieval have also been examined with these tools,

finding increased connectivity during successful memory retrieval [10]. Lastly, graph theory

methods have been used to examine functional network reorganization of the fronto-parietal

network during episodic memory with low and high cognitive control demands [11]. Results

revealed that cognitive control demands were related to differences in the level of network

reconfiguration that occurred between memory encoding and item recognition conditions.

Although this work has provided key insights into the network processes subserving episodic

memory, most of the extant work has examined only networks derived from functional covari-

ation during a task or at rest.

Key complementary information can be provided by the examination of structural net-

works based on white matter connectivity. Specifically, functional networks are constrained by

structural networks [12], and thus, structural networks reflect the capability of the network to

communicate. In addition, white matter networks will be more stable than the functional net-

works recruited on a given day [13], and thus may better reflect stable individual differences in

episodic memory ability. Furthermore, evidence suggests that changes in the microstructure

(i.e., fractional anisotropy) of white matter tracts, particularly the fornix, are associated with

changes in episodic memory [14]. Therefore, the application of graph theory to structural net-

works is likely crucial to developing a comprehensive understanding of the brain basis of epi-

sodic memory. Support for this assertion is evident in a study applying graph theory methods

to both functional and structural (derived from diffusion-weighted imaging) networks and

using repetitive transcranial magnetic stimulation (rTMS) to investigate the impact of prefron-

tal cortex (PFC) connectivity on episodic memory encoding [15]. Results revealed that the

impact of rTMS on functional connectivity depended on the level of structural connectivity,

with high structural connectivity associated with a larger magnitude of impact of rTMS on

functional connectivity. Although this study demonstrates the importance of examining struc-

tural networks for understanding memory, it focused primarily on PFC rather than the main

regions supporting episodic memory, namely the hippocampus and parahippocampal cortex.
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Thus, the structural network topology of the regions central to episodic memory remains

largely unexamined.

In the present study, we attempted to fill this gap in the literature by focusing on regions

known to be critical to episodic memory (i.e., MTL and retrosplenial cortex). Specifically, we

applied graph theory methods to structural brain networks (derived from diffusion-weighted

imaging) in order to elucidate how the level of structural connectivity in these nodes support

episodic memory. In particular, we examined node strength, which indexes first-order connec-

tivity of brain regions, thus reflecting the connectivity strength of a given brain region [16].

This property was chosen, because it is easily interpretable, has demonstrated utility in charac-

terizing network structure, and is appropriate to use with weighted networks. Additionally,

node strength is a fundamental property that greatly influences many other network measures

(e.g., clustering coefficient) [7], and thus, we chose to examine node strength to establish the

basic connectivity profile of MTL regions. An advantage of node strength over other metrics

with similar interpretations (e.g., node degree), in the context of weighted networks, is that

link weights are incorporated into the computation of node strength. Measures such as node

degree require binarization of the network, which requires the selection of a link threshold

(e.g., set links with weights above that threshold to 1, and below the threshold to 0). In the case

of the networks used in the present study, the selection of that threshold is arbitrary, and very

different results can emerge when different thresholds are used [17]. Thus, node strength is a

less biased metric when using weighted networks than node degree. We focused specifically on

retrosplenial cortex and MTL regions due to their core role in facilitating episodic memory.

Although neocortical regions contribute to episodic memory, they do so in arguably less cen-

tral ways as compared to MTL regions [18, 19] and are typically recruited under particular

conditions. For example, regions of PFC facilitate the recall of information in the presence of

interference or distraction [4]. Therefore, it is not clear that one would expect the structural

connectivity strength of neocortical regions to relate to episodic memory ability outside of

these conditions, and thus the focus of the present work is on the MTL/retrosplenial cortex.

For completeness, we have included supplemental analyses examining neocortical regions

identified using Neurosynth with the key term ‘episodic memory’ (see S1 and S2 Tables).

