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A B S T R A C T

Direct phase-resolved simulations are performed to investigate the propagation and scattering of nonlinear
ocean waves in fragmented sea ice. The numerical model solves the full time-dependent equations for nonlinear
potential flow coupled with a nonlinear thin-plate representation of the ice cover, and it neglects dissipative
processes. The two-dimensional setting with incident wave groups on deep water is considered, in view
of applications to wave attenuation along transects of the marginal ice zone. A spatially-varying weight is
assigned to the surface pressure so that irregular distributions of ice floes can be directly specified in the
physical domain. For various wave regimes and floe configurations, a local wave spectrum across the ice
field is computed and then least-squares fitted to extract a spatial attenuation rate as a function of wave
frequency. A general increase with frequency is found, consistent with typical predictions from linear theory.
However, a non-monotonic behavior around a certain frequency is also observed, especially in cases with a
highly fragmented ice cover. The key role played by nonlinear interactions in this phenomenon is highlighted.
. Introduction

The rapid decline of summer ice extent that has occurred in the
rctic Ocean over recent decades is a striking illustration of the ma-

or transformations experienced by the polar regions due to climate
hange. While there is no doubt that warmer temperatures have been
crucial factor in these transformations, it is now recognized that the

ction of ocean waves and their increased activity play an aggravating
ole in controlling sea-ice morphology. Ice melting and proliferation
f open water promote further wave growth over increasing fetches,
hus allowing long waves to propagate larger distances into the ice
ield. Waves can break up the sea ice and cause it to become more
ragmented, which then increases their capacity to further penetrate
nd damage the ice cover. In turn, the presence of sea ice affects the
ave dynamics, with various effects depending on the ice type. These
rocesses are especially prevalent in the marginal ice zone (MIZ) which
s the fragmented part of the ice cover closest to the open ocean.
nfortunately, such information has not been factored into previous
limate predictions and this is now becoming a pressing issue. It is only
ecently that operational wave forecasting models have begun to be
ested with refined parameterizations for wave-ice interactions (Cheng
t al., 2017; Doble and Bidlot, 2013; Williams et al., 2013).

A problem of particular interest to oceanographers is the represen-
ation of wave attenuation by sea ice, in view of applications to the
IZ. Two different mechanisms usually contribute to this effect: (i)
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scattering by ice floes or other inhomogeneities of the ice cover, which
is a conservative process that redistributes energy in all directions, and
(ii) dissipative processes which may be attributed to various causes,
e.g. turbulence and friction beneath the ice layer, inelastic collisions
and breakup of ice floes. Uncertainties about the actual mechanisms for
wave dissipation in sea ice, and about the relative importance between
conservative and non-conservative processes, have prompted a surge of
research activity on this subject in recent years. Currently, the general
consensus is that dissipation is dominant in frazil and pancake ice
fields (Newyear and Martin, 1999; Rogers et al., 2016), while scattering
is the main contributor to wave attenuation in broken floe fields when
the floe size is on the order of the wavelength (Kohout and Meylan,
2008; Wadhams et al., 1988).

In this regard, the development of mathematical models has mostly
relied on linear theory assuming potential flow, and can be divided
into two main categories: (i) discrete-floe models where individual
floes with possibly distinct features are explicitly resolved in a simple
geometry (Bennetts and Squire, 2012; Kohout and Meylan, 2008; Mon-
tiel et al., 2016), and (ii) continuum models where the heterogeneous
ice field is viewed as a uniform material with effective rheological
properties including viscosity or viscoelasticity (Chen et al., 2019;
de Carolis and Desiderio, 2002; Wang and Shen, 2010). Type (i) is espe-
cially designed to investigate scattering and typically requires solving
a boundary value problem involving multiple regions associated with
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the floe field. Type (ii) enables the derivation of an exact algebraic
expression for the dispersion relation governing plane waves in the
effective medium. Wave attenuation is encoded in the complex roots
of this dispersion relation and is controlled by constant parameters
across the entire ice cover. Because there are no intrinsic values for
these effective parameters, increasing attention has been paid to type
(ii) models over the last few years to test and calibrate them against
experimental data (Cheng et al., 2017; de Santi et al., 2018; Mosig et al.,
2015). Recent reviews on theoretical models of type (i) and (ii) can be
found in Shen (2019) and Squire (2020).

Ocean waves however are inherently nonlinear and, from the per-
spective of climate change, it is also expected that powerful storms with
associated large waves will become more frequent and have greater
impact on sea ice. For example, Kohout et al. (2020) and Kohout et al.
(2014) measured wave heights of over 9 m and 3 m respectively, in
the Antarctic Southern Ocean. As a result, these waves can propagate
and maintain ice-breaking potential hundreds of kilometers into the
MIZ. Other reports of intense waves-in-ice events have highlighted
limitations of linear theory (Marko, 2003).

Despite significant progress over the past decade, the nonlinear
theory is still in its infancy. Efforts have mainly focused on the analysis
and simulation of flexural-gravity waves in homogeneous sea ice, using
nonlinear potential-flow theory for the underlying fluid combined with
linear or nonlinear thin-plate theory for the floating ice (Bonnefoy
et al., 2009; Dinvay et al., 2019; Haragus-Courcelle and Ilichev, 1998;
Milewski et al., 2011; Părău and Dias, 2002). A compelling thin-plate
formulation in this situation is the one recently proposed by Plotnikov
and Toland (2011) based on the special Cosserat theory of hyperelastic
shells, which yields a nonlinear and conservative expression for the
bending force. This allows the full governing equations to be written
in canonical Hamiltonian form, thus extending the classical approach
of Zakharov (1968) for water waves to the hydroelastic problem.
Plotnikov and Toland’s idea has been adopted in subsequent work by
other investigators, and has produced a number of results ranging from
direct numerical simulation to weakly nonlinear modeling in various
asymptotic regimes (Guyenne and Părău, 2012, 2014; Milewski and
Wang, 2013). The main goal of these nonlinear studies has been to
characterize localized traveling waves, either freely evolving or driven
by a moving load on the ice sheet, in the absence of dissipative effects.
More recently, Alberello and Părău (2022) introduced a continuum
dissipative nonlinear Schrödinger model, with a frequency-dependent
dissipative term, to investigate the propagation and attenuation of
energetic waves in the MIZ.

Numerical or theoretical developments concerning the nonlinear
problem of wave propagation in fragmented sea ice are even more
scarce. This is a particularly challenging problem which remains largely
unexplored. A few numerical models based on the Navier–Stokes equa-
tions have been developed to simulate fluid flows in the presence of
isolated rigid floating bodies (Orzech et al., 2016), including wave
overwash of a floating plate (Nelli et al., 2020). For larger-scale ap-
plications, Lagrangian sea-ice models like those based on the discrete
element method can reproduce ice breakage and the subsequent forma-
tion of cracks and leads (Herman, 2016), or the dynamics of colliding
floes (Herman et al., 2019). In this context, the wave excitation is
specified either via simple parameterization or via coupling with an
independent waves-in-ice module. Phase-averaged forecasting mod-
els for the wave spectrum may also include components to describe
wave attenuation by sea ice (due to scattering and dissipation). As
mentioned above, they have been tested with more options for such
processes in recent years. While their parameterizations for wave-ice
interaction are typically derived from linear theory, nonlinear en-
ergy transfer is allowed via the usual mechanism of 4-wave resonant
interactions. Phase-resolved simulations of nonlinear wave propaga-
tion in fragmented sea ice have been conducted by Guyenne and
Părău (2017a) using a potential-flow solver combined with a mixed
continuum-piecewise extension of Plotnikov and Toland’s thin-plate
2

formulation. Focusing on the shallow-water regime and ignoring dis-
sipative effects, these authors provided an examination of solitary
wave scattering and attenuation in various floe configurations. De-
spite peculiarities related to solitary waves, some general analogy was
found between their numerical results and previous observations from
experiment or theory.

Pursuing this line of inquiry, the present paper is an extension
of Guyenne and Părău’s work in several important ways. Our new
contributions include:

(1) Consideration of incident wave groups in the two-dimensional
deep-water regime. Several sets of measurements from the Arctic
MIZ have revealed that groupiness is a common feature of the
wave field in open-water and ice-covered conditions (Collins
et al., 2015; Gemmrich et al., 2021; Thomson et al., 2019). While
the scattering process is now well understood from a theoretical
viewpoint in the linear setting, with predictions that compare
reasonably well to experimental data, it is not clear to what extent
these results would be applicable in the nonlinear setting where
many different types of waveforms exist.

(2) Inclusion of inertial effects in our thin-plate model as these may
be relevant when the wavelength is much longer than the floe
size. Their computation is quite nontrivial in this nonlinear time-
dependent framework and must be accommodated as part of the
numerical scheme to solve the evolution equations.

