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A B S T R A C T

Chen et al. (2019) recently proposed a two-dimensional continuum model for linear gravity waves propagating
in ice-covered seas. It is based on a two-layer formulation where the ice cover is viewed as a porous viscoelastic
medium. In the present paper, extensive tests against both laboratory experiments and field observations
are performed to assess this model’s ability at describing wave attenuation in various types of sea ice. The
theoretical predictions are fitted to data on attenuation rate via error minimization and numerical solution
of the corresponding dispersion relation. Detailed comparison with other existing viscoelastic theories is also
presented. Estimates for effective rheological parameters such as shear modulus and kinematic viscosity are
obtained from the fits and are found to vary significantly among the models. For this poroelastic system, the
range of estimated values turns out to be relatively narrow in orders of magnitude over all the cases considered.
Against field measurements from the Arctic Ocean, this model is able to reasonably reproduce the roll-over of
attenuation rate as a function of frequency. Given the rather large number of physical parameters in such a
formulation, a sensitivity analysis is also conducted to gauge the relevance of a representative set of them to
the attenuation process.

1. Introduction

In recent decades, the polar regions have experienced major trans-
formations due to global warming. For example, the rapid decline of
summer ice extent in the Arctic Ocean has caught a lot of attention.
While there is no doubt that warmer temperatures have been a major
factor in transforming the polar seascape, evidence has also shown that
ocean waves and their increased activity play an aggravating role, and
in turn the presence of sea ice affects the wave dynamics. By breaking
up the sea ice, waves cause it to become more fragmented, which
in turn increases their capacity to further penetrate and damage the
ice cover. A typical setting in the ocean where wave–ice interactions
prevail is the marginal ice zone (MIZ) which is the fragmented part
of the ice cover closest to the open ocean. It is a highly heterogeneous
region comprising various types of sea ice that result from the incessant
assault of incoming waves.

Of particular interest to oceanographers is the modeling of wave
attenuation in sea ice, a process that has been poorly represented in
large-scale wave forecasting models for the polar regions. There are two
principal mechanisms for the attenuation of wave energy propagating
into an ice field: (i) scattering by ice floes or other inhomogeneities of
the ice cover, which is a conservative process that redistributes energy
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in all directions, and (ii) dissipative processes which are related to
various sources, e.g. friction due to the presence of sea ice, inelastic
collisions and breakup of ice floes. The relative importance of scattering
and dissipation is still unclear, and uncertainties still exist about the
actual mechanisms for wave dissipation in sea ice. This has led to a
surge of research activity on this topic in recent years. Studies have
suggested that dissipative processes are dominant in frazil and pancake
ice fields (Doble et al., 2015; Newyear and Martin, 1999), while scat-
tering seems to be the main mechanism for wave attenuation in broken
floe fields with appropriate floe size relative to the wavelength (Kohout
and Meylan, 2008; Wadhams et al., 1988). Even for a denser ice field,
the problem remains complex: e.g. Ardhuin et al. (2016) found that
dissipation dominates over scattering for long swells in the Arctic ice
pack.

With a view to describing wave attenuation in the MIZ, two different
approaches have been pursued based on linear theory: (i) discrete-floe
models where individual floes with possibly distinct characteristics are
resolved assuming an idealized geometry (Bennetts and Squire, 2012;
Kohout and Meylan, 2008; Montiel et al., 2016), and (ii) continuum
models where the heterogeneous ice field is viewed as a uniform
material with effective rheological properties including viscosity or
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viscoelasticity (de Carolis and Desiderio, 2002; Keller, 1998; Wang
and Shen, 2010b). In case (i), the analysis focuses on wave scattering
and typically requires solving a boundary value problem with multiple
regions in the horizontal hyperplane. By contrast, case (ii) enables the
derivation of an exact algebraic expression for the dispersion relation
governing traveling plane waves in the effective medium. Wave atten-
uation (possibly from scattering and dissipation combined) is encoded
in the complex roots of this dispersion relation, and various physical
effects are controlled by constant parameters. Recent reviews on this
theoretical work can be found in Shen (2019) and Squire (2020).