We examined how the connectivity strength of MTL regions related to performance on

both verbal and non-verbal measures of episodic memory via a series of robust regression

analyses. Both verbal and non-verbal measures of episodic memory were examined, because

different connectivity patterns may support different encoding and retrieval modalities. This

idea is supported by work indicating that the left and right hemispheres are more active during

verbal and non-verbal tasks of episodic memory, respectively [20]. Additionally, memory was

tested in different ways in each task: in the verbal task, participants identified previously pre-

sented stimuli and rejected foils, whereas in the non-verbal task, participants ordered stimuli

in the order in which they were presented. Thus, different regions may support accurate per-

formance on these two tasks. For example, perirhinal cortex of the AT memory system is typi-

cally not involved in episodic memory, but is associated with remembering the temporal order

of stimuli, and thus, may support performance on tasks requiring this information [21].

Regions in the MTL were examined, including the hippocampus, entorhinal cortex, three

parahippocampal areas (components of the parahippocampal cortex), presubiculum, and peri-

rhinal cortex [1]. Additionally, the retrosplenial cortex was examined, as it and the parahippo-

campal cortex are proposed to be key regions supporting episodic memory in the PM memory

system [6].

In summary, there is currently no clear understanding of how episodic memory emerges

from the structural connections of the MTL regions. Thus, we examined how the node

strength of each MTL region and retrosplenial cortex is associated with performance on two
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tasks that index episodic memory in order to gain insight into the network mechanisms sup-

porting such memory. We predicted that better performance on both episodic memory tests

would be associated with greater node strength for hippocampus, entorhinal cortex, parahip-

pocampal areas, retrosplenial cortex, and presubiculum. In addition, we predicted that better

performance on the non-verbal episodic memory test, in particular, would be associated with

greater perirhinal cortex node strength, given evidence that this region is active during tasks

requiring memorization and recall of the temporal order of stimuli.

Materials and methods

Participant data

We used data collected from 1,053 healthy participants [M age = 28.75, SD = 3.68; female = 571

(54.28%); White = 798 (75.86%), Black = 148 (14.06%), Asian/Pacific = 63 (5.98%), American

Indian/Alaskan = 2 (0.19%), Multiple = 26 (2.47%), Not reported = 15 (1.43%), Hispanic/

Latino = 88 (8.37%)] as part of the Human Connectome Project (HCP). Briefly, the HCP offers

a database of anonymous structural, diffusion, and functional MRI for research purposes [22].

We conducted secondary analysis on de-identified, open-access data after agreeing to the HCP

Open Access Data Use Terms. Written informed consent, including consent to share de-iden-

tified data, was acquired by the HCP and approved by the Washington University institutional

review board. One subject was excluded because connectivity could not be computed for a

number of ROIs as no streamlines were detected during tractography. Eleven participants did

not complete all tasks and were excluded, leading to a final n = 1,041.

Cognitive measures

Along with the memory tests focused on in the present work, measures of crystalized knowl-

edge and processing speed (see below) were used as covariates of no interest to ensure that

findings were not driven by variance related to these processes.

Verbal episodic memory. Verbal episodic memory was indexed by the Penn Word Mem-

ory Test (IWRD), which is part of the Penn Computerized Cognitive Battery. The task has

excellent reliability, as evidenced by the high internal consistency of the test, and construct

validity, as demonstrated by strong associations with well-established measures of episodic

memory [23, 24]. Participants were presented with a list of 20 words and instructed to memo-

rize them for a later test. Following the presentation of the target words, participants were iter-

atively shown 40 words, which included the 20 target words mixed with the 20 new words (i.e.,

foil). Target and foil words were matched for memory-related characteristics, including length,

frequency, concreteness, and imagery using Paivio’s norms [24, 25]. Participants decided

whether they had previously seen the word by choosing “definitely yes,” “probably yes,” “prob-

ably no,” or “definitely no.” Credit was given for each correctly identified target word (“defi-

nitely yes” and “probably yes” responses) and correctly rejected foil (“definitely no” and

“probably no” responses; maximum score = 40) [24].