(3) Estimation of the spatial attenuation rate as a function of wave
frequency from direct phase-resolved simulations in various wave
regimes and floe configurations. This calculation is intensive be-
cause it involves averaging results over multiple random realiza-
tions of each floe configuration for each grid point in the ice field.
It also requires evaluating an integral over a long time interval for
each of these grid points to produce a local wave spectrum and
then least-squares fitting to extract the decay rate.

(4) Comparison with measurements of attenuation rate from the
Antarctic MIZ. Our numerical estimates agree qualitatively well
with the field data over the range of frequencies measured, and
they even provide some extrapolation at higher frequencies where
data are not available. We also test these numerical results against
predictions from existing linear theory. Our computations pro-
vide evidence in support of scattering as a potentially dominant
process of wave energy attenuation in broken floe fields.

(5) Account of a non-monotonic behavior (roll-over) of decay rate as
a function of wave frequency, especially in cases with a highly
fragmented ice cover. Continuum viscoelastic models or discrete
scattering models have generally been unable to predict this phe-
nomenon. Possible explanations that have been proposed include
wind forcing, nonlinear interactions or instrument noise (Li et al.,
2017; Perrie and Hu, 1996; Thomson et al., 2021). While we are
unable to pinpoint the exact cause, our numerical results highlight
the key role played by nonlinearity in the roll-over development,
without the need for any external forcing. Such a roll-over is
revealed here in the context of direct phase-resolved simulations
of nonlinear ocean waves in fragmented sea ice.

The remainder of this paper is organized as follows. Section 2
presents the mathematical formulation of this two-dimensional hy-
droelastic problem, including reduction of the governing equations to
a lower-dimensional system via the Dirichlet–Neumann operator. It
also recalls the main features of the model for fragmented sea ice.
Section 3 outlines the numerical methods for space discretization and
time integration, and describes the incident wave conditions. Numerical
results on wave attenuation for various wave regimes and floe configu-
rations are then shown, including a description of wave profiles and
the estimation of attenuation rates. Finally, a comparison with field
observations is provided.
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2. Mathematical formulation

2.1. Governing equations

We consider the motion of an inhomogeneous ice sheet lying over
a two-dimensional fluid of infinite depth. Dissipative processes are
neglected in this study. The fluid is assumed to be incompressible and
inviscid, and the flow to be irrotational. For this introductory presen-
tation of the mathematical formulation, we first consider a continuous
homogeneous ice sheet. It is modeled as a thin elastic plate according
to the special Cosserat theory of hyperelastic shells in Cartesian coordi-
nates (𝑥, 𝑦), with the 𝑥-axis positioned along the bottom of the ice sheet
at rest and the 𝑦-axis directed vertically upward (Plotnikov and Toland,
2011). The vertical displacement of the ice relative to 𝑦 = 0 is denoted
by 𝑦 = 𝜂(𝑥, 𝑡). Based on the Euler equations for potential flow, the fluid
velocity potential 𝛷(𝑥, 𝑦, 𝑡) satisfies the Laplace equation

∇2𝛷 = 0 , for 𝑥 ∈ R , −∞ < 𝑦 < 𝜂(𝑥, 𝑡) . (1)

The nonlinear boundary conditions at 𝑦 = 𝜂(𝑥, 𝑡) are the kinematic
condition

𝜕𝑡𝜂 + (𝜕𝑥𝛷)(𝜕𝑥𝜂) = 𝜕𝑦𝛷 , (2)

and the dynamic (or Bernoulli’s) condition

𝜕𝑡𝛷 + 1
2
|∇𝛷|

2 + 𝑔𝜂 +
𝑃𝑖
𝜌

= 0 , (3)

with 𝑃𝑖 = 𝑃1 + 𝑃2 where

𝑃1 = 𝜌𝑖ℎ𝜕
2
𝑡 𝜂 , 𝑃2 = 𝜎

(

𝜕2𝑠𝜅 + 1
2
𝜅3

)

. (4)

he parameters involved are the acceleration due to gravity 𝑔 = 9.81 m
−2, the fluid density 𝜌 = 1025 kg m−3, the ice density 𝜌𝑖 = 917 kg m−3,

the ice thickness ℎ and the ice flexural rigidity 𝜎. The latter is taken to
be

𝜎 = 𝐸ℎ3

12(1 − 𝜈2)
,

here 𝐸 = 6 GPa and 𝜈 = 0.3 denote Young’s modulus and Poisson’s
ratio for the ice respectively. A characteristic value for ice thickness in
the MIZ is ℎ = 1 m (Mosig et al., 2015). The thin-plate approximation
is usually valid when the characteristic wavelength is much larger than
the characteristic ice thickness. The pressure 𝑃𝑖 exerted by the ice sheet
onto the fluid surface has two components. The acceleration term 𝑃1 in
(4) is associated with inertial motion, while the nonlinear bending force
due to plate elasticity is given by

𝜕2𝑠𝜅 + 1
2
𝜅3 = 1

√

1 + (𝜕𝑥𝜂)2
𝜕𝑥

⎡

⎢

⎢

⎣

1
√

1 + (𝜕𝑥𝜂)2
𝜕𝑥

⎛

⎜

⎜

⎝

𝜕2𝑥𝜂
[

1 + (𝜕𝑥𝜂)2
]3∕2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

+ 1
2

⎛

⎜

⎜

⎝

𝜕2𝑥𝜂
[

1 + (𝜕𝑥𝜂)2
]3∕2

⎞

⎟

⎟

⎠

3

, (5)

where

𝜅 =
𝜕2𝑥𝜂

[

1 + (𝜕𝑥𝜂)2
]3∕2

,

epresents the mean curvature at any point of the fluid–ice interface
nd 𝑠 is the arclength along this interface. In anticipation of the
umerical methods described later, periodic boundary conditions will
e imposed in the horizontal direction. The system of equations is
losed with a vanishing-flux boundary condition

𝑦𝛷 → 0 , as 𝑦 → −∞ . (6)

We also assume that the elastic plate is not pre-stressed and neglect
plate stretching.

An initial motivation for using (5) to model the bending force is that
it is both nonlinear and conservative, meaning that it can be associated
3

with some potential energy that is conserved over time. This has some
appeal because it can fit within the classical Hamiltonian formulation
of the water wave problem (Zakharov, 1968), which has implications
for analytical and numerical investigation. Previous work based on such
a formulation for nonlinear flexural-gravity waves propagating along a
uniform ice sheet can be found in Guyenne and Părău (2012), Guyenne
and Părău (2014) and Milewski and Wang (2013). However, because
we will ultimately consider an inhomogeneous setting, the conservative
property is not of relevance in this study.

2.2. Dirichlet–Neumann operator

For computational purposes, the Laplace problem (1)–(6) can be re-
duced to a lower-dimensional system by introducing 𝜉(𝑥, 𝑡) =
(𝑥, 𝜂(𝑥, 𝑡), 𝑡), the trace of the velocity potential on the boundary 𝑦 =
(𝑥, 𝑡), together with the Dirichlet–Neumann operator (DNO)

(𝜂) ∶ 𝜉 ⟼ (−𝜕𝑥𝜂, 1)⊤ ⋅ ∇𝛷|

|

|𝑦=𝜂
,

hich is the singular integral operator that takes Dirichlet data 𝜉 on
= 𝜂(𝑥, 𝑡), solves the Laplace equation (1) for 𝛷 subject to (6), and

eturns the corresponding Neumann data (i.e. the normal fluid velocity
here).

With this at hand, the full nonlinear equations of motion (2)–(3) can
e rewritten as

𝑡𝜂 = 𝐺(𝜂)𝜉 , (7)

𝜕𝑡𝜉 = −𝑔𝜂 −
𝑃𝑖
𝜌

− 1
2
(𝜕𝑥𝜉)2 +

[

𝐺(𝜂)𝜉 + (𝜕𝑥𝜂)(𝜕𝑥𝜉)
]2

2
(

1 + (𝜕𝑥𝜂)2
) , (8)

hich is a closed dynamical system in terms of the boundary variables
and 𝜉 alone. As shown in Craig and Sulem (1993), the DNO can be

xpressed via a convergent Taylor series expansion

(𝜂) =
∞
∑

𝑗=0
𝐺𝑗 (𝜂) , (9)

here each term 𝐺𝑗 is homogeneous of degree 𝑗 in 𝜂 and can be
etermined recursively. For example, the first three contributions to
9) are given by

0 = |𝐷| ,

1 = 𝐷𝜂𝐷 − 𝐺0𝜂𝐺0 ,

2 = 1
2
(

𝐺0𝐷𝜂2𝐷 − |𝐷|

2𝜂2𝐺0
)

− 𝐺0𝜂𝐺1(𝜂) ,

here the operators 𝐺0 and 𝐷 = −𝑖 𝜕𝑥 may be viewed as Fourier
ultipliers. In this framework, the function 𝜂(𝑥, 𝑡) representing the
pper moving boundary is assumed to be a single-valued graph of 𝑥
nd thus overturning waves (with a multi-valued profile) cannot be
escribed.