Models of type (i) have been applied to various floe configurations
and have reached a high degree of sophistication. There is now a con-
sensus that the process of wave scattering in sea ice is well understood,
and associated parameterizations have been tested for operational wave
forecasting (Doble and Bidlot, 2013; Perrie and Hu, 1996; Williams
et al., 2013a,b). It is however not the case for dissipative processes and,
partly for this reason, there has been an increasing effort in recent years
at developing and calibrating models of type (ii) (Cheng et al., 2017;
de Santi et al., 2018; Doble et al., 2015; Rogers et al., 2016). In this
framework, details of the attenuation processes are not accounted for
and it lies on the calibration to ensure that the effective parameters are
assigned suitable empirical values for practical applications.

While continuum models have been employed for some time now,
based mostly on thin-plate theory, to describe wave propagation in
pack ice (Fox and Squire, 1994; Liu and Mollo-Christensen, 1988), their
extension to the setting of a more compliant or fragmented ice cover
for application to the MIZ is more recent (Zhao et al., 2015). Earlier
versions include the two-layer viscous model of Keller (1998) which
treats the ice cover as a viscous layer lying on top of an ideal fluid
(the ocean). The viscous layer is meant to represent a suspension of ice
particles in water. Interaction among these particles and the associated
friction leads to wave energy dissipation, which is modeled as a viscous
effect. Good agreement has been found in comparison to laboratory
data on wave attenuation in grease ice (Newyear and Martin, 1997,
1999). Keller’s model was extended by de Carolis and Desiderio (2002)
to allow for a viscous fluid in the lower layer as well. Validation was
provided to some extent against laboratory and field measurements.
Wang and Shen (2010b) refined Keller’s model by adding elasticity
to the upper layer as this property may be of relevance to broken
floe fields. Their viscoelastic model has been tested against laboratory
experiments under various ice conditions, and has been calibrated
and used in parameterization of wave hindcasts for the Arctic and
Antarctic. Building upon this idea, Zhao and Shen (2018) developed a
three-layer version which features a turbulent boundary layer between
the viscoelastic ice cover and the inviscid ocean. Dissipation due to
turbulence in the middle layer is associated with some eddy viscosity.

In the spirit of this continuum approach, Chen et al. (2019) recently
proposed a more elaborate two-layer model where the ice cover is
viewed as a homogeneous isotropic poroelastic material according to
Biot’s theory (Chen et al., 2018). More specifically, the heterogeneous
ice field is described as a mixed layer with a solid phase and a fluid
phase as the two limiting configurations. Each phase is assumed to be
slightly compressible. Dissipative effects are included via two different
mechanisms: viscosity within each phase of the ice layer, and friction
caused by the relative motion between its fluid and solid constituents. A
parameter of interest in this model is the ice porosity which may serve
to provide a measure of ice concentration. Despite the complicated
nature of this formulation, an exact linear dispersion relation can be
derived and numerical estimates of physically relevant solutions can be
found using relatively simple selection criteria. Preliminary tests were
conducted in Chen et al. (2019) to verify consistency with predictions
from simpler models (e.g. open water, mass loading, purely elastic) in
their respective limits (Collins et al., 2017; Xu and Guyenne, 2009).
A more detailed review of this dispersion relation together with those
from other viscoelastic representations will be presented in the next
section.

The main goal of this paper is to further assess the porous viscoelas-
tic model of Chen et al. (2019) by testing it against both laboratory
experiments and field observations of wave attenuation in sea ice.
These are taken from the literature, and allow us to probe a wide range
of ice conditions and wave frequencies. This is accomplished by fitting
the theoretical predictions to data on attenuation rate via error min-
imization over a set of rheological parameters. As a result, numerical
estimates for both the attenuation rate and the set of effective parame-
ters are obtained from the fitting process. This model’s performance is
also checked by comparing it to other existing viscoelastic formulations
under the same various conditions. The purpose of such a comparison
is two-fold. First, it helps examine in detail the parametric dependence
in viscoelastic theories, and the extent to which common rheological
parameters may differ in their range of values. Indeed, this difference
may be of several orders of magnitude for such effective parameters.
Second, it helps validate our data fitting method as we can check with
previous independent calibration results from the literature. Given the
relatively large parameter space in this poroelastic setting, a sensitivity
analysis is also performed to gauge the individual contributions of
rheological parameters to the fitting process. A notable finding from
our study is that Chen et al.’s model can reproduce to some degree the
roll-over of attenuation rate as observed in field measurements from
the Arctic MIZ. This intriguing phenomenon has generally eluded linear
scattering or viscoelastic models and, while various possible causes
have been suggested, it is still not well understood (Li et al., 2017;
Thomson et al., 2021).