Non-verbal episodic memory. Non-verbal episodic memory was indexed by the Picture

Sequence Memory Test (PicSeq), which is part of the NIH Toolbox. The task has excellent

test-retest reliability and construct validity, as demonstrated by its strong associations with

well-established measures of episodic memory in addition to weak associations with measures

of other cognitive abilities [26]. Participants were presented with sequences of pictures depict-

ing objects and activities in a particular order and, simultaneously, the pictures were verbally

described. Following each presentation of a 15-picture (trial 1) or 18-picture (trial 2) sequence,

the pictures from the given trial were randomized and shown to participants all at once. Partic-

ipants had to reconstruct the order of the pictures by placing them in order. Credit was given
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for each correctly placed adjacent pair of pictures (e.g., if pictures 6 and 7 are placed in order, a

point was earned, regardless of where in the sequence these pictures were placed) (maximum

score = 31).

Crystallized cognition. The Crystallized Cognition Composite score is the combination

of the two NIH Toolbox tasks measuring crystallized cognition, the Picture Vocabulary Test

and Reading Test. The scores for these two tests were normalized and averaged together to cal-

culate the composite score. Crystallized cognition reflects abilities that are highly dependent

on past learning and are consistent across the lifespan. The Picture Vocabulary Test measures

general vocabulary knowledge. Participants were presented with four images and, simulta-

neously, an audio recording of a word. Participants then had to select the image that best

matched the meaning of the word. The Reading Test measures reading decoding skills. Partici-

pants were asked to read and pronounce letters and words as accurately as possible. Higher

scores on the vocabulary and reading tests indicate higher vocabulary and better reading abili-

ties, respectively.

Processing speed. Processing speed, a measure of fluid ability, was indexed by the Pattern

Comparison Processing Test, part of the NIH Toolbox. Speed of processing measures how

much time it takes an individual to complete a task. In the Pattern Comparison Processing

Test, participants were shown two side-by-side pictures and had to decide if they pictures were

the same or not. Higher scores indicate faster task completion.

For all NIH Toolbox tasks (i.e., non-verbal episodic memory, crystallized cognition and

processing speed), scores were scaled by normalizing them across the NIH

Toolbox Normative Sample. Thus, a score of 100 on these tasks indicates performance that

was at the national average and a score of 115 or 85, indicates performance 1 SD above or

below the national average [27]. Additionally, although age-adjusted scaled scores are available

for these measures, unadjusted scaled scores were used, as the IWRD score is not age-adjusted,

and thus, age was included as a covariate in all analyses.

Data acquisition

Data were acquired on a modified 3T Skyra System (Siemens) using a 32-channel coil. A

T1-weighted structural image was acquired (TR = 2400ms; TE = 2.14ms; TI = 1000ms; flip

angle = 8˚; voxel size = .7x.7x.7mm) [28]. Diffusion acquisition involved a spin-echo EPI

sequence [29, 30] with multiband EPI [31, 32] and 270 diffusion-weighted directions

(TR = 5520ms; TE = 89.5ms; flip angle = 78˚; refocusing flip angle = 160˚; voxel

size = 1.25x1.25x1.25mm; multiband factor = 3; b-values = 1000, 2000, 3000 s/mm2) [28, 33].

HCP MRI preprocessing

All imaging data passed HCP quality assurance [34] and were run (by HCP) through several

standardized preprocessing pipelines. The use of this (standardized) preprocessed data allows

for greater methodological transparency and replicability across studies. Structural

T1-weighted images first underwent gradient distortion and bias field correction. Next, T1

images were run through FreeSurfer’s standard pipeline to obtain a participant-specific sub-

cortical segmentation, delineation of the cortical mantle, and segmentation of a white matter

mask [35]. Diffusion data were run through an HCP pipeline in FSL to normalize b0 image

intensity across runs and correct for EPI distortion, eddy-current induced distortions, gradi-

ent-nonlinearities, and subject motion [36, 37]. Next, diffusion data was processed in FSL’s

bedpostx toolbox, which creates the files necessary for performing probabilistic tractography

[38].
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Connectivity atlas

We used an atlas that included a 182-region (per hemisphere) cortical parcellation created by

HCP using multi-modal imaging data [39], in conjunction with a 6-region (per hemisphere)

subject-specific subcortical segmentation obtained via FreeSurfer [40]. The cortical atlas was

warped to each participant’s cortical mantle using FreeSurfer transformations, then projected

into 3d space. The HCP atlas and FreeSurfer segmentation each generated hippocampus ROIs,

which were combined, thus resulting in a total of 186 nodes per hemisphere. Networks were

calculated separately for right and left hemispheres, because evidence suggests that memory

processes are lateralized, with the left hemisphere involved primarily in verbal memory and

the right hemisphere involved in non-verbal memory [41, 42]. FreeSurfer ROIs representing

white matter were combined to create a white matter mask for use in tractography.