The dispersion relation for linear traveling wave solutions of (7)–(8)
bout the fluid at rest (𝜂, 𝜉 = 0) is

𝜔2

𝑔 − 𝜌𝑖ℎ
𝜌 𝜔2 + 𝜎

𝜌 𝑘
4
= 𝑘 , (10)

where 𝜔 and 𝑘 denote the angular frequency and wavenumber respec-
tively (assuming 𝑘, 𝜔 > 0). In the absence of ice (𝜎 = 0 and 𝜌𝑖 = 0 or
= 0), Eq. (10) reduces to the linear dispersion relation
2 = 𝑔𝑘,

or deep-water gravity waves, whose group speed is

(𝑜)
𝑔 = 𝜕𝑘𝜔 = 1

2

√

𝑔
𝑘
.

In the absence of inertial effects (say, for a long uniform ice sheet),
Eq. (10) simplifies to

𝜔2 = 𝑔𝑘 + 𝜎 𝑘5,

𝜌
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Fig. 1. One realization of the spatial weight 𝑓 (𝑥) assigned to the surface pressure 𝑃𝑖. The ice cover spans a distance 𝐿𝑐 = 1600 between 𝑥 = 500 and 𝑥 = 2100, and consists of
𝑖 = 17 floes whose average length is 𝐿𝑖 = 60.
nd the corresponding group speed behaves like

(𝑖)
𝑔 =

𝑔 + 5 𝜎
𝜌 𝑘

4

2𝜔
≃ 𝑐(𝑜)𝑔

(

1 + 9𝜎
2 𝑔𝜌

𝑘4 +⋯
)

, as 𝑘 → 0 , (11)

≃ 5𝑐(𝑜)𝑔

√

𝜎
𝑔𝜌

𝑘2 , as 𝑘 → +∞ ,

which suggests that wave groups travel faster in pack ice than in open
water (𝑐(𝑖)𝑔 > 𝑐(𝑜)𝑔 for any 𝑘).

In the following, Eqs. (7)–(8) are non-dimensionalized using the
uantities 𝓁 = (𝜎∕𝜌𝑔)1∕4 and 𝜏 = (𝜎∕𝜌𝑔5)1∕8 as characteristic length

and time respectively (Bonnefoy et al., 2009), so that 𝑔 = 1, 𝜎∕𝜌 =
and 𝜌𝑖ℎ∕𝜌 = 0.06 in dimensionless units. Note that the typical

imensional values of parameters introduced earlier yield 𝓁 = 15.3
and 𝜏 = 1.2 s, which lie in the spectrum of wind-driven gravity

aves. For convenience, we will retain the same notations but, unless
tated otherwise, it is now understood that the values of any variable
r parameter are dimensionless.

.3. Model of fragmented sea ice

Having in mind the problem of wave scattering in the MIZ, we
orrow the same idea as proposed in Guyenne and Părău (2017a) to
imic a fragmented ice sheet consisting of an irregular array of ice

loes. To make the present paper sufficiently self-contained, we recall
he main features of this strategy. The array of ice floes is modeled
s a spatial distribution of ‘‘icy’’ and ‘‘wet’’ areas where the surface
ressure 𝑃𝑖 is switched ‘‘on’’ and ‘‘off’’ respectively. This amounts to
ssigning a spatial weight 𝑓 (𝑥) to 𝑃𝑖, whose amplitude varies between
(open water) and 1 (pack ice). To comply with the underlying

ontinuum formulation of the governing equations and with the global
nterpolation property of the numerical methods that we will employ
o solve these equations (see next section), the transition between the
wo phases is prescribed smooth but steep enough to clearly identify the
ndividual floes. A tanh-like profile is typically used to describe such a
ransition at the edges of each floe.

In this two-dimensional situation, the total horizontal length 𝐿𝑐 of
he ice field and the total number 𝑁𝑖 of constitutive floes are given

parameters. The algorithm first generates a regular array of 𝑁𝑖 identical
floes of individual length 𝐿𝑖 which are uniformly spread over 𝐿𝑐 . To
produce a more irregular arrangement, each floe is then shifted by a
distance 𝛾𝐿𝑖∕2 relative to its initial center, where 𝛾 is a random number
uniformly distributed between −1 and 1. If the leftmost or rightmost
floe happens to be shifted outside of the ice field, its exterior part would
be trimmed off. Similarly, if two neighboring floes happen to overlap
after this shift, they would be merged into a longer floe. These effects
are not viewed as detrimental because they contribute to making the
ice cover more inhomogeneous.

The floe distribution is assumed here to be fixed in time, which
implies that there is no feedback from waves to floes and such frictional
effects as floe–floe collisions are neglected. Furthermore, the floes are
specified in such a way that they coincide with the water surface and
bend in unison with it, hence free-edge boundary conditions are not
considered. Fig. 1 portrays one realization of the spatial profile 𝑓 (𝑥)

over the entire domain 0 ≤ 𝑥 ≤ 𝐿 (𝐿 = 2400). In this example, there

4

are 𝑁𝑖 = 17 floes (originally 𝑁𝑖 = 20) of average length 𝐿𝑖 = 60 which
are randomly distributed over 500 ≤ 𝑥 ≤ 2100 (hence 𝐿𝑐 = 1600). The
ice floes are represented by the level sets 𝑓 (𝑥) = 1, and it can be seen
that some of them have been merged together.

We recognize that this is a rather heuristic procedure for simulating
fragmented sea ice, as it is meant to be an idealization of the actual
problem. A major advantage is that it easily fits within the nonlinear
time-dependent reformulation (7)–(8) of the governing equations for
fluid motion, and thus lends itself well to efficient and accurate compu-
tations as discussed below. Preliminary tests of this methodology when
applied to incident solitary waves on shallow water show encouraging
results in Guyenne and Părău (2017a). An objective of the present study
is to further assess its applicability by treating the case of incident wave
groups on deep water, which is of relevance to wave-ice interactions in
the ocean (Collins et al., 2015; Gemmrich et al., 2021; Thomson et al.,
2019).

3. Numerical results

3.1. Numerical methods and incident wave conditions

Eqs. (7)–(8) are solved numerically following a high-order spectral
approach which is outlined here. More details on its implementation
and validation can be found in Craig and Sulem (1993), Guyenne
and Părău (2012) and Guyenne and Părău (2017a). Discretization in
space is accomplished via a pseudo-spectral method based on the fast
Fourier transform. The computational domain spans the interval 0 ≤
𝑥 ≤ 𝐿 with periodic boundary conditions and is divided into a regular
grid of 𝑁 collocation points. Applications of spatial derivatives or
Fourier multipliers are performed in the Fourier space, while nonlinear
products are calculated in the physical space. For example, if we wish to
apply the zeroth-order operator 𝐺0 = |𝐷| to a function 𝜉 in the physical
space, we first transform 𝜉 to the Fourier space, multiply the diagonal
operator |𝑘| with the Fourier coefficients of 𝜉, and then transform back
to the physical space.

The DNO is approximated by a truncation of its Taylor series (9) for
which a small number 𝑀 of terms (typically 𝑀 < 10 ≪ 𝑁) is sufficient
to achieve highly accurate results, by virtue of its analyticity properties
ensuring spectral convergence. The number 𝑀 = 4 is selected based on
previous extensive tests (Guyenne and Nicholls, 2007; Xu and Guyenne,
2009), and is also deemed sufficient here because we expect wave
attenuation as a result of scattering by sea ice, in which case the
solution becomes less nonlinear and thus does not require a higher
value of 𝑀 to be accurately resolved. Time integration is performed
in the Fourier space so that the autonomous linear terms 𝐺0𝜉 and −𝑔𝜂
can be solved exactly by the integrating factor technique, thus reducing
any possible stiffness of the system. The nonlinear terms are integrated
in time using a fourth-order Runge–Kutta scheme with constant step
size 𝛥𝑡.

