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Abstract— Bipedal walking is one of the most important
hallmarks of human that robots have been trying to mimic
for many decades. Although previous control methodologies
have achieved robot walking on some terrains, there is a need
for a framework allowing stable and robust locomotion over a
wide range of compliant surfaces. This work proposes a novel
biomechanics-inspired controller that adjusts the stiffness of
the legs in support for robust and dynamic bipedal locomotion
over compliant terrains. First, the 3D Dual-SLIP model is
extended to support for the first time locomotion over compliant
surfaces with variable stiffness and damping parameters. Then,
the proposed controller is compared to a Linear-Quadratic
Regulator (LQR) controller, in terms of robustness on stepping
on soft terrain. The LQR controller is shown to be robust only
up to a moderate ground stiffness level of 200 kN/m, while it
fails in lower stiffness levels. On the contrary, the proposed
controller can produce stable gait in stiffness levels as low
as 30 kN/m, which results in a vertical ground penetration
of the leg that is deeper than 10% of its rest length. The
proposed framework could advance the field of bipedal walking,
by generating stable walking trajectories for a wide range
of compliant terrains useful for the control of bipeds and
humanoids, as well as by improving controllers for prosthetic
devices with tunable stiffness.

I. INTRODUCTION

Although bipedal robots have evolved drastically over the
years, most proposed frameworks and controllers have been
designed and tested only over rigid surfaces [1]. However,
in real-life situations these systems are faced with motion
tasks over unpredictable non-rigid terrains with highly vari-
able ground parameters, such as stiffness and damping [2].
Therefore, there is a need for a framework that takes into
account the ground properties and allows for robust and
stable locomotion over variable impedance terrain.

Previous work on bipedal robotic locomotion over com-
pliant terrain can be divided into two groups. On one hand,
researchers have treated terrain compliance as an external
disturbance used to verify the robustness of their control
approaches [3,4]. However, the alleged robustness is limited,
since only specific terrains have been tested (grass, gravel
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ŷ
ẑ
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Fig. 1: The extended 3D Dual Spring-Loaded Inverted Pendulum
(Dual-SLIP) model in compliant terrain during double support (DS)
at Touchdown.

and gym mattress). On the other hand, researchers have
developed methods for estimating terrain properties aiming
to apply terrain-specific feedback control techniques [1, 2].
As a result, there has not been any control approach for
bipeds based on a ground model that provides robustness
over a wide range of compliant surfaces.

To this day, considerable research effort has focused
on using simple models as “templates” for the study of
complex dynamical systems, such as monopods, bipeds and
humanoids, as well as humans [5–7]. For modeling human
walking, Geyer et al. concluded that the 2D Dual Spring-
Loaded Inverted Pendulum (Dual-SLIP) is a more accurate
model than other simple models, as it was able to produce
human-like Center of Mass (CoM) vertical oscillations and
ground reaction force (GRF) responses [8]. Recently, the
model was extended to three dimensions (3D Dual-SLIP) to
capture the CoM lateral sway observed in human walking [9].
Moreover, control methodologies have been proposed based
on actuated versions of the 3D Dual-SLIP for humanoid
locomotion over rigid, uneven and rough terrain [10, 11].
However, to the best of our knowledge, the 3D Dual-SLIP
has never been implemented on compliant terrain.

Previous research in legged systems has indicated that leg
stiffness is crucial for regulating external disturbances and



improving energy efficiency [12, 13]. Furthermore, research
in biomechanics has shown that humans increased leg stiff-
ness as surface stiffness decreased [14, 15]. Those findings
support the idea that adjusting the leg stiffness can provide
robustness and versatility during locomotion over rigid and
compliant terrains.