Creation of connectivity matrices

Interregional white matter connectivity was estimated using probabilistic tractography [43, 44]

via FSL’s probtrackx2, which infers the orientation of a tract by repeatedly sampling from the

principal diffusion direction calculated in bedpostx. A distribution of the tract’s path from

each voxel using these estimates is then built. Multiple tracts are sampled from each voxel, and

each propagation step is based on a randomly chosen orientation from the probability map.

The estimated connectivity between two regions is equal to the probability of a tract starting at

the seed region and going through the target region [45]. To obtain connectivity estimates

from each ROI to every other ROI in the atlas, tractography was performed using the GPU ver-

sion of probtrackx2 with the following options in addition to the compulsory arguments: ‘net-

work’ (use network mode, which only retains paths that meet a different seed mask),

‘loopcheck’ (stop if path loops back on itself), ‘opd’ (output path distribution), ‘onewaycondi-

tion’ (apply waypoint condition to each half of tract separately), ‘waypoints =<white matter

mask>‘ (paths must pass through white matter), ‘cthr = 0.2’ (curvature threshold),

‘nsteps = 2000’ (number of steps per sample), ‘steplength = 0.5’ (length of each step), ‘nsam-

ples = 5000’ (total number of samples), ‘fibthresh = 0.01’ (threshold volume fraction to con-

sider other fiber orientations), ‘distthresh = 0.0’ (discard samples shorter than 0.0mm), and

‘sampvox = 0.0’ (sample random points within a sphere with this radius in mm from the center

of the seed voxel). These parameters ensured that 5,000 sample tracts were generated from the

center of each voxel of each ROI and only tracts that (i) reached a target ROI and (ii) passed

through white matter were retained. This resulted in a 186x186 connectivity matrix for each

hemisphere, for each participant, where each entry represented the streamline count between

each pair of nodes (see Fig 1). Importantly, streamline count covaries with both the number of

axons connecting two regions and the microstructural integrity of those axons [46, 47]. The

diagonal elements of the matrices represent self-connections and were excluded from analyses.

Because 5,000 sample tracts are sent out from each voxel of each ROI, larger ROIs are over-

sampled. To account for variability related to differences in ROI size within and across individ-

uals and differences in the ability of tractography to reconstruct different white matter

pathways [48], the retained (i.e., not rejected by inclusion and exclusion criteria) streamline

counts originating from each seed ROI were divided by the total number of tracts that were

retained for that ROI [49]. Thus, each of the resulting values reflects the proportion of stream-

lines originating from the seed ROI that connects to each of the other ROIs. Due to the proba-

bilistic nature of the tracking algorithm, and potential non-reciprocal connections between

regions, the number of streamlines originating from region ‘A’ and terminating in region ‘B’ is

not equivalent to the number originating from ‘B’ and terminating in ‘A’, causing the upper

and lower diagonals of the initial connectivity matrix to be non-symmetric. However, because
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diffusion MRI (dMRI) cannot detect directionality, the number of tracts from seed region ‘A’

to target region ‘B’ should be equivalent to that from seed region ‘B’ to target region ‘A’. Thus,

matrices were symmetrized by averaging the number of tracts of the two matrix elements rep-

resenting the same connection.

Graph theory metrics

Node strength, a measure of connectivity strength of individual nodes, was calculated for each

node in the Graph Theory GLM (GTG) toolbox [50]. This graph property was chosen because

it is easily interpretable, frequently used, and relatedly, has demonstrated utility in characteriz-

ing network structure [7]. Node strength is the sum of the weights of all connections to a given

node [16]. For the current study, only eight ROIs were examined per hemisphere: hippocam-

pus (including subiculum), presubiculum, entorhinal cortex, parahippocampal areas 1–3

(forming the posterior parahippocampal gyrus), perirhinal ectorhinal cortex and retrosplenial

cortex.