A novelty in the present model, as compared to Guyenne and Părău
(2012), Guyenne and Părău (2014) and Guyenne and Părău (2017a),
is the inclusion and numerical treatment of the acceleration term 𝑃1.
Inertial effects may be appreciable when the wavelength is much longer

than the floe size. Note that 𝑃1 depends nonlinearly on 𝜂 and 𝜉 as it
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is related to the kinematic boundary condition (7), and is also not au-
tonomous because it involves the weighting function 𝑓 (𝑥). Accordingly,
this term is treated as a nonlinear term in the implementation of the
fourth-order Runge–Kutta scheme. Its computation is quite nontrivial
in the time stepping process since 𝑃1 contains a second-order time
derivative of 𝜂 and appears in the evolution equation for 𝜉. Conse-
quently, the method of order reduction is not suitable and 𝑃1 must be
evaluated directly as part of (8). After substituting 𝜕2𝑡 𝜂 = 𝜕𝑡

(

𝐺(𝜂)𝜉
)

, we
pproximate it by first-order finite differences

2
𝑡 𝜂(𝑡𝑚) ≃

(

𝐺(𝜂)𝜉
)

(𝑡𝑚) −
(

𝐺(𝜂)𝜉
)

(𝑡𝑛)
𝑡𝑚 − 𝑡𝑛

,

for any 𝑡𝑚 such that 𝑡𝑛 < 𝑡𝑚 ≤ 𝑡𝑛+1 (where 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡
are two regular consecutive time steps). The 𝑥-dependence is omitted
here for convenience. This approximation of 𝜕2𝑡 𝜂 was deemed to be a
good compromise between accuracy and simplicity, fitting well into
an explicit time integrator of (7)–(8). It is considered reasonable for
our purposes in view of the small dimensionless parameter (= 0.06)
associated with 𝑃1, and provided that 𝛥𝑡 is chosen sufficiently small.

For this nonlinear problem of wave scattering by sea ice, care is
taken to prescribe a sufficiently accurate traveling wave solution to the
water wave system (Eqs. (7)–(8) with 𝑃𝑖 = 0) as incident wave condi-
tions. Otherwise, a too crude approximation or any arbitrary condition
would tend to quickly disperse, which may then lead to overestimation
of the decay rate. Furthermore, it is preferable to specify an incident
wave that is spatially localized to accommodate the periodic boundary
conditions imposed by the pseudo-spectral method, and to minimize
possible issues related to undesirable wave reflection or transmission.
In this deep-water setting, we use a weakly nonlinear wave group (or
wave packet) as given by the Stokes expansions

𝜂(𝑥, 0) = 1
2𝜔0

𝜕𝑥𝛷 + 𝐴 cos(𝜃) + 1
2
𝑘0𝐴

2 cos(2𝜃)

+1
2
𝐴(𝜕𝑥𝐴) sin(2𝜃) +

3
8
𝑘20𝐴

3 cos(3𝜃) +⋯

𝜉(𝑥, 0) = 𝛷+
[ 𝜔0
𝑘0

𝐴 sin(𝜃) +
𝜔0

2𝑘20
(𝜕𝑥𝐴) cos(𝜃)

−
3𝜔0

8𝑘30
(𝜕2𝑥𝐴) sin(𝜃) −

1
8
𝜔0𝑘0𝐴

3 sin(𝜃)
]

𝑒𝑘0𝜂 +⋯

ith contributions from up to the third harmonics (Craig et al., 2021),
here

= 𝑖
𝜔0
2
sgn(𝐷)𝐴2 , 𝜕𝑥𝛷 = −

𝜔0
2
|𝐷|𝐴2,

and

𝐴(𝑥) = 𝑎0 sech
(

√

2 𝜀 𝜃
)

, 𝜃 = 𝑘0(𝑥 − 𝑥0).

The incident wave parameters are the amplitude 𝑎0, carrier wavenum-
ber 𝑘0, angular frequency 𝜔0 =

√

𝑔𝑘0 and position 𝑥0 of the central
(highest) crest. The quantity 𝜀 = 𝑘0𝑎0 is a measure of the incident wave
steepness. The function 𝐴(𝑥) provides a representation of the wave
group envelope, and the phase is controlled by 𝜃. Fixing 𝑘0, the larger
𝜀, the taller and narrower the wave group. We checked numerically
beforehand that, in the absence of ice, such a solution propagates
without change of shape and speed of its envelope for the parameter
values under consideration.

Although the incident wave is localized, the subsequent scattering
by ice floes will inevitably produce small-amplitude waves that radiate
backward and forward from the main pulse. In view of long-time
simulations, to prevent these radiative waves from contaminating the
advancing solution by re-entering the domain due to the periodic
boundary conditions, we also specify absorbing sponge layers through
an additional pressure term of the form

−
𝛽(𝑥)𝐺(𝜂)𝜉
√

1 + (𝜕𝑥𝜂)2
, (12)

n the right-hand side of (8), which damps outgoing waves near both
nds of the domain and away from the ice cover. The tunable coefficient
 w

5

(𝑥) is nonzero only over a small region near 𝑥 = {0, 𝐿} and, similar
o 𝑓 (𝑥), a tanh-like profile is used to represent its localized spatial
ehavior.

.2. Description of wave profiles

The main objective of this study is to examine wave attenuation
ue to scattering by ice floes via direct time-dependent simulations
n the nonlinear deep-water regime. To quantify this attenuation, we
xploit the weakly nonlinear character of the incident wave conditions
which is further weakened during the subsequent evolution). We thus
se linear theory as a reference, assuming an exponential behavior
ith distance traveled through sea ice. Linear predictions have been

ested with reasonable success against field measurements (de Carolis
nd Desiderio, 2002; Newyear and Martin, 1999; Wadhams et al.,
988) and offer a convenient way to estimate the spatial attenuation
ate as a function of wave frequency. Although we choose localized
ave groups to be the incident waves, which is advantageous for

omputational purposes, we point out that such solutions possess a
ell-defined oscillatory structure with wavenumber 𝑘0 and thus can be

assigned a respective frequency (unlike the solitary waves on shallow
water that were prescribed in Guyenne and Părău (2017a)).

As part of this investigation, we perform a series of tests and explore
the dependence of results on various wave and ice parameters such
as incident wave steepness 𝜀, ice concentration 𝐶 ≃ 𝑁𝑖𝐿𝑖∕𝐿𝑐 and
ice fragmentation 𝐹 ≃ 𝑁𝑖. The quantities 𝑁𝑖𝐿𝑖∕𝐿𝑐 and 𝑁𝑖 should be
viewed as average values of 𝐶 and 𝐹 (for a regular floe arrangement)
ince their actual values may slightly vary from one realization to
nother as a result of floe trimming or merging by the randomization
rocedure. Because of the high computational cost associated with
ur direct time-dependent simulations, only a small ensemble of such
ealizations will be generated for each set of parameter values, and
nly a limited number of wave regimes and floe configurations will be
nspected.

For the purposes of our discussion (in particular to allow for an even
omparison among the various cases considered), we fix the propor-
ions of the computational domain to 𝐿 = 2400 and 𝐿𝑐 = 1600, and we
et the numerical parameters to 𝑁 = 16384 (𝛥𝑥 = 0.14) and 𝛥𝑡 = 0.002.
he ice field is confined to the interval 500 ≤ 𝑥 ≤ 2100 and the incident
ave group is initially centered at 𝑥0 = 400. These parameter values
ere selected based on computational and physical considerations after
xtensive trials, as a good compromise for accurate and manageable
imulations while enabling the observation of wave attenuation over
sufficiently long distance. We point out that these computations are

ntensive (even more so than in Guyenne and Părău (2017a)) since they
equire solving the nonlinear nonlocal equations (7)–(8) in a very large
omain and over an extended period, using fine resolutions in both
pace and time. Because of these numerical constraints, it is understood
hat our simulations are not meant to resolve the vast range of length
nd time scales associated with wave-ice interaction in the MIZ.

For the tests, we focus on two distinct wave steepnesses 𝜀 = 0.05
low steepness, weak nonlinearity) and 𝜀 = 0.2 (higher steepness,
tronger nonlinearity), and four different floe configurations defined by
𝑁𝑖, 𝐿𝑖) = (124, 4), (124, 8), (20, 60), (1, 1600). These floe arrangements
orrespond to average ice concentrations 𝐶 = 0.31, 0.62, 0.75, 1.00
espectively. They also display separate levels of ice fragmentation:
he ice cover for (𝑁𝑖, 𝐿𝑖) = (124, 4) and (124, 8) is highly fragmented,
onsisting of many small floes, while that for (𝑁𝑖, 𝐿𝑖) = (20, 60) is less
ragmented, with fewer but larger floes. The special case (𝑁𝑖, 𝐿𝑖) =
1, 1600) represents a single long floe spanning the entire ice field. For
ach of these floe configurations, given a value of 𝜀, we run simulations
or a range of values of (𝑎0, 𝑘0) in order to obtain estimates of the
patial attenuation rate as a function of wave frequency, similar to
ata sets reported from laboratory or field experiments. We understand
hat the wave steepness may not be constant across the spectrum of

ave frequencies that has been typically measured in such studies.
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Fig. 2. Snapshots of 𝜂 at (a) 𝑡 = 0, (b) 𝑡 = 300, (c) 𝑡 = 750, (d) 𝑡 = 1200 for (𝜀, 𝑎0 , 𝑘0) = (0.05, 0.08, 0.6) and one realization of (𝑁𝑖 , 𝐿𝑖) = (124, 4). Open water is represented in blue
hile ice floes are represented in red.
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ere we do so for convenience by assuming that, for each data set,
ll wavenumbers (hence all frequencies) correspond to the same wave
teepness. Otherwise, mixing up various regimes together would make
he analysis more complicated. Furthermore, distinguishing data sets
of decay rate vs. frequency) according to different wave steepnesses
ill allow for a meaningful comparison between them.