This work proposes a novel controller for robust and
dynamic bipedal locomotion over compliant terrain. First,
the 3D Dual-SLIP model is extended to support for the
first time locomotion over compliant surfaces with variable
stiffness and damping parameters, using the Hunt-Crossley
(HC) model. A nonlinear optimization approach and a
Linear-Quadratic Regulator (LQR) controller similar to those
proposed for rigid terrains ([9]) are implemented to achieve
periodic walking gaits over stiff terrains. However, the LQR
controller is shown to be inadequate for stable walking over
a moderate ground stiffness level of 200 kN/m or less.
For this reason, a new biomechanics-inspired controller is
introduced that adjusts the stiffness of the legs in support.
The proposed controller is tested on very soft terrains and
results in stable walking after one-step unilateral stiffness
perturbations at stiffness levels as low as 30 kN/m, which
resembles the stiffness of a foam pad. It is shown that on
such soft terrains, the leg sinks into the soft ground up to
11.49 cm, which is significant for the rest length of the
legs (1 m). Despite that, the proposed framework achieves
stable walking and a fast recovery (less than 10 steps) after
the 1-step perturbation. As a result, robust dynamic walking
over extremely low one-step unilateral stiffness perturbations
can be achieved using the proposed controller. The proposed
framework could advance the field of bipedal walking, by
generating stable walking trajectories for various compliant
terrains useful for the control of bipeds and humanoids, as
well as by improving controllers for prosthetic devices with
tunable stiffness.

II. METHODS

In order to address biped locomotion over compliant ter-
rain, we first extend the biped walking model 3D Dual-SLIP,
previously proposed for rigid terrain, to support locomotion
over compliant surfaces. Then, we analyze the methodology
for finding periodic gaits in such surfaces and achieving
them using a standard feedback controller. Finally, we define
the induced lower stiffness perturbations and introduce the
proposed biomechanics-inspired controller.

A. The 3D Dual-SLIP Model on Compliant Terrain

The 3D Dual-SLIP model was introduced in [9], as an
extension of the 2D Dual-SLIP model [8], in order to capture
both the lateral sway and vertical oscillations of the CoM
observed in human walking. For brevity, only the extended
3D Dual-SLIP will be presented here, as the regular model
proposed for locomotion over rigid terrain has been analyzed
in depth in previous works [9, 16].

The model consists of a point mass with two spring
legs attached to it, as shown in Fig. 1. Adopting the
notation of [9], m > 0 is the point mass, and

pc =
[
xc yc zc

]⊺ ∈ R3 denotes the CoM position
with respect to an inertial frame of reference. For each
leg i ∈ {A,B}, pf,i =

[
xf,i yf,i zf,i

]⊺ ∈ R3

denotes the foot position, and li = pc−pf,i ∈ R3 represents
the vector from the foot to the point mass; let l0 > 0 be the
rest length of this vector, which is the same for both legs.
In contrast to the regular model, the spring stiffness ki > 0
can now be configured with different values for each leg i,
while point masses were added to the feet of the model. Let
mf,i be the mass of the foot in leg i, concentrated at the end
point, which comes into contact with the ground. Finally,
the swing leg touchdown is determined by the forward and
lateral touchdown angles θ ∈ R and ϕ ∈ R, respectively.

According to [6], a compliant surface can be modeled
using a combination of lumped parameter elements, based
on viscoelastic theory. In this work, the Hunt-Crossley (HC)
model will be utilized, since it is simple and fairly accurate
[17]. The HC model captures the compliance of the surface
through the interaction force between the materials that
come into contact (e.g. foot and ground). Specifically, the
interaction force applied at the foot of leg i is defined as:

Fg,i = kg,i (−zf,i)
h − bg,iżf,i (zf,i)

h
, (1)

where kg,i, bg,i ∈ R are the stiffness and damping pa-
rameters of the surface under the foot-leg i, respec-
tively, h = 1.5 for a Hertzian non-adhesive contact, and
zf,i ∈ R is the vertical position of the foot in leg i.
The damping of the surface is defined as a function of
the stiffness: bg,i = 1.5cakg,i, where ca will be fixed to
0.2, as in [6]. Consequently, by adjusting the stiffness of
the ground kg,i, the interaction force can be derived, as
a function of the foot’s vertical position zf,i, which when
negative represents penetration into the ground. Following
the same notation as in [6], the interaction force is assumed
to act only on the vertical axis, while the foot motion is
assumed to be constrained in the horizontal plane, meaning
that the foot masses are only allowed to move vertically
(ẋf,B = ẏf,B ≡ 0).