Data analysis

To identify nodes that support episodic memory processes, nodal graph metric values were

entered as dependent variables in robust regression in the GTG toolbox [50], with episodic

memory task score entered as the independent variable and age, percentage of the diffusion

scan completed, subject motion (i.e., mean absolute framewise displacement), processing

speed, and crystallized cognition score entered as covariates of no interest. Variables are

defined in Table 1. Significance of the relationship between node strength and performance on

the episodic memory tasks was determined via permutation tests (5,000 repetitions). In order

to rein-in outliers, node strength was winsorized (within region) across participants to ±3 stan-

dard deviations. Analyses were also conducted without winsorized node strength values to

evaluate the potential impact of outliers on results. False Discovery Rate (FDR) was used to

correct for multiple comparisons across ROIs (8 per hemisphere), hemispheres, and tasks.

Adjusted p-values were considered significant if less than 0.05.

Fig 1. Overview of data processing. Top row: lateral view of the cortical HCP atlas (the subcortical ROIs are not visible in this

view). Connectivity between all ROI pairs in the HCP-FreeSurfer atlas along with computed node strength are depicted. Bottom

row: medial-inferior view of the 8 ROIs investigated shown. Retrosplenial cortex (blue), presubiculum (orange),

parahippocampal area 1 (black), 2 (white) and 3 (red), perirhinal ectorhinal cortex (purple), entorhinal cortex (yellow), and

hippocampus (green).

https://doi.org/10.1371/journal.pone.0270592.g001
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Results

Behavioral results

Participants generally performed well on the IWRD, as indicated by a mean score of 35.65 out

of a possible 40 total points, and on the PicSeq, as indicated by a mean of 112.00 (national aver-

age is 100; see Table 2).

Association of episodic memory system nodes with episodic memory test

performance

In partial support of our hypothesis, better verbal episodic memory (indexed by higher IWRD

scores) was associated with greater node strength for bilateral hippocampus, parahippocampal

area 1, and presubiculum, and left parahippocampal area 2 (see Table 3; Fig 2). Better non-ver-
bal episodic memory (indexed by higher PicSeq scores) was associated with greater node
strength for bilateral parahippocampal area 3, left hippocampus and right perirhinal cortex,

parahippocampal areas 1 and 2, and presubiculum (see Table 4). Results remained the same

when analyses were conducted without reining-in node strength values, indicating that outli-

ers did not affect results (see S3 and S4 Tables; S1 Fig).

Discussion

The goal of the present study was to identify structural network nodes that support successful

episodic memory. To date, associations between brain regions and episodic memory have

been established largely using bivariate approaches examining functional or direct structural

connectivity. However, the circuitry supporting episodic memory is complex, and thus, only

limited insights into the set of connections that support episodic memory can be gained by

examination of pairwise connections in isolation. Although a few studies have examined graph

properties related to episodic memory, these investigations have been limited to functional

networks. Thus, we aimed to examine how the structural connectivity level of medial temporal

lobe (MTL) regions and retrosplenial cortex contribute to different types of episodic memory.

To achieve this aim, we employed graph theory methods to test the relationship between

Table 2. Descriptive statistics of episodic memory tests.

N Mean (SD)

IWRD 1041 35.65 (2.91)

PicSeq 1041 112.00 (13.27)

Note. IWRD = Penn Word Memory Test; PicSeq = NIH Toolbox Picture Sequence Memory Test; SD = standard

deviation.

https://doi.org/10.1371/journal.pone.0270592.t002

Table 1. Variables.

Dependent Variable Covariates Independent Variables
Node strength Age IWRD

Percentage of diffusion scan completed PicSeq

Processing speed

Crystallized cognition

Note. IWRD = Penn Word Memory Test; PicSeq = NIH Toolbox Picture Sequence Memory Test.

https://doi.org/10.1371/journal.pone.0270592.t001
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structural connectivity node strength and performance on verbal and non-verbal episodic

memory tests.

Importantly, because connectivity strength depends solely on a node’s placement within

the network, the current study provides complementary and independent evidence of associa-

tions between the retrosplenial cortex and MTL regions and episodic memory. In particular,

we index the importance of regions based upon the extent to which they are well-connected in

the network. This approach can capture the complexity of the network by examining each

region within the context of the entire network. Thus, compared to examining direct connec-

tivity only, the methods employed in the present work provide insights into how the overall

connectivity level of regions in the MTL support episodic memory abilities.