For 𝜀 = 0.05, we considered a set of eleven wavenumbers distributed
ver the range 0.24 ≤ 𝑘0 ≤ 2.20 (accordingly the range of wave
mplitudes 𝑎0 = 𝜀∕𝑘0 is 0.02 ≤ 𝑎0 ≤ 0.21). For 𝜀 = 0.2, we chose
he set of eleven wavenumbers to be in the range 0.12 ≤ 𝑘0 ≤ 2.00
accordingly the range of wave amplitudes is 0.10 ≤ 𝑎0 ≤ 1.67). The
hoice of these values for 𝑘0 is dictated on one hand by the spatial
nd temporal discretizations (to ensure that the shortest wavelength
0 = 2𝜋∕𝑘0 in the range and its associated wave period 2𝜋∕𝜔0 are
ufficiently well resolved), and on the other hand by the proportions of
he computational domain (to ensure that the broadest incident wave
roup allowed by 𝜀 and 𝑘 can fit well into the open-water area on
0 a

6

he left side of the ice field). Note also that, for each floe configuration
𝑁𝑖, 𝐿𝑖), with the exception of the single-floe case (𝑁𝑖, 𝐿𝑖) = (1, 1600),
nd for each pair of wave parameters (𝑎0, 𝑘0) given a value of 𝜀,
e perform computations for ten different random realizations of the

ragmented ice sheet, as described in Section 2.3. To give the reader an
dea about the computational cost entailed in this work, the run time
f a simulation for each set of (𝑎0, 𝑘0, 𝑁𝑖, 𝐿𝑖) up to 𝑡 = 1500 was about
week on the HPC community cluster at the University of Delaware.

t took more than a year and half to complete all the runs for the
arious sets of parameter values as mentioned above (without counting
reliminary tests on the simulation setup).

To illustrate the scattering process and ensuing attenuation in the
hysical space for such incident waves and floe configurations, Fig. 2
hows snapshots of 𝜂 at 𝑡 = 0 (incident condition), 𝑡 = 300 (soon
fter entering the ice cover), 𝑡 = 750 and 𝑡 = 1200 (far into the ice
over) for (𝑎0, 𝑘0) = (0.08, 0.6) in the weakly nonlinear regime 𝜀 = 0.05
nd for one realization of (𝑁 ,𝐿 ) = (124, 4). As indicated earlier, the
𝑖 𝑖
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Fig. 3. Snapshots of 𝜂 at 𝑡 = 1200 for one realization of (a) (𝑁𝑖 , 𝐿𝑖) = (124, 8) and (b) (𝑁𝑖 , 𝐿𝑖) = (20, 60). Snapshots of 𝜂 at (c) 𝑡 = 360 and (d) 𝑡 = 1200 for (𝑁𝑖 , 𝐿𝑖) = (1, 1600). In all
hese cases, the wave regime is (𝜀, 𝑎0 , 𝑘0) = (0.05, 0.08, 0.6). Open water is represented in blue while ice floes are represented in red.
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ncident pulse is initially located near the left edge of the ice cover
nd travels from left to right. The computational domain being quite
ong, not its entire length is depicted here in order to show details
f the radiative tail that develops behind the wave group as it travels
hrough the floe field. The relative calmness observed near 𝑥 = 0 is
ndicative of a sponge layer specified there, as mentioned in Section 3.1.
or graphical purposes, the individual floes are associated with the
alues of 𝑓 (𝑥) ∈ [1 − 𝛿, 1 + 𝛿] (with 𝛿 = 10−3) to take floating-point
rithmetic into account. Note that, due to the large aspect ratio of these
lots and the highly oscillatory nature of this incident condition, the
parse floe distribution is not so well rendered especially at 𝑡 > 0 inside
he main pulse where the short floes appear to be squeezed. During
ropagation, the wave packet tends to gradually decrease in amplitude
nd expand in width while continually shedding a dispersive tail in the
pposite direction. This emission takes the form of a train of smaller
ave packets, nonetheless the initial pulse retains a certain coherency
nd localized shape over the span of the ice field.
 h

7

As a comparison, Fig. 3 presents the solution at 𝑡 = 1200 for the same
air (𝑎0, 𝑘0) = (0.08, 0.6) in the denser floe settings (𝑁𝑖, 𝐿𝑖) = (124, 8)
nd (20, 60). Again, only one realization of each of these configurations
s portrayed. The overall picture for (𝑁𝑖, 𝐿𝑖) = (124, 8) is found to
e similar to that for (𝑁𝑖, 𝐿𝑖) = (124, 4). However, notable differ-
nces can be discerned as compared to the larger-floe case (𝑁𝑖, 𝐿𝑖) =
20, 60) where the radiative component is smaller in amplitude and
he main pulse is more distorted. This result is consistent with the
xpectation that multiple scattering should be important for high levels
f ice fragmentation and that scattering should be significant when
he wavelength is comparable to the floe size. Indeed, among these
hree configurations, the backscattering appears to be stronger in the
ntermediate case (𝑁𝑖, 𝐿𝑖) = (124, 8) for which 𝜆0 = 10 ∼ 𝐿𝑖 = 8.

hen (𝑁𝑖, 𝐿𝑖) = (20, 60), the presence of larger floes tends to distort the
assing wave packet further because waves in sea ice and open water
ave different dispersion properties as stipulated by (10).
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Fig. 4. Snapshots of 𝜂 at (a) 𝑡 = 0 and (b) 𝑡 = 1200 for one realization of (𝑁𝑖 , 𝐿𝑖) = (124, 4). Snapshots of 𝜂 at 𝑡 = 1200 for one realization of (c) (𝑁𝑖 , 𝐿𝑖) = (124, 8) and (d) (20, 60).
n all these cases, the wave regime is (𝜀, 𝑎0 , 𝑘0) = (0.05, 0.02, 2). Open water is represented in blue while ice floes are represented in red.
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In Fig. 3(c,d) for the special setting (𝑁𝑖, 𝐿𝑖) = (1, 1600), we see that
when the incident wave impinges on the ice cover, a small component
is radiated forward and then travels ahead of the main pulse, which is
consistent with the linear prediction (11) for the group speed being
higher in pack ice than in open water. A similar phenomenon was
reported in Guyenne and Părău (2017a) for such a floe configuration
when perturbed by solitary waves on shallow water. Aside from this
initial disturbance with a small wave packet being emitted and sepa-
rating from the main pulse, scattering is found to be minimal in this
case. The primary undulation broadens in the early stages but remains
coherent and localized, traveling faster than its counterparts in a more
fragmented ice cover. Such a solution bears a resemblance to long-lived
nonlinear wave packets arising near the critical speed 𝑐min = 2∕33∕8 =
1.32 (for 𝑘min = 1∕31∕4 = 0.76) in homogeneous sea ice over deep water,
as computed by Guyenne and Părău (2012).
 b

8

The larger the wavenumber 𝑘0, the stronger the scattering, with a
more prominent tail developing behind the incident pulse. As a result,
the latter quickly decays and does not go far into the ice field (see
Fig. 4 for 𝜀 = 0.05 and 𝑘0 = 2). In this short-wave limit, scattering is
so strong that the radiative tail displays a well-defined leading pulse
(moving backward) that is commensurate with the initial condition.
Over the range of parameter values considered, we observe that both
regimes 𝜀 = 0.05 and 0.2 exhibit similar qualitative features of wave
propagation and scattering for the same values of 𝑘0 and (𝑁𝑖, 𝐿𝑖). This
s in line with our previous comment that the initial solution tends to
ecome less nonlinear due to the subsequent attenuation. Indeed, for
= 0.2, initially steep waves rapidly spread when interacting with sea

ce. Wave profiles in this case are thus not displayed for convenience,
ut a more quantitative comparison between 𝜀 = 0.05 and 0.2 will be
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provided in the next section when discussing estimates of the decay
rate.

The present nonlinear simulations confirm that scattering is a major
contributor to wave attenuation in broken floe fields (when the wave-
length is comparable to the floe size), which agrees with previous stud-
ies that have tested predictions from linear scattering theory against
field measurements (Kohout and Meylan, 2008; Wadhams et al., 1988).
Moreover, our finding about the persistence of a localized progressive
waveform that scatters little along an extended uniform floe (Fig. 3c,d)
is compatible with observations from Kohout et al. (2020, 2014) who
reported that large waves in Antarctic sea ice can persist hundreds of
kilometers into the ice pack. Our results for (𝑁𝑖, 𝐿𝑖) = (1, 1600) also
upport accounts of an enduring (and even enhanced) group structure
or surface waves in Arctic sea ice, as described by Gemmrich et al.
2021) and Thomson et al. (2019).