The remainder of this paper is organized as follows. Section 2 recalls
the linear dispersion relation obtained from the porous viscoelastic
model of Chen et al. (2019) and describes the data fitting procedure.
Other existing viscoelastic formulations are also briefly reviewed. Sec-
tion 3 presents the corresponding fits to data on attenuation rate from
a selection of laboratory experiments and field observations. Section 4
discusses the estimation of shear modulus and kinematic viscosity, and
compares results among three different viscoelastic models. Section 5
shows sensitivity tests on a set of rheological parameters that are
relevant to the poroelastic system. Finally, concluding remarks are
provided in Section 6.

2. Theoretical models

The dispersion relations reviewed in this section are derived from
continuum models for linear traveling waves in the two-dimensional
case (one horizontal direction and one vertical direction).

The dispersion relation associated with the porous viscoelastic
model proposed in Chen et al. (2019) (hereafter referred to as CGG)
is given by

!2
=

0
T
1
+ g T

2

T
3

1
D

4
tanh(D

4
H) , (1)

with

D
4
=

v
2 *

!2

c2f
,

where g is the acceleration due to gravity, H is the water depth
and cf is the speed of sound in water. The reader is directed to
Chen et al. (2019) for a detailed derivation of this model and to
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recalled for convenience. These coefficients are functions of various
wave parameters and rheological parameters. Wave parameters include
the angular frequency ! and complex mode  = k + i q where k is
the wavenumber and q is the attenuation rate. Rheological parameters
include the water density ⇢f as well as the ice density ⇢s, porosity �,
shear modulus �, Poisson’s ratio ⌫, kinematic viscosity ⌘ and thickness
h. Ice porosity is represented by a dimensionless parameter whose
range is 0 f � f 1, with the limiting values � = 0 (solid phase) and
� = 1 (fluid phase) corresponding to pack ice and near-open water,
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respectively. This parameter may be related to ice concentration C via
the relation � = 1 * C, namely � is the complement of C. It should be
pointed out that, in this continuum framework, the elasticity, porosity
and viscosity parameters do not necessarily correspond to intrinsic
properties of sea ice but rather they are meant to represent effective
properties of the heterogeneous ice field under consideration, similar to
e.g. homogenization modeling of wave propagation in complex media
(Craig et al., 2009; de Bouard et al., 2008). These parameters may thus
vary over a wider range than the typical values for sea ice. In view
are potential applications to large-scale wave forecasting in the MIZ
where various types of sea ice coexist. Whenever the information is
available, � and h will be assigned values corresponding to mean ice
concentration and mean thickness of the ice cover (e.g. field studies
often report an estimate of the fraction of ice-covered surface that may
be used for C). Aside from bulk viscosity which is typically regulated by
⌘, this model also describes friction due to the relative motion between
fluid and solid parts of the ice field. In the equations, the coefficient
controlling this mechanism is defined by

b =
8⇢s⌘�
a2

, (2)

where a denotes the fluid pore size in the porous medium. From the
viewpoint of effective medium theory for wave propagation in the MIZ,
this parameter a may be related to some characteristic horizontal size
of open-water areas in the fragmented ice cover.

In the next section, predictions from (1) will be tested against a
selection of laboratory experiments and field observations. For each
set of experimental data, comparison with other existing models will
be provided as well. These include recent viscoelastic models by Wang
and Shen (2010b) and Mosig et al. (2015), which we find convenient
to present in detail below because they share common rheological
parameters, and this will be of relevance to the subsequent discussion.
These two models are simpler than the present one in the sense that
they do not take into account ice porosity, accordingly their dispersion
relations are simpler. The dispersion relation resulting from Wang and
Shen’s model (Wang and Shen, 2010b) (hereafter referred to as WS)
can be written as
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On the other hand, the dispersion relation produced by Mosig et al.’s
model (Mosig et al., 2015) (hereafter referred to as EFS) takes the form

!2

g *
⇢s!2h
⇢f

+
�ch34
6(1*⌫)⇢f

=  tanh(H) , (4)

where

�c = *i ⇢s!⌘c = � * i!⇢s⌘ . (5)

Note that the EFS model also makes use of the thin-plate approxima-
tion and thus is significantly simpler than both CGG and WS models
which instead consider the ice cover as a distinct layer with an actual
thickness. Preliminary comparison between these three models can be
found in Chen et al. (2019).