Therefore, in contrast to the rigid case, in compliant
surfaces the vertical position of the feet is allowed to
change throughout the motion. Hence, this property has to
be accounted for in the dynamics and the state of the system.
During walking, the 3D Dual-SLIP alternates between single
support (SS) and double support (DS) phases. In SS, the
motion of the system is governed by the dynamics

mp̈c = Fs,i +mg,

mf,ip̈f,i = Fg,iẑ − Fs,i +mf,ig,

Fs,i = ki (l0 − ∥li∥) l̂i,
(2)

where Fs,i ∈ R3 is the spring force from leg i,
l̂i is the unit vector along the leg in support i, and
g =

[
0 0 −9.81

]⊺ ∈ R3 is the gravity acceleration vector.
As in [9], it is assumed that the swing leg and the

corresponding foot mass do not affect the dynamics of
the system. Moreover, it is assumed that the swing leg’s
touchdown leg length is equal to the rest length l0, while



the vertical position and velocity of its foot mass are zero.
In DS, the motion of the system is governed by the dynamics

mp̈c = Fs,A + Fs,B +mg,

mf,Ap̈f,A = Fg,Aẑ − Fs,A +mf,Ag,

mf,Bp̈f,B = Fg,B ẑ − Fs,B +mf,Bg,

(3)

where Fs,A and Fs,B are the spring forces from leg A and
B, respectively.

Throughout this paper, a walking step will be defined
as the interval between two subsequent Midstance (MS)
gait events. During one step starting from MS, four distinct
gait events take place. Initially, MS happens during the SS
phase when żc = 0. Then, the swing leg touches down at
Touchdown (TD) and the system enters the DS phase. Next,
the CoM reaches its lowest height at Lowest Height (LH),
and finally the leg originally in support lifts off at Lift Off
(LO). At LO, the system reenters a SS phase and the step is
completed with the next MS event, as shown in Fig.2.

Fig. 2: Sagittal plane view of nominal “human-like” CoM trajectory
in a full walking step of the 3D Dual-SLIP model.

Each gait event can be associated with a gait event surface,
where each event takes place when the CoM state (ṗc,pc)
crosses the corresponding surface. For a step where a leg A
is initially in support, the following surfaces are defined:

SMS =
{
(ṗc,pc)

∣∣ żc = 0 , zc > zTH , ∥lA∥ < l0
}
, (4)

STD =
{
(ṗc,pc)

∣∣ żc < 0 , zc = zTH , ∥lA∥ ≤ l0
}
, (5)

SLH =
{
(ṗc,pc)

∣∣ żc = 0 , zc < zTH , ∥lA∥ ≤ l0
}
, (6)

SLO =
{
(ṗc,pc)

∣∣ żc > 0 , ∥lA∥ = l0
}
, (7)

where zTH = l0 sin θ is the threshold CoM height at which
TD takes place. More importantly, the surfaces STD and
SLO are the switching surfaces for the hybrid dynamics of
the system, as they determine when the system should switch
from SS to DS dynamics, and vice versa.

1) Finding Periodic Gaits: As in [9], we employ a nonlin-
ear optimization approach to obtain suitable values for the
state and control variables that lead to periodic, left-right
symmetric walking gaits. Now, this optimization method
relies on the symmetry of the CoM about LH over one step.
In the case of uneven terrain, however, that symmetry ceases
to exist [10]. As a result, the half-step optimization can only
be utilized for locomotion over terrains with high stiffness
values.

To derive the stride map, we consider a slice of the full
3D Dual-SLIP state associated with the MS event; i.e.,

x = [xc − xf,i yc − yf,i zc ẋc ẏc]
⊺, (8)

where i ∈ {A,B} again denotes the leg in support. More-
over, the forward and lateral touchdown angles together with
the leg stiffness value, same for both legs, will be considered
as control inputs available for regulating the state evolution
of the system; that is, u = [θ ϕ k]⊺, where kA = kB = k.

Following the notation of [9], let xn and un denote the
values of the state and control variables at the n-th MS
event. Then, the state at the next MS event can be computed
as xn+1 = f(xn,un), where the map f is calculated
numerically by integrating the dynamics according to the
sequence of events shown in Fig. 2. Note here that the
states xn and xn+1 refer to SS phases with different legs
providing support; e.g., if xn refers to the n-th MS with leg
A providing support, the state xn+1 refers to the (n+ 1)-th
MS with leg B providing support. In this work, we will
be concerned with nominal walking gaits that are periodic
and left-right symmetric. This implies that—nominally—the
states xn and xn+1 corresponding to subsequent MS events
must be related by the following symmetry condition

xn+1 = Axn (9)

where A = diag(1,−1, 1, 1,−1). In words, this condition
implies that in the walking gaits we consider here, the
forward and vertical position and velocity remain constant
from one step to the next while the lateral position and
velocity alternate their sign.