Dual systems models of the neural circuitry supporting episodic memory posit convergence

of two pathways on the hippocampus, one mediated by the perirhinal cortex and the other by

the parahippocampal cortex [51]. Two systems for memory-guided behavior have been pro-

posed based on this model [6] and current results map onto this proposed organization.

Briefly, the Posterior Medial (PM) system supports object-context associations and converges

on the hippocampus via the parahippocampal cortex, and the Anterior Temporal (AT) system

supports recognition memory and processing of non-spatial information and converges on

the hippocampus via the perirhinal cortex. More specifically, evidence suggests that the role of

perirhinal cortex in recognition memory is driven by familiarity (versus recollection) memory

[21]. In the present study, brain regions with node strength significantly related to verbal epi-

sodic memory belong to the PM memory system, including the parahippocampal areas and

presubiculum. Our finding that regions of the PM system are important for accurate verbal

episodic memory, suggests that associations between the words and the context in which they

are learned (i.e., learned in test for target words or learned elsewhere for foil words) may be

supported by the PM system [6, 24].

Brain regions with node strength significantly related to non-verbal episodic memory were

associated with both the AT and PM systems. Regions related to the PM system included para-

hippocampal areas and presubiculum. The processing of spatial context and forming object-

context associations, supported by the PM system, is integral to accurate performance on the

PicSeq task which requires participants to remember the order of pictures [26]. The perirhinal

cortex, an important region in the AT system, was also identified as central to supporting non-

verbal episodic memory. In similar, temporal order memory tasks, the perirhinal cortex

responds to the order of stimulus presentation, suggesting that the perirhinal cortex is impor-

tant in forming item-time associations [21]. Thus, both the AT and PM systems appear to be

critical to performing well on the PicSeq task, which is achieved by remembering the order of

presented images.

Table 3. Brain regions’ node strength significantly associated with verbal episodic memory test performance.

Descriptive Name HCP Name beta t-value Uncorrected p-value FDR-corrected p-value

Left hippocampus n/a .0150 3.91 < .001 < .001

Left parahippocampal area PHA1 .0115 2.83 .004 .020

Left parahippocampal area PHA2 .0057 2.36 .018 .041

Left presubiculum PreS .0122 3.53 < .001 .002

Right hippocampus n/a .0115 2.61 .011 .032

Right parahippocampal area PHA1 .0120 3.03 .003 .015

Right presubiculum PreS .0159 3.73 < .001 .002

Note. Node strength values are winsorized to ±3 standard deviations. HCP Name = label from Human Connectome Project atlas.

https://doi.org/10.1371/journal.pone.0270592.t003
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Overall, results were similar across both episodic memory tasks, with the exception of the

perirhinal cortex for the PicSeq task. Connectivity strength of bilateral hippocampus, parahip-

pocampal area, and presubiculum was associated with performance on both verbal and non-

verbal tests of episodic memory, suggesting that the capability of these regions to influence the

brain network is important regardless of the modality in which episodic memory is tested.

This pattern of findings is consistent with previous research, implicating MTL regions gener-

ally in episodic memory processes [1]. The MTL is an area of convergence in which unimodal

and polymodal sensory information is sent and integrated to facilitate memory processes.

Thus, many inputs converge on the MTL, most of which are reciprocal [52, 53]. This organiza-

tion implies that MTL regions should be strongly connected to facilitate memory processes.

This is particularly true of the hippocampus which is, for most types of episodic memory, the

Fig 2. Winsorized node strength by residualized episodic memory test performance. Node strength values are

winsorized to ±3 standard deviations. Episodic memory test values are the residualized scores after accounting for

covariates.

https://doi.org/10.1371/journal.pone.0270592.g002
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final point of convergence. Specifically, information from both the parahippocampal cortex/

PM system and perirhinal cortex/AT system is sent to hippocampus [6, 52, 54]. Therefore, it is

likely that the connectivity strength of the hippocampus is critical to general episodic memory

processes, as it integrates information from a variety of sources.