For a given value of ! and other parameter values, the dispersion
relation is solved numerically for  using the root-finding routine
fsolve in Matlab. More specifically, because  is complex, Eq. (1) is
split up into its real and imaginary parts. This leads to a system of
two independent equations that are solved simultaneously for the two
unknowns k and q. The fsolve algorithm is essentially a quasi-Newton
method with a numerical approximation of the Jacobian matrix. We
have successfully used this Matlab routine in previous work (Guyenne,
2006; Guyenne and P†r†u, 2014) to compute traveling wave solutions
of nonlinear partial differential equations. Considering that multiple
roots for k and q may exist here (Mosig et al., 2015; Zhao et al., 2017),
we apply the selection criteria proposed in Wang and Shen (2010b)
to find a dominant pair (k, q) associated with a physically relevant
solution. We choose the converged values (k, q) À R2

+
such that k is

closest to the open-water wavenumber k
0
which solves

!2
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and q is the lowest attenuation rate possible. Accordingly, we run the
root finder fsolve for a range of initial guesses around (k, q) = (k

0
, 0)

and select the converged values for which the error  * (k
0
+ i 0) is

minimum among all the roots found. In doing so, we were able to get
acceptable solutions in all the cases we considered, via the data-fitting
procedure as described below.

For the following tests, we prescribe a number of physical parame-
ters such as g = 9.81, ⇢s = 917, ⇢f = 1025 and cf = 1449 (in SI units),
and fit the model predictions to the experimental data by optimizing
with respect to other parameters. The water depth H is also specified,
since this is either known information from laboratory experiments or
a representative value may be used for a specific oceanic region when
comparing to field observations. Furthermore, because the range of
Poisson’s ratio is typically small (0 < ⌫ < 1_2), we set it to be ⌫ = 0.4,
after checking that it does indeed not play a major role (see Section 5).
This reduction in the parameter space helps simplify the analysis, which
is especially relevant for the CGG model considering that it involves
many physical parameters.

We will focus our attention on the subset (�,�, ⌘) when fitting the
model predictions to the experimental data. These three parameters are
representative of porous viscoelastic properties of the ice cover, and
two of them (� and ⌘) are common to the CGG, EFS and WS models.
We will give a detailed comparison of (�, ⌘) estimated from these three
models in Section 4. Throughout this study, we will only consider data
on the attenuation rate, a reason being that data on the wavenumber
were not reported by field observations and our focus here is on the
attenuation process as in Kohout and Meylan (2008), Mosig et al.
(2015), Perrie and Hu (1996) and Sutherland et al. (2019). Our fitting
procedure is basically a direct search approach. For a given triplet
(�,�, ⌘) and a range of values of !, we apply the above-mentioned
root-finding scheme to find a set of pairs (k, q). We repeatedly run this
procedure over a specified region of parameter space (�,�, ⌘), and select
the set {qj} for which the L2 error

E =

n…
j=1

(qj * öqj )2 , (6)