.3. Calculation of attenuation rates

To assess more quantitatively wave attenuation for each set of
𝑁𝑖, 𝐿𝑖, 𝑎0, 𝑘0), we take the averaged values 𝜂 of the simulated sur-

face elevation over the ten realizations of (𝑁𝑖, 𝐿𝑖). The goal of this
averaging process is twofold: it helps remove possibly non-generic
realization-dependent effects and helps minimize fluctuations across
the heterogeneous medium in anticipation of the next fitting step to
estimate the spatial attenuation rate. More specifically, for each grid
point in the ice field (500 ≤ 𝑥 ≤ 2100), we evaluate the 𝐿2 norm

𝑆(𝑥) = 1
𝑇2 − 𝑇1 ∫

𝑇2

𝑇1

(

𝜂(𝑥, 𝑡)
)2𝑑𝑡 , (13)

hich is analogous to the wave energy spectrum as measured by an
rray of sensors in field experiments. To provide a uniform calculation
f (13) across the board, the scanning time interval is given by [𝑇1, 𝑇2] =
200, 1200] for all the cases considered. It is selected as a compromise
or the observation window to be sufficiently long, while ensuring that
he wave group has entered the ice field after 𝑡 = 𝑇1 and that possible
ndesirable wave reflection from the domain boundaries is negligible
rior to 𝑡 = 𝑇2. Indeed, despite our efforts, small wave reflection from
he sponge layers was inevitably produced after an extended lapse of
ime, especially during the propagation of broad or long wave groups.
he trapezoidal rule is applied to compute (13) with sampling step size
500𝛥𝑡 = 3. Inspired by linear theory, the spatial attenuation rate 𝛼 of
he incident wave energy can be estimated by least-squares fitting an
xponential function of the form

(𝑥) ∼ 𝑒−𝛼𝑥 , (14)

o computations of (13) over a portion of the region 500 < 𝑥 < 2100
ccupied by the ice field.

As an illustration, Fig. 5 shows fits to (13) for (𝑎0, 𝑘0, 𝑁𝑖, 𝐿𝑖) =
0.02, 2.2, 124, 4) and (0.11, 1.8, 124, 4) where 𝑆(𝑥) is plotted in semilog

units for clarity so that the exponential dependence (14) appears as a
straight line. Despite averaging 𝜂 over the ten realizations of (𝑁𝑖, 𝐿𝑖)
and integrating (13) over the time interval [𝑇1, 𝑇2], small fluctuations
still occur but nonetheless the profile of 𝑆(𝑥) can be clearly identified.
In these two cases, the exponential fit is applied to the window 500 <
𝑥 < 1000 corresponding essentially to the distance over which the
wave group has traveled up to 𝑡 = 𝑇2 = 1200. Beyond this point,
wave effects are found to be even weaker by orders of magnitude,
consistent with the fast wave decay as noted above for large 𝑘0. Such
plots confirm that it is reasonable to assume (14) in order to obtain a
measure of the attenuation rate for incident wave packets, even though
our computations based on (7)–(8) are nonlinear. Similar graphs arose
for other sets of parameter values but the fit was taken over different
windows (confined to 500 < 𝑥 < 2100) where an exponential-like
behavior was detected. By repeating this procedure for a range of 𝑘0, a
set of values for 𝛼 as a function of wave frequency can be collected for
each triplet (𝜀,𝑁 ,𝐿 ). There are some similarities with the procedure
𝑖 𝑖

9

typically adopted in field experiments on this subject: measurements
are filtered in some way to help remove noise and an exponential
functional dependence is assumed to extract an apparent decay rate
from directional wave spectra (Cheng et al., 2017; Meylan et al., 2014;
Wadhams et al., 1988). We also remark that our focus here is on
determining the spatial attenuation rate 𝛼 for wave groups, which
differs from the estimation of temporal attenuation rates for solitary
waves as conducted in Guyenne and Părău (2017a). For that particular
problem, no reference results were available to compare with and,
moreover, only a few different incident wave heights were examined
in that previous study.

Fig. 6 depicts the spatial attenuation rate 𝛼 as a function of incident
wave frequency 𝑓 for all eight cases of (𝜀,𝑁𝑖, 𝐿𝑖) involved. Considering
the weakly nonlinear nature of the incident conditions as prescribed
here, the corresponding wave frequency is approximated by 𝑓 = 𝜔∕(2𝜋)
where 𝜔 = 𝜔0

√

1 + 𝜀2 according to Stokes theory. Overall, these
results on decay rate support our previous observations based on the
description of wave profiles. There is a general tendency for 𝛼 to
increase with 𝑓 , which is consistent with typical predictions from linear
(scattering or viscoelastic) theory. The sparser the floe field or the lower
the incident wave steepness, the faster the increase of 𝛼 with 𝑓 . A sharp
rise occurs for (𝑁𝑖, 𝐿𝑖) = (124, 4) and (124, 8) in the high-frequency
region 𝑓 > 0.19, which corresponds to the wavenumber range 𝑘0 > 1.4
where scattering is strong because the wavelength is comparable to
the floe size. The largest value of 𝛼 that we calculated is attained at
𝑓 = 0.24 (i.e. 𝑘0 = 2.2) for 𝜀 = 0.05 and (𝑁𝑖, 𝐿𝑖) = (124, 4), which
indeed satisfies 𝜆0 = 2.8 ∼ 𝐿𝑖 = 4. Such waves of small amplitude and
short wavelength tend to quickly disintegrate as they propagate into
a broken ice field. This process is aggravated by the high level of ice
fragmentation (𝑁𝑖 = 124) in these two floe settings, which promotes
multiple wave scattering.

On the other hand, for (𝑁𝑖, 𝐿𝑖) = (20, 60) with larger floes, the
ecay rate remains small and does not vary much across the spectrum
f wave frequencies being probed. In this case, the attenuation curve
or 𝜀 = 0.05 closely resembles that for 𝜀 = 0.2. This uniformity and

similarity in 𝛼 between 𝜀 = 0.05 and 0.2 is even more pronounced in
the single-floe configuration (𝑁𝑖, 𝐿𝑖) = (1, 1600). The presence of ice
modifies the dispersion properties of incident waves and thus affects
their speed and shape, but coherent structures persist throughout the
homogeneous ice cover without experiencing much attenuation, as
evidenced by Fig. 3(d).

Interestingly, we notice that the rise of decay rate is not strictly
monotonic as a function of wave frequency in some situations. There
seems to be a hump in the graph of 𝛼 around 𝑓 = 0.16 (i.e. 𝑘0 = 1),

hich is most apparent for highly broken floe fields (𝑁𝑖 = 124, 𝐿𝑖 =
4, 8}) and whose amplitude is a bit larger for steeper incident waves
𝜀 = 0.2). This finding is reminiscent of the roll-over effect that has
een reported in field measurements (Wadhams et al., 1988). While
arious possible causes have been suggested (Li et al., 2017; Perrie
nd Hu, 1996; Thomson et al., 2021), this intriguing phenomenon is
till not well understood and has generally eluded linear scattering
r viscoelastic models. It is revealed here in the context of phase-
esolved nonlinear simulations of wave attenuation in fragmented sea
ce. For 𝑓 > 0.19 (past the hump), a sudden increase is predicted,
ith 𝛼 reaching its highest point at the end of the computed spectrum.
his extremal value turns out to be higher than the roll-over peak.
herefore, it seems that the roll-over is not directly related to strong
cattering induced by close wave resonance with the floes, which rather
ccurs at larger frequencies (e.g. it can be checked that 𝜆0 = 3.1 ∼
𝑖 = 4 for 𝑓 = 0.23 and 𝜀 = 0.2). By contrast, the roll-over around
= 0.16 corresponds to a longer wavelength 𝜆0 = 6.3. It is likely

ot connected to the critical wavenumber 𝑘min at which the group and
hase speeds coincide, because the associated wavelength 𝜆min = 8.3 is

fairly different. Moreover, this prediction on 𝑘min is meant for waves
propagating in homogeneous sea ice and thus does not refer to any
specific floe size.
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Fig. 5. Variation of 𝑆(𝑥) across the ice field (blue dots) and corresponding exponential fit (red line) for (a) (𝜀, 𝑎0 , 𝑘0) = (0.2, 0.11, 1.8) and (b) (𝜀, 𝑎0 , 𝑘0) = (0.05, 0.02, 2.2). In both
ases, the floe configuration is (𝑁𝑖 , 𝐿𝑖) = (124, 4). The vertical axis is shown in logarithmic scale.
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Among past theoretical and numerical studies, we are aware of
nly a few that were able to reproduce such a phenomenon to some
xtent. In the context of linear theory, the three-layer viscoelastic
odel of Zhao and Shen (2018) predicts a roll-over that becomes more
ronounced as the thickness of the middle turbulent layer increases. A
imilar observation was made by Liu et al. (1991) based on a linear
odel for a thin elastic plate lying over a fluid with eddy viscosity.
hese authors derived a temporal rate of wave attenuation and divided

t by the group speed to obtain a spatial rate. Quoting Li et al. (2017),
ecause this temporal rate is a monotonic function of frequency, the
act that the converted spatial rate exhibits roll-over may be due to
he group speed being non-monotonic as indicated by (11). Therefore,
t is unclear from Liu et al.’s results whether the roll-over effect is an
ntrinsic feature of their thin-plate viscoelastic model or is simply an
rtifact of their observational procedure. Based on a linear analysis for
otential flow, Olla et al. (2021) argued that inhomogeneities in the
ce cover at scales comparable to the wavelength significantly increase
iffusion, producing a contribution to wave attenuation similar to what
 g