To obtain suitable values for the control input and state
variables that lead to a periodic left-right symmetric gait,
we adopt the quarter-period (from the MS to the LH event)
nonlinear optimization method suggested in [9]. In more
detail, the objective of the optimization is to ensure that the
projection of the CoM on the ground at the LH event lies
directly between the two support feet. Assuming—without
loss of generality—that leg A provides support, this can be
achieved by minimizing the index1

min
u0,z0

{∥∥∥∥12 (xf,A + xf,B (x0,u0))− xc (tLH ;x0,u0)

∥∥∥∥2
+

∥∥∥∥12 (yf,A + yf,B (x0,u0))− yc (tLH ;x0,u0)

∥∥∥∥2
}
,

(10)

subject to the dynamics of the system initiated at MS; in
(10), tLH is the time instance where the first LH takes place
and x0, u0 denote the initial MS state and control input
variables, respectively. As in [9], we restrict the optimization
search for x0 to the following family of states

x0 = [x0,d y0,d z0 ẋ0,d ẏ0,d]

x0,d = 0 m, y0,d = 0.05 m, ẏ0,d = 0 m/s
(11)

1As shown in [9], minimizing (10) is a sufficient condition to achieve
2-step periodic, left-right symmetric gaits.



where ẏ0,d = 0 m/s is needed to satisfy the periodic gait
conditions in [9, Equation (9)] and for a rest leg length l0 =
1 m, we set y0,d = 0.05 m, similar to [9]. Regarding the
remaining two state variables, the forward velocity ẋ0,d at
MS is specified by the user and the height z0 is a decision
variable. The optimizer then selects values for z0 and the
input variables u0 to minimize the cost function (10).

In this work, we first implemented the proposed method
for the regular 3D Dual-SLIP, using a forward velocity of
1 m/s, m = 80 kg, l0 = 1 m, and derived the following
optimal set of parameters using the nonlinear least-squares
function lsqnonlin in MatlabTM:

x0 = [x0,d y0,d z0 ẋ0,d ẏ0,d]

= [0 m 0.05 m 0.99 m 1 m/s 0 m/s],
(12)

u0 = [θ0 ϕ0 k0]
⊺

= [107.26◦ 10.94◦ 14163.54 N/m].
(13)

2) The LQR Controller: Let x∗
0,u

∗
0 be an optimal set

of parameters resulting in a left-right symmetric gait for
a specific forward velocity. Along this gait, the MS states
evolve according to (9) so that the nominal n-th MS state
is given by x∗

n = Anx∗
0 under the condition that the

control parameters are selected according to u∗
n = Bnu∗

0

with B = diag(−1, 1, 1) to account for the sign-alternating
forward touchdown angle at each step. Under non-nominal
conditions, however, initiating the system with x∗

0,u
∗
0 will

not result in periodic locomotion due to the presence of
disturbances. Thus, if xn denotes the actual value of state
at the n-th MS event, we have xn ̸= x∗

n. To ensure that
the actual MS state xn approaches the nominal periodic
evolution x∗

n, a discrete-time, infinite-horizon LQR will be
designed; the procedure closely follows [9], and thus our
exposition here will be terse.

Let ∆xn = (xn − x∗
n), ∆un = (un − u∗

n),
∆x̃n = An∆xn, ∆ũn = Bn∆un. In [9], it is shown that

∆x̃n+1 ≈ Jx∆x̃n + Ju∆ũn, (14)

where Jx = A δf
δx and Ju = A δf

δu are evaluated at (x∗
0,u

∗
0).

Now, consider the following quadratic cost for positive
definite matrices Q and R:

min
∆ũ

∞∑
n=0

∆x̃T
nQ∆x̃n +∆ũT

nR∆ũn (15)

s.t. ∆x̃n+1 = Jx∆x̃n + Ju∆ũn. (16)

Then, if (Jx,Ju) is controllable, the following time-invariant
feedback gain is obtained:

K = −(JT
u PJu +R)−1JT

u PJx, (17)

where P is the unique solution of the Discrete-Time Alge-
braic Riccati Equation (DARE). This results in the following
time-invariant control law

un = u∗
n +BnKAn(xn − x∗

n) (18)

which adjusts the control input at each MS event to regulate
the state so that it converges to the target periodic gait. Note

that in this work, we will refer to a controller obtained for
Q = R = I , where I is the identity matrix, as an identity
LQR controller.