between numerical estimates {qj} and experimental data {öqj}, is min-
imum among all the solutions calculated. The best fit so obtained
returns a set {qj} for the attenuation rate, as well as a triplet (�,�, ⌘)
for these rheological parameters. For the problem at hand, we use a
straightforward definition (6) of the error as in de Santi et al. (2018),
which is readily applicable to all the cases explored and which allows
for a direct comparison among the various models involved.
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It turns out that information on ice concentration was also reported
in some of these studies (which we used to determine the ice poros-
ity), and thus only the pair of parameters (�, ⌘) is to be found from
the data fitting. In this process, the ranges of values for (�, ⌘) and
their resolutions are chosen in a heuristic manner based on extensive
trials, considering previous work (Mosig et al., 2015; Newyear and
Martin, 1999; Zhao and Shen, 2015) and our own experience (Chen
et al., 2019, 2018). The larger the region of parameter space to be
covered, the higher the computational cost. Typically, we conduct a
preliminary search over an extended rough region of parameter space
and then refine the search over smaller better-resolved sectors. Aside
from testing the performance of the CGG model, such an analysis also
helps calibrate it by estimating rheological parameters for potential
applications in realistic conditions. As discussed below, while the CGG,
EFS and WS models share common physical parameters such as � and
⌘, their respective numerical values according to the data fitting may
differ significantly. Note that we use the same procedure to obtain
fitting curves from the EFS and WS models.

Although it is somewhat different in character from the CGG, EFS
and WS models, we will also include a comparison with the two-layer
viscous model recently proposed by Sutherland et al. (2019) (hereafter
referred to as SRCJ), which estimates wave attenuation in sea ice by

q =
1

2
�
0
✏hk2

0
. (7)

This formula is partly heuristic because it was derived based on scaling
arguments and dimensional analysis. It is nonetheless appealing due
to its stunning simplicity and has been shown to produce satisfactory
results in comparison with experimental data. Considering that viscous
models have been successful at describing wave attenuation in such
ice covers as grease ice, predictions from (7) may serve as a suitable
independent reference, especially for the tests involving laboratory
experiments. The coefficients �

0
and ✏ are dimensionless empirical

parameters whose range is 0 < �
0

< 1, 0 < ✏ < 1. The same L2

error (6) is used to optimize (7) with respect to the pair (�
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, ✏) when

fitting to measurements. The parameter �
0
is a measure of the relative

motion between ice and water at the bottom boundary of the ice layer.
To first approximation, �

0
Ù 1 corresponding to a no-slip boundary

condition. The parameter ✏ is thought to be a function of ice porosity,
exhibiting a similar behavior. In particular, the limit ✏ ô 0 is analogous
to � ô 0 (pack ice) for which, according to (7), there should be no
wave dissipation within the ice layer. Sutherland et al. (2019) pointed
out that such a parameterization is consistent with observations of wave
attenuation through the MIZ, being several orders of magnitude greater
in frazil and pancake ice than in a broken floe field (Doble et al., 2015).
This is somewhat counterintuitive considering that the latter represents
a more rigid ice cover than the former. Note however that the dominant
mechanism for wave attenuation in broken floe fields is believed to be
scattering and is of different nature from the viscous-type dissipation
taking place in pancake ice fields. Preliminary tests of the CGG model
in Chen et al. (2019) are also consistent with these observations and
indicate a tendency for q to decrease as � ô 0 over all frequencies.

As in Chen et al. (2019), for computational purposes, we non-
dimensionalize the equations involved in the root-finding and data-
fitting processes for each of these models. A motivation for this non-
dimensionalization is to accommodate the large disparity in orders
of magnitude among the various quantities at play in this problem.
We typically use H ,

˘
H_g and ⇢fH3 as a characteristic length, time

and mass respectively, to rescale the variables and parameters. We
have examined different scaling choices (involving different multiples
of the above characteristic values) and obtained similar results. For the
discussion in the next sections, our numerical results are converted back
to dimensional values.

3. Comparison with experimental data

In this section, we test the CGG model against three different sets
of laboratory experiments and two different sets of field observations.
Altogether, these span a wide range of wave frequencies and ice-
cover types. In each case, the CGG model is tested by best fitting its
predictions to experimental data on the attenuation rate, based on
the numerical scheme described earlier. Predictions by other existing
models are also shown for comparison and numerical values of their
rheological parameters as determined by the data fitting are discussed.

3.1. Laboratory experiments of Newyear and Martin (1997)

Newyear and Martin (1997) conducted laboratory experiments of
wave propagation and attenuation in grease ice. This study was among
the first to measure wave attenuation by floating ice in a controlled
laboratory environment. The wave tank was a flat-bottomed rectangu-
lar box, 3.5 m long, 1 m wide and 1 m deep. They reported two sets
of measurements for two different ice thicknesses h = 11.3 cm (Test 1)
and h = 14.6 cm (Test 2). In both cases, the water depth was set to
H = 0.5 m and the ice concentration was estimated to be C = 0.53.