10
s observed in the ocean and usually explained by viscous effects. The
esulting attenuation spectrum is characterized by a peak at the scale
f these inhomogeneities, which could explain the roll-over at short
avelengths as reported by field experiments. Recent assessment of
porous viscoelastic model for linear gravity waves in ice-covered

eas (Xu and Guyenne, 2022), which was proposed earlier by Chen
t al. (2019), demonstrates that it can emulate to some degree the roll-
ver from Arctic MIZ measurements (Wadhams et al., 1988). In this
oroelastic formulation, the non-monotonic behavior of decay rate is
ttributed to friction induced by the relative motion between fluid and
olid constituents of the ice cover.

As far as nonlinear models are concerned, a similar phenomenon
as been observed in numerical simulations by Perrie and Hu (1996)
nd Li et al. (2017). Their results suggest that both wind forcing and
onlinear interactions must be active for a roll-over to develop. We
emark however that, unlike the present study, these authors used
pproximate phase-averaged wave forecasting models (e.g. second-
eneration wave model, WAVEWATCH III). To represent effects from
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Fig. 6. Attenuation rate vs. frequency for (a) 𝜀 = 0.05 and (b) 𝜀 = 0.2. Predictions
or the floe configuration (𝑁𝑖 , 𝐿𝑖) = (124, 4) (blue dots), (124, 8) (red crosses), (20, 60)
purple diamonds) and (1, 1600) (black squares) are presented. Both axes are shown in
ogarithmic scale.

ave-ice interaction, Perrie and Hu (1996) incorporated a scattering
odule where the distribution of ice floes is chosen among grid points

f the computational domain, while Li et al. (2017) employed effective
arameterizations according to continuum viscoelastic theories.

Our computations clearly indicate that external forcing is not re-
uired to produce a non-monotonic behavior of decay rate as a function
f frequency. We directly simulated Eqs. (7)–(8) given initial conditions
nd did not consider any contributions from such driving mecha-
isms as the wind or a moving load (Guyenne and Părău, 2012,
014; Milewski et al., 2011). The possible role of nonlinearity in this
henomenon is a relevant question considering the relatively high
teepness (𝜀 = 0.2) of incident waves for which a prominent roll-
ver is observed. With this in mind, we repeated our simulations for
𝜀,𝑁𝑖, 𝐿𝑖) = (0.2, 124, 4) but switched all the nonlinear terms off in (7)–
8) to explore the propagation and attenuation of wave groups in sea
ce from a linear time-evolving viewpoint. For this purpose, the linear
 r

11
ersions of 𝑃1 and 𝑃2 in (4) are prescribed with

𝐺(𝜂)𝜉 = 𝐺0𝜉 , 𝜕2𝑠𝜅 + 1
2
𝜅3 = 𝜕4𝑥𝜂.

The same incident wave conditions and numerical parameters as pre-
viously are used in this test. Fig. 7 plots our linear and nonlinear
results for (𝜀,𝑁𝑖, 𝐿𝑖) = (0.2, 124, 4) together. We can still detect a
ump in the linear case but it is much less pronounced than its
onlinear counterpart, and its location seems to be slightly downshifted
o near 𝑓 = 0.14. Although the respective mechanisms are likely
nrelated, this frequency shift between the linear and nonlinear roll-
vers is reminiscent of a common observation from models for wave
ropagation over sandbars, where the peak of Bragg resonance in the
eflection coefficient occurs at two slightly different wavenumbers for
he linear and nonlinear predictions (Guyenne and Nicholls, 2007).
n that context however, the linear peak is upshifted in wavenumber
rather than downshifted) relative to the nonlinear peak. Aside from
he roll-over, we see that the fast increase of 𝛼 at high frequencies
𝑓 > 0.19) remains a striking feature of Fig. 7, which corroborates the
ominant contribution from scattering to wave attenuation in broken
loe fields. While we have not elucidated the exact cause for the roll-
ver phenomenon, there is supporting evidence from our computations
hat nonlinear interactions may play an important role in its emergence.

.4. Comparison with field observations

To provide some assessment about the physical relevance of our
umerical results, we now compare them to a set of field measure-
ents. Because we originally did not attempt to set up our simulations
nder specific conditions corresponding to any field experiment, our
xpectation at best would be to obtain some qualitative agreement.
oreover, as opposed to calibration studies for linear viscoelastic-type
odels (Cheng et al., 2017; de Santi et al., 2018; Mosig et al., 2015;
u and Guyenne, 2022), we do not attempt here to accurately fit our
umerical predictions on 𝛼 to the experimental data by minimizing
ny objective function over a range of possible values for rheological
arameters. Such a procedure in the context of direct simulations of
onlinear time-dependent partial differential equations would be quite
hallenging to implement. Instead, we fix the rheological parameters
f the ice cover (and their dimensionless form) by using representative
alues as stated in Section 2.1, and we present the set of field data
ogether with a set of numerical estimates which is deemed to be its
losest match among the eight cases of (𝜀,𝑁𝑖, 𝐿𝑖) that we simulated.

visual assessment was sufficient to find matching results in our
omparative study.

Field measurements are typically on the spatial attenuation rate of
he wave energy spectrum in sea ice, which is consistent with the 𝐿2

orm (13) that we adopt to quantify wave attenuation from our com-
utations. For the purposes of the comparison, our numerical results
re converted back to dimensional estimates based on the characteristic
alues for the length and time scales introduced in Section 2.2 (again
e will retain the same notations for convenience). Accordingly, the

hree different floe sizes 𝐿𝑖 = {4, 8, 60} (in dimensionless units) become
𝑖 = {61.2, 122.3, 917.3} m (in dimensional units). The total length of

he ice field now reads 𝐿𝑐 = 24.5 km, with resolution 𝛥𝑥 = 2.3 m. Inci-
entally, the largest incident wavenumber that we prescribed is given
y 𝑘0 = 2.2 (in dimensionless units) or 𝑘0 = 0.14 m−1 (in dimensional
nits), which corresponds to our smallest incident wavelength 𝜆0 = 43.7
. The thin-plate approximation is thus well justified here since this

alue of 𝜆0 is significantly larger than the characteristic ice thickness
= 1 m.

We examine the recent data set that was garnered from the Antarctic
IZ as part of the Australian Antarctic Division’s second Sea Ice Physics

nd Ecosystem Experiment in 2012. Wave measurements were acquired
imultaneously using advanced sensors at up to five locations along a
ransect stretching up to 250 km. They were included in a preliminary

eport by Kohout et al. (2014) to support the claim that wave activity
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Fig. 7. Comparison of attenuation rate vs. frequency between linear (orange diamonds) and nonlinear (blue dots) predictions for (𝜀,𝑁𝑖 , 𝐿𝑖) = (0.2, 124, 4). Both axes are shown in
ogarithmic scale.
Fig. 8. Comparison of attenuation rate vs. frequency between measurements (black squares) from the Antarctic MIZ (Kohout et al., 2014; Meylan et al., 2014) and our closest
estimates (blue dots) for (𝜀,𝑁𝑖 , 𝐿𝑖) = (0.05, 20, 917.3 m). Predictions (red line) from the linear viscoelastic model of Mosig et al. (2015) are also presented.
t
r
t

nd ice extent are correlated. Meylan et al. (2014) conducted a spectral
nalysis on these data to glean the dependence of decay rates on wave
eriods. Fig. 8 compares the resulting data on 𝛼 (extracted from Fig. 8
n Mosig et al. (2015)) with the closest estimates from our nonlinear
imulations, which turns out to be for (𝜀,𝑁𝑖, 𝐿𝑖) = (0.05, 20, 917.3 m) in
his situation. The simulated range of frequencies slightly exceeds the
easured range, especially at high frequencies (however the measured

ange is better resolved at lower frequencies). This data set exhibits
monotonically increasing trend for 𝛼 as a function of 𝑓 , which is

easonably well reproduced by our numerical predictions (being within
r near experimental error). The computed 𝛼 tends to rise faster than
 a

12
the measured one as 𝑓 increases, and continues in this fashion past
𝑓 = 0.17 Hz where experimental data are not available.