In order to verify the validity of the modified dynamics
that account for the compliance of the terrain, locomotion
over high stiffness values was tested to simulate rigid terrain
walking. After running multiple simulations with differ-
ent stiffness values, it was concluded that a stiffness of
kg,A = kg,B = 50 MN/m resulted in a response closest
to the one observed for the ideal rigid case, described in
previous works [9, 16]. Specifically, the system was able to
reach at least 100 steps, which can be interpreted as a sign
of stable performance and hence successful implementation
of the proposed methodology [8]. Therefore, the stiffness of
50 MN/m will be considered from now on as the equivalent
of the rigid terrain, meaning that any terrain with a stiffness
lower than that will be considered as compliant. In the
aforementioned simulations, the system was simulated using
m = 80 kg, l0 = 1 m, and mf,A/B = 1 kg, while the same
optimal initial conditions and identity LQR controller were
utilized, as the ones analyzed in Sections II-A.1 and II-A.2.

B. One-step Unilateral Low Stiffness Perturbations

As a first step towards achieving periodic gait over com-
pliant terrains, we investigate the response of the model
to one-step unilateral low stiffness perturbations. For these
simulations, the model was initiated using a set of optimal
parameters to achieve periodic gait, while the ground stiff-
ness was set to the rigid value of 50 MN/m. Then, after
np steps the system experienced a one-step unilateral lower
stiffness perturbation, after which the ground stiffness was
set back to rigid as depicted in Fig. 3. Specifically, during the
np step the ground stiffness under the leg about to land (A)
was lowered to a specific value at TD and was kept constant
throughout the whole stance phase of that leg (TD to LO).
Then, the ground stiffness was reset to rigid for the rest of
the trial. The ground stiffness of the other leg (B) remained
fixed to rigid throughout the whole trial. It should be noted
that such perturbations have been applied to humans before
for understanding human gait and for rehabilitation purposes
using a novel instrumented device [18–20].

  TD

Leg A

  LO

Leg B

  TD

Leg B

  LO

Leg A

  TD

Leg A

  LO

Leg B

Low

Rigid

Low

Rigid

Fig. 3: Timing of the one-step unilateral low stiffness perturba-
tion. Top and bottom figures illustrate the ground stiffness values
underneath the legs B and A, respectively. Rigid ground stiffness
corresponds to 50 MN/m, while low ground stiffness can take
any value lower than that. The color of the label for each gait event
indicates the related leg (blue for leg B, red for leg A).



C. Biomechanics-inspired Proposed Controller

Inspired by human locomotion, we propose a modified
controller for the 3D Dual-SLIP, which adjusts the stiffness
of the legs in support, to withstand one-step unilateral low
stiffness perturbations. Previously, Ferris et al. showed that
runners increased leg stiffness for their first step when
transitioning from hard to softer surfaces [15]. As the runners
were expecting the perturbation, they tended to pre-adjust the
increased leg stiffness during their last step on the hard sur-
face. Inspired by this, we propose a controller that increases
the leg stiffness of both legs of the 3D Dual-SLIP to handle
expected one-step unilateral low stiffness perturbations.

The proposed feedback law is based on the LQR con-
troller developed in Section II-A.2, modified to allow for
further stiffening of the legs when needed; an overview
of the proposed controller is illustrated in Fig. 4. In more
detail, initially both legs share the same stiffness value,
as determined by the LQR controller at each step n; i.e.,
kA = kB = kn. Then, at the TD event of the perturbation
step (np), the stiffness of the leg about to land is increased to
kA = k1knp

, where k1 > 1 is a control gain and knp
is the

stiffness value derived by the LQR controller for that step.
At the same time, the stiffness of the leg in support is also
increased to kB = k2knp

, where k2 > 1 is again a control
gain. These stiffness values remain constant as long as each
leg is in stance phase. At the MS event of the following step
(np+1), the stiffness of the leg experiencing the perturbation,
retains the same control gain kA = k1knp+1, while the
stiffness of the leg about to land on rigid terrain is set back
to kB = knp+1. Finally, by the time the next MS event takes
place, the leg that experienced the perturbation has switched
to swing phase (LO) and is about to land on rigid terrain.
Therefore, from that point on, both legs share again the same
stiffness value kn, as it is calculated by the LQR controller
at each step.