Fig. 1 shows best fits of the CGG, EFS and WS models to Newyear
and Martin’s measurements of attenuation rate q (from their Tables 1
and 2) as functions of wave frequency f = !_(2⇡). The value � =

1 * C = 0.47 for ice porosity is used in the CGG model. Newyear
and Martin (1999) provided a comparison of their laboratory data with
Keller’s two-layer viscous model (Keller, 1998), whose predictions are
also shown in Fig. 1 (these were extracted from figures in their paper).
Keller’s model is basically a counterpart of WS model without elasticity.
The agreement between the CGG model and the experiments is fairly
good in both cases. We see that the CGG and EFS curves are particularly
close together. They appear to be concave while Keller’s curve appears
to be convex, which is characteristic of a purely viscous (i.e. diffusive-
type) mechanism (Liu et al., 1991; Sutherland et al., 2019). The CGG
concavity is especially pronounced for h = 14.6 cm (Fig. 1b), which
leads to a close fit at high frequencies where the increase of q seems to
slow down. As for the WS curve, it behaves more linearly with respect
to f and lies between these two opposite trends. Note that it is not clear
whether the actual trend is concave or convex due to measurement
errors and the limited number of data points.

3.2. Laboratory experiments of Wang and Shen (2010)

This study was conducted as part of the RECARO (REduced ice
Cover in the ARctic Ocean) project in the Arctic Environmental Test
Basin at Hamburg Ship Model Basin (HSVA), Germany. The wave basin
was roughly 19 m long, 6 m wide and 1.5 deep, and was separated
equally lengthwise into two 3 m wide flumes (referred to as Tank
2 and Tank 3). Experiments were performed in these two flumes to
measure wave propagation and attenuation in a grease-pancake ice
mixture (Wang and Shen, 2010a). The ice thickness was not uniform in
these experiments, so we use the mean values h = 9.0 cm and 8.9 cm
for Tank 2 and 3 respectively. The water depth was H = 0.85 m but no
information was provided on the ice concentration.

Comparison of these experimental data (from Tables 1 and 2 in
Wang and Shen, 2010a) with the CGG, EFS, SRCJ and WS predictions
is given in Fig. 2. The general trend appears to be convex for most of
these models. The EFS fit falls down very quickly as f ô 0 but seems to
develop an inflection (from convex to concave) while rising up at high
frequencies. The CGG fit looks satisfactory overall. It does not quite
capture the high convexity around f = 0.9 Hz (in particular for Tank
3) but it does not fall down as quickly as the other curves at lower
frequencies, which is consistent with the asymptotic behavior suggested
by the experimental results in that limit. A similar observation was
made by Wang and Shen (2010a) who found that a grease-pancake ice
layer appears to be more dissipative (producing a higher attenuation
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Fig. 1. Comparison of attenuation rate vs. frequency between model predictions and laboratory data for grease ice from Newyear and Martin (1997). Predictions from the CGG,
EFS, WS and Keller’s models are shown. Laboratory data for (a) h = 11.3 cm (test 1), (b) h = 14.6 cm (test 2) are presented.

Fig. 2. Comparison of attenuation rate vs. frequency between model predictions and laboratory data for a grease-pancake ice mixture from Wang and Shen (2010a). Predictions
from the CGG, EFS, SRCJ and WS models are shown. Laboratory data for (a) h = 9.0 cm (tank 2), (b) h = 8.9 cm (tank 3) are presented.

rate) in the low-frequency range than predicted by Keller’s viscous
model, and concluded that such a mixed ice layer may be rheologically
quite different from a pure grease ice layer (for which a viscous model
usually works well).

The CGG fit estimates the ice porosity to be � = 0.16 and 0.15 for
Tank 2 and 3 respectively. These low values of � mimic a configuration
where the ice cover is relatively compact, which is compatible with the
presence of pancake ice, and as expected they are lower than the value
� = 0.47 deduced from Newyear and Martin’s measurements for grease
ice. The associated pore sizes are given by a = 1.2 cm and 2.4 cm for
Tank 2 and 3. Recall that the pores represent the fluid part of the porous
ice cover in the continuum formulation of the CGG model. For low �,
we may thus assume that constitutive elements of the solid part would
have a typical size on the same order of magnitude as or larger than
a, which is consistent with the pancake diameter ranging from about
l = 1 cm to 40 cm as observed in Wang and Shen’s experiments.