Fig. 8 also suggests the presence of peaks for the computed 𝛼 around
wo separate frequencies 𝑓 = 0.10 Hz and 0.18 Hz. However, the
espective wavelengths 𝜆0 = 160 m and 48 m are significantly shorter
han the floe size 𝐿𝑖 = 917 m specified in our best-matching simulations,

so it is unlikely that these two peaks are indicative of strong scattering.
Furthermore, unlike other simulated cases, they would not represent
a roll-over effect because each of these peaks seems to only involve
a single data point. Looking back at Fig. 6 and noting the substantial
difference in 𝛼 magnitude between e.g. (𝜀,𝑁𝑖, 𝐿𝑖) = (0.05, 124, 61.2 m)
nd (0.05, 20, 917.3 m), we deduce that small variations in the computed
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𝛼 around these two frequencies as depicted in Fig. 8 might just be
fluctuations possibly due to numerical errors.

Four estimates of ice concentration  = 0.210, 0.481, 0.498, 0.576
in areas of the Antarctic MIZ where the sensors drifted are reported
in Meylan et al. (2014). These values were estimated using Nimbus-7
scanning multichannel microwave radiometer and Defense Meteoro-
logical Satellite Program (DMSP) Special Sensor Microwave/Imager
Sounder (SSMIS) Passive Microwave Data. Photographs taken by a
camera installed on the upper deck of the ship can be found in Meylan
et al. (2014) and reveal a rather dense ice cover during this expedition,
with dominant floe sizes 𝑖 ranging from a few meters to greater than
100 m. While the simulated ice concentration 𝐶 = 0.75 (corresponding
to 𝑁𝑖 = 20 and 𝐿𝑖 = 917.3 m) is higher than the average  = 0.441 of
the four experimental estimates, we may deem these ice conditions to
be similar qualitatively. For clarity, the calligraphic style is employed
to distinguish the measured values of ice concentration and floe size
from the simulated values.

The particularly low level of nonlinearity (𝜀 = 0.05) associated with
our best match here may explain why a better agreement is found
at lower rather than higher frequencies as mentioned above. Indeed,
Meylan et al.’s spectral analysis of these Antarctic MIZ data suggests
that the linear approximation would be suitable at low frequencies.
At high frequencies, their investigation identifies a transition where
nonlinear processes are believed to become significant. What exactly
provokes this transition in the Antarctic MIZ is unclear, nonetheless this
fact is consistent with the tendency for our weakly nonlinear results on
𝛼 to deviate from the measurements and rise faster as 𝑓 increases.

As an independent reference, Fig. 8 also includes predictions from
the so-called EFS model proposed by Mosig et al. (2015). Like the
measurements, these theoretical estimates are extracted from Fig. 8
in Mosig et al. (2015) and converted from decay rates for the wave
amplitude to ones for the wave spectrum (via multiplication by a factor
of 2). The EFS model is based on linear thin-plate theory and was
introduced as a continuum viscoelastic formulation in terms of effective
parameters. Because such a representation is of different nature from
the floe-resolving approach advocated in the present study, we do not
further describe it here and refer the reader to Mosig et al. (2015) for
more details. Results in Mosig et al. (2015) and Xu and Guyenne (2022)
show that the EFS model provides a good approximation to these
Antarctic MIZ data, especially at low frequencies where it outperforms
other viscoelastic formulations. For the purposes of our comparison, it
should be kept in mind that the EFS curve was obtained as the best fit
according to a rigorous minimization procedure (Mosig et al., 2015),
while this is not so for our numerical estimates.

We see in Fig. 8 that the linear and nonlinear predictions are rela-
tively close together over the low-frequency region 𝑓 < 0.13 Hz where
they both agree well with the field data. However, they tend to deviate
from each other as 𝑓 increases, with the EFS model slightly underesti-
mating 𝛼 at high frequencies while our nonlinear results overestimate 𝛼
and exhibit a sharp increase, as discussed above. We point out that the
close fit by the EFS solution was achieved at the expense of excessively
large values of shear modulus 𝜇 = 1012 Pa and kinematic viscosity
𝜁 = 107 m2 s−1 for the effective medium representing the Antarctic
MIZ (Mosig et al., 2015). By contrast, our simulations ignore dissipative
processes and assume a more common value of shear modulus for sea
ice, i.e.

𝜇 = 𝐸
2(1 + 𝜈)

= 2.3 × 109 Pa,

ased on the characteristic values of Young’s modulus and Poisson’s
atio given in Section 2.1.

. Summary

The process of wave attenuation in the MIZ remains a challenging
roblem due to the heterogeneous nature of this environment and
he presence of various types of sea ice. Scattering is believed to
13
be the main contributor to wave attenuation in broken floe fields
when the wavelength is on the order of the floe size. We perform
direct phase-resolved simulations to investigate this mechanism from
a deterministic, evolutionary and nonlinear viewpoint, in the absence
of dissipative effects. As an extension of the work of Guyenne and Părău
(2017a), the numerical model solves the full time-dependent equations
for nonlinear potential flow, combined with a nonlinear bending force
to describe the ice cover according to the special Cosserat theory of
hyperelastic shells. A lower-dimensional reduction of the governing
equations is accomplished by introducing the DNO, and a high-order
spectral method is adopted to solve this reduced system in terms of
boundary variables. Efficient and accurate simulations are achieved by
using a series expansion of the DNO together with the fast Fourier
transform. A mixed continuum-piecewise adjustment of the original
plate formulation enables the numerical algorithm to mimic a spatial
distribution of ice floes, for which irregular samples can be generated
via a randomization procedure.

Focusing on the two-dimensional deep-water case, we examine the
scattering and attenuation of incident wave groups over long distances
of propagation, as this is of particular relevance to wave-ice interac-
tions in the ocean. Various wave regimes and floe configurations are
considered, spanning a range of wave steepnesses, wave frequencies
and ice concentrations (with separate levels of ice fragmentation). For
this purpose, computations are run for a very large domain over an
extended period, using fine resolutions in both space and time. Due to
this variety of wave and ice conditions, care is taken to include inertial
properties of the ice cover and simulate their nonlinear transient effects.

For each set of parameter values, we estimate the spatial attenuation
rate as a function of wave frequency, which is obtained by least-
squares fitting an exponential function to a version of the local wave
spectrum (i.e. ensemble-averaged time-averaged squared elevation for
each grid point in the ice field). To do so, results from multiple random
realizations of each floe configuration are collected and averaged.
Overall, we find that the decay rate tends to increase with frequency,
which is consistent with typical predictions from linear theory. The
sparser the floe field or the lower the incident wave steepness, the faster
this increase, which suggests that the combined effects of scattering
due to wave resonance with floes of comparable size and successive
wave reflections in the presence of multiple floes induce strong wave
attenuation.

Interestingly, our attenuation curves also exhibit a non-monotonic
behavior (roll-over) which peaks at some frequency that is not char-
acteristic of strong scattering. This phenomenon is most apparent in
our results for highly fragmented ice covers. Our computations support
the idea that nonlinear interactions may play an important role in the
roll-over development, as suggested by previous numerical studies (Li
et al., 2017; Perrie and Hu, 1996). However, we find no evidence that
external forcing such as wind input is needed.

We obtain qualitatively good agreement in comparison with Antarc-
tic MIZ measurements. Our closest estimates correspond to simula-
tions for a dense floe field and gentle incident waves. Aside from
the overall similitude with this set of field measurements in its range
of frequencies, our numerical results provide some extrapolation at
higher frequencies where data are not available. They behave favorably
with respect to predictions from existing linear theory in this specific
case. They support the general consensus that scattering is the domi-
nant mechanism for wave attenuation when sufficiently large floes are
prevalent in the MIZ.

In the future, it would be of interest to extend this numerical work
by including dissipation in the nonlinear model to examine whether we
can emulate the much stronger wave attenuation as typically observed
in grease or pancake ice fields (de Santi et al., 2018; Newyear and
Martin, 1999; Rogers et al., 2016). We may use the same type of
parameterization for wave dissipation based on effective viscosity as
proposed in Guyenne and Părău (2017b), Liu et al. (1991), Weber
(1987). The contribution from dissipative processes to wave attenua-

tion in sea ice and to the roll-over phenomenon in particular remains
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unclear, and thus requires further consideration. Another possible ex-
tension would be to investigate the three-dimensional problem with
fragmented sea ice and compare with field data. Discrepancies that we
have observed may partly be attributed to such effects. The present
approach for simulating wave-ice interactions is readily applicable to
three dimensions (Xu and Guyenne, 2009).
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