III. RESULTS

In this section, the proposed controller will be compared to
the standard LQR controller designed for rigid surfaces, with
respect to their response to unilateral one-step low stiffness
perturbations. For all simulations, the model parameters
mentioned in the Methods Section were used and the model
was initiated with the optimal set of parameters (x∗

0,u
∗
0)

shown in (12)-(13). For all one-step unilateral low stiffness
perturbations, the perturbation took place at the tenth step
(np = 10). All simulations were implemented and executed
in MATLABTM version 9.7 (R2019b), where the nonlinear
least-squares function lsqnonlin and the embedded fixed-
step integrator ode4 were utilized for the optimization and
the dynamic simulation, respectively.

A. Performance of the Standard LQR Controller

Initially, the robustness of the standard LQR controller was
explored under one-step unilateral perturbations of various
ground stiffness levels. In all simulations, an identity LQR
controller was used. For perturbation ground stiffness values
ranging from 50 MN/m to 200 kN/m, the system was

Start
x∗
0

u∗
0

SS Dynamics
until MS

SS Dynamics
until TD

DS Dynamics
until LH

DS Dynamics
until LO

n,xn

n = np + 1

n = np

LQR Controller

un = u∗
n + BnKAn(xn − x∗

n)
[θn ϕn kn]

⊺ = un

kB = kn
kA = kn

kB = knp+1

kA = k1knp+1

kB = kB
kA = kA

kB = k2knp

kA = k1knpYES

NO

YES

NO

(Q3)

(Q1)
(Q2)

(Q4)

Fig. 4: Overview of the biomechanics-inspired proposed controller.
The model is initiated with the optimal state-control pair (x∗

0,u
∗
0)

to achieve periodic gait with a desired forward velocity at MS. The
{MS, TD} and {LH, LO} gait events are identified using single
support (SS) and double support (DS) dynamics, respectively. At
every MS event, the LQR controller is implemented and the un

feedback law is derived. During the perturbation step (n = np), the
stiffness of both legs is initially determined by the LQR controller
at MS (Q1) and then it is amplified at TD by the control gains k1
and k2 (Q2). At the next step (n = np+1), the leg experiencing the
perturbation (A) maintains an increased stiffness at MS, while the
stiffness of the leg about to land on rigid terrain (B) is determined
based on the LQR controller with no adjustment (Q3). Then, at TD,
the stiffness of both legs is not altered (Q4). Finally, the stiffness
for both legs is determined based on the LQR for all other steps.

shown to be able to endure the one-step perturbation and
reach the threshold performance of 100 steps. Four represen-
tative cases are shown in Fig. 5 for ground stiffness values
of 50 MN/m, 1 MN/m, 500 kN/m and 200 kN/m. It
should be noted that in all four cases the model was able
to achieve the desired number of 100 steps, but for brevity
we chose to show the system response only for up to the
25th step. As it can be observed, the perturbation introduces
errors in all state variables, the magnitude of which increases
as the perturbation stiffness decreases. Nevertheless, the LQR
controller is able to regulate the introduced errors and lead
the system to steady-state for all cases. Although the error
is minimized in less than 10 steps, small steady-state errors
are evident for some state variables, which again increase as
the perturbation stiffness decreases.

For ground stiffness values lower than 200 kN/m, the
perturbation destabilized the system and caused it to fail,
i.e. the system was not able to complete a proper step after
the perturbation. Considering the stiffness levels reported in
[6], the 200 kN/m stiffness level would be classified as
moderate ground. As a result, it appears that the standard
LQR controller proposed for locomotion over rigid terrain is
able to handle one-step unilateral low stiffness perturbations,
only up to moderate ground stiffness values.

B. Performance of the Proposed Controller

As an extension of the standard LQR controller, the
proposed controller inherits its stable performance for per-
turbation ground stiffness values ranging from 50 MN/m
to 200 kN/m. Therefore, we focus only on stiffness values
lower than the 200 kN/m threshold. Again, identity Q and
R matrices were utilized for the LQR part of the proposed
controller. For stiffness values lower than 200 kN/m, we
showed that the system with the proposed controller is able



Fig. 5: State error response for stiffness perturbations of 50
MN/m, 1 MN/m, 500 kN/m and 200 kN/m using the standard
LQR controller.