Present findings largely align with previous research investigating the neural correlates of

verbal and non-verbal memory. Specifically, studies relating neural measures to IWRD perfor-

mance have inconsistent results, some of which converge with those of the current study. Con-

sistent with the present results, higher CBF in the parahippocampal cortex, among other non-

MTL regions, has been linked to IWRD recall [55]. Interestingly, one study measuring func-

tional activity during administration of the IWRD and another study associating brain region

volume to IWRD performance found significant relationships with a number of regions,

including frontal regions, angular gyrus, and temporal fusiform, but not in any MTL regions

[56, 57]. For non-verbal episodic memory, there is more consistent support for the importance

of MTL regions. Using a spatial memory test analogous to the IWRD, Roalf and colleagues

(2014) also identified parahippocampal cortex as functionally related to memory performance.

Similarly, hippocampal volume was significantly related to performance on an analogous task

[56]. An additional study that utilized task fMRI data from a subset of 376 participants from

the HCP dataset in a subsequent memory test paradigm found that activity in parahippocam-

pal gyri during the encoding phase of a working memory task was associated with successful

(vs. unsuccessful) recollection in the PicSeq task [58]. Thus, results across these studies at least

partially converge with those of the present study, suggesting that parahippocampal area is par-

ticularly important to non-verbal episodic memory, as parahippocampal area emerged as sig-

nificant across both functional and structural modalities and distinct but related memory

paradigms.

Strengths and limitations

The present study benefited from a large sample (n = 1,041), high-quality diffusion data which

provided high-accuracy tractography, and the use of an ROI atlas created using multiple imag-

ing modalities. Several limitations must be considered, including that the findings are depen-

dent on the connectivity algorithms used, and thus we cannot exclude the possibility that

systematic biases in these algorithms impacted our results. Additionally, because directionality

cannot be inferred from dMRI, more fine-grained analyses integrating such directionality are

not possible. Lastly, we only examined one graph metric, node strength, and thus it is possible

that different regions may be found to be important to episodic memory ability were other

metrics of structural network connectivity examined (e.g., degree centrality).

Table 4. Brain regions’ node strength significantly associated with non-verbal episodic memory test performance.

Descriptive Name HCP Name beta t-value Uncorrected p-value FDR-corrected p-value

Left hippocampus n/a .0021 2.55 .010 .032

Left parahippocampal area PHA3 .0017 2.59 .009 .032

Right perirhinal ectorhinal cortex PeEc .0026 2.66 .006 .024

Right parahippocampal area PHA1 .0022 2.52 .013 .035

Right parahippocampal area PHA2 .0014 2.38 .016 .038

Right parahippocampal area PHA3 .0021 2.89 .003 .015

Right presubiculum PreS .0033 3.53 < .001 .002

Note. Node strength values are winsorized to ±3 standard deviations. HCP Name = label from Human Connectome Project atlas.

https://doi.org/10.1371/journal.pone.0270592.t004
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Conclusion

The present study examined the structural network architecture supporting episodic memory.

Using graph theory methods, we identified regions whose connectivity strength is associated

with performance on episodic memory tests. The specific regions identified herein are consis-

tent with proposed theories of episodic memory (e.g., greater reliance on the PM memory sys-

tem) and lateralization of non-verbal memory processes in addition to overlap with previous

studies using either the same or related memory tasks. Overall, similar regions emerged as

related to successful episodic memory performance across hemispheres and task modality

(verbal and non-verbal). Present findings expand our current understanding by showing that

the structural connectivity of brain regions in the network is important to both verbal and

non-verbal episodic memory.

The methodology employed in the present study examined the connectivity strength of

each MTL brain region to determine their contribution to supporting verbal and non-verbal

episodic memory performance. This provides complementary and independent evidence to

support the role of these regions in episodic memory, as previously established by examination

of pairwise coupling of regions and relating their functional activity to episodic memory per-

formance. Our results suggest that examination of how regions are structurally positioned

within the network and their resultant capacity to support functional processes is also impor-

tant in understanding how episodic memory processes emerge. In summary, the findings pre-

sented herein advance our knowledge of how verbal and non-verbal episodic memory depend

upon a complex network of brain regions.
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