3.3. Laboratory experiments of Zhao and Shen (2015)

Zhao and Shen (2015) followed up with additional experiments at
the HSVA in 2013. Three sets of measurements were performed in
Tank 3 (as defined in the previous section) for three different types
of ice cover: a frazil/pancake ice mixture (with thickness h = 2.5
cm), pancake ice (h = 4.0 cm) and a broken floe field (h = 7.0 cm).
These three cases are referred to as Test 1, 2 and 3 respectively. The

water depth was about H = 0.94 m and again, although values for the
diameter of a typical pancake/floe were reported in Zhao and Shen
(2015), no information was given on the mean ice concentration for
the generated ice fields.

Overall, the models compare well with these experiments (from
Table 3 in Zhao and Shen, 2015), as indicated in Fig. 3. Their fits are
especially good for Tests 1 and 2, and are reminiscent of the previous
results (Fig. 2) with Wang and Shen’s experiments for a grease-pancake
ice mixture. The SRCJ model is found to perform quite well over the
entire range of frequencies considered, even at low frequencies where,
despite tending to zero, its fitting curve is closest to the data points.
This contrasts with a previous observation regarding the comparison to
Wang and Shen’s experiments, and may be explained by the fact that
the ice thicknesses for Tests 1 and 2 are significantly smaller than those
specified in Wang and Shen (2010a). The agreement is less convincing
for Test 3, partly because there are fewer data points available. These
suggest a convex dependence of q on f , which is captured to some
extent by the CGG, SRCJ and WS models. The laboratory measurements
however yield much higher attenuation rates at low frequencies than
what these models predict, indicating a tendency for q to saturate or
even increase back as f decreases. The EFS curve looks quite different
from the other curves, exhibiting a slightly concave profile. It is worth
pointing out that all these models underestimate the attenuation rate
at low frequencies for all three experiments.

From the CGG fit, we find � = 0.01, 0.07 and 0.06 for Test 1, 2 and
3 respectively. The corresponding pore sizes are a = 2.0 cm, 4.8 cm and
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8.5 cm. Note the particularly low level of ice porosity that is obtained
for Test 1. An interpretation for this case is that the ice thickness is so
small and consequently the wave attenuation is so weak (as indicated
by the low attenuation rates in Fig. 3a) that the CGG model views it as
equivalent to a configuration with pack ice (corresponding to the limit
� ô 0). This is consistent with the parameter values ✏ = 0.34, 0.94 and
0.85 estimated from the SRCJ fits for Test 1, 2 and 3 as reported by
Sutherland et al. (2019). These authors also tested their viscous model
against the laboratory experiments of Newyear and Martin (1997),
Wang and Shen (2010a) and Zhao and Shen (2015), and found the
parameter ✏ to be smallest for Test 1 of Zhao and Shen among all the
cases considered. We obtain a similar result here, with � being smallest
for that particular experiment. Moreover, the set of � = {0.01, 0.07, 0.06}
seems to follow a pattern of variation similar to that for the set of
✏ = {0.34, 0.94, 0.85}. Again, for such low levels of ice porosity as given
by the CGG fit, the associated pore sizes a = {2.0, 4.8, 8.5} cm may be
deemed compatible with the typical ice diameters l = {3, 5, 20} cm
observed in Zhao and Shen (2015) for Test 1, 2, 3.

We point out in passing that Sutherland et al. (2019) set �
0
= 1 and

determined ✏ by a linear least-squares fitting method. In the present
study, we fit (7) to the experimental data by minimizing (6) with
respect to both �

0
and ✏, based on the approach described in Section 2.

This produces values of �
0
near 1 and values of ✏ that are very close to

those reported in Sutherland et al. (2019), which may serve as evidence
for the effectiveness of our fitting method. From the SRCJ fit shown in
Fig. 3, we find (�

0
, ✏) = (0.96, 0.34), (0.97, 0.97) and (0.94, 0.82) for Test

1, 2 and 3.
Zhao and Shen (2015) also used their laboratory data to test the WS

model and estimate such parameters as the shear modulus and kine-
matic viscosity. We will refer to their results as part of the discussion
in Section 4.