Fig. 6: State error response for stiffness perturbations of 200, 150,
90 and 30 kN/m using the proposed controller.

to endure perturbations of stiffness as low as 30 kN/m. It
should be noted that this stiffness value is much lower than
the soft ground category of 80 kN/m reported in [6], and it
resembles walking on a foam pad [21]. Four representative
cases are shown for one-step perturbations of 200, 150, 90
and 30 kN/m in Fig. 6. Similarly to Fig. 5, we chose to
show the system response only up to the 25th step, although
the desired number of 100 steps was achieved for all cases.

Similar to the higher stiffness levels shown in Fig. 5, the
perturbations again introduce errors, the magnitude of which
increases as the ground stiffness decreases. As it can be seen
in all cases, the model manages to handle the perturbation
taking place at the 10th step, while the proposed controller
regulates any introduced errors and leads to zero steady-state
errors. The rapid recovery of the system is to be noted, as
the error is suppressed in less than 10 steps. Moreover, by
comparing the responses of the model for the 200 kN/m
perturbation between the standard and the proposed con-

Perturbation Stiffness (kN/m) 200 150 90 30

Control Gains k1 1.05 1.1 1.4 8.4
k2 1.14 1.19 1.36 3.17

Max Penetration Depth (cm) 2.65 3.21 4.64 11.49

TABLE I: Control gains and maximum penetration depth for one-
step unilateral stiffness perturbations using the proposed controller.

troller, it is clear that the proposed controller leads to smaller
errors during both the transient and the steady-state response.
For all four perturbation stiffness values, the control gains
(k1, k2) were tuned to minimize the steady-state errors. The
control gains used are listed in Table I, where it can be seen
that as the perturbation stiffness decreases, higher control
gains have to be used to handle the perturbation and achieve
zero steady-state errors.

Figure 7 shows the model experiencing a stiffness per-
turbation of 200 kN/m, while a video demonstration of
the 3D Dual-SLIP experiencing one-step unilateral stiffness
perturbations in simulation can be found at [22]. Before the
perturbation, the stiffness of the legs is set based on the
internal LQR controller. At the TD event during the pertur-
bation step, the stiffness of the legs is amplified throughout
each leg’s stance phase. Then, during the perturbation, the
perturbed leg reaches the maximum foot penetration depth,
maintaining the amplified stiffness, while the stiffness for
the unperturbed leg is again set based on the LQR controller.
Finally, after the perturbation, both legs share again the same
stiffness, as calculated by the LQR controller.

In order to highlight the significance and the physical
meaning of the perturbations, the maximum penetration
depth of the foot stepping on the soft surface is provided
in Table I for all four cases. As expected, lower perturbation
stiffness values correspond to deeper penetration depths.
More importantly, given that the leg rest length is 1 m, the
model manages to regulate an extensive vertical sinking of
the perturbed leg, close to 12% of the leg’s rest length, in
the case of the lowest stiffness of 30 kN/m.

IV. CONCLUSION

This paper extends the 3D Dual-SLIP model to support
for the first time locomotion over compliant terrains and
proposes a novel biomechanics-inspired controller to regu-
late one-step unilateral low stiffness perturbations. Using a
standard LQR controller, the extended model is shown to
be able to endure such perturbations only up to a moderate
ground stiffness level of 200 kN/m. On the contrary, the
proposed controller can produce stable gait at stiffness levels
as low as 30 kN/m, which results in vertical sinking of the
1m-long leg as deep as 11.49 cm. Therefore, the proposed
controller allows for robust dynamic walking over extremely
low stiffness one-step unilateral perturbations. As robust
and stable walking over a wide range of compliant terrains
is an important problem for legged locomotion, this work
can significantly advance the field of bipedal walking by
improving the control of bipeds and humanoids, as well as
prosthetic devices with tunable stiffness.



Fig. 7: The 3D Dual-SLIP model experiencing an one-step unilateral stiffness perturbation of 200 kN/m. Blue line on top illustrates the
three dimensional trajectory of the CoM, while the green and magenta lines on the bottom denote its projection on the x-y plane, during
the SS and DS phases, respectively. Green, red, blue and magenta circles (◦) represent the position of the CoM during the MS, TD, LH
and LO gait events, respectively. Black circle indicates the position of the CoM when the perturbed foot reaches the maximum penetration
depth (0.0265 m). Red and blue crosses (×) depict the position of the feet for legs A and B, respectively. The increased coil radius of
the spring legs in the second and third snapshot of the model indicates an increase in leg stiffness due to the proposed controller.
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