3.4. Field observations of Wadhams et al. (1988)

During field operations in the Greenland and Bering Seas in the
late 1970s and early 1980s, the Scott Polar Research Institute (Wad-
hams et al., 1988) carried out a series of experiments where wave
attenuation was measured along a line of stations running from the
open sea deep into an ice field. Large broken floes are a prominent
feature of the ice field in this case. At each station, a wave buoy was
inserted between floes to measure the local wave spectrum. A mean
ice thickness was determined by coring at each of the experimental
floes along the major axis of the incoming wave spectrum. Floe size
distributions were derived from overlapping vertical photography from
a helicopter. Among the measurements reported in Wadhams et al.
(1988) (see their Table 2), we will use those from the Greenland Sea
in 1979 and from the Bering Sea in 1983. Other data sets (e.g. 1978
Greenland Sea and 1979 Bering Sea) were deemed not suitable due to
possibly larger experimental error or unwanted physical effects such as
wave reflection/absorption from the fjords, as mentioned in Kohout and
Meylan (2008). We will take this opportunity to compare with results
of Kohout and Meylan (2008) (hereafter referred to as KM) who also
tested their scattering model against these field observations.

An intriguing feature of the 1979 Greenland Sea and 1983 Bering
Sea measurements is that they show a roll-over of attenuation rate as
a function of wave period (or wave frequency), in lieu of a monotonic
behavior. This roll-over occurs at short periods (or high frequencies) in
the range considered. Continuum viscoelastic models or discrete scat-
tering models have usually been unable to predict this phenomenon.
Possible explanations that have been suggested include wind forcing,
nonlinear wave interactions or instrument noise (Li et al., 2017; Perrie
and Hu, 1996; Thomson et al., 2021; Wadhams et al., 1988). An
exception that we are aware of in the context of linear theory is the
three-layer viscoelastic model with eddy viscosity as recently proposed
by Zhao and Shen (2018). Their numerical results show a roll-over

Fig. 3. Comparison of attenuation rate vs. frequency between model predictions and
laboratory data from Zhao and Shen (2015). Predictions from the CGG, EFS, SRCJ
and WS models are shown. Laboratory data for (a) h = 2.5 cm (test 1, frazil/pancake
ice), (b) h = 4.0 cm (test 2, pancake ice), (c) h = 7.0 cm (test 3, fragmented ice) are
presented.

that accentuates as the thickness of the turbulent boundary layer (lo-
cated between the viscoelastic ice layer and the inviscid water layer)
increases. However, no comparison with field data featuring the roll-
over was presented in that study. A similar phenomenon was observed
by Liu et al. (1991) based on a linear model for a thin elastic plate
with eddy viscosity (Liu and Mollo-Christensen, 1988). These authors
derived a temporal rate of wave attenuation and converted it to a
spatial rate by dividing it by the group velocity. As noted in Li et al.
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Fig. 4. Comparison of attenuation rate vs. frequency between model predictions and
data for a broken floe field from the Greenland Sea 10 September 1979 experiment in
Wadhams et al. (1988). Predictions from the CGG, EFS, KM and WS models are shown.
Results for h = 3.1 m and H = 1500 m are presented.

(2017), this temporal rate is a monotonic function of frequency and
so the fact that the spatial rate exhibits roll-over is likely due to the
group velocity being non-monotonic and reaching a minimum at some
frequency (Guyenne and P†r†u, 2012). Therefore, it is not clear from
this result whether the roll-over effect is an intrinsic feature of the
thin-plate viscoelastic model or is simply an artifact of the observation
procedure.

3.4.1. Greenland Sea, 10 September 1979
During this experiment, the ice cover was sparse and the floes

were generally large. The ice concentration was estimated to be C =

0.17 from photograph analysis. Because ice thicknesses could not be
determined on that day and were not reported, we choose h = 3.1
m following Kohout and Meylan (2008) who suggest using the floe
thickness from the 1978 data, which was based on 14 measurements
through smooth areas. We set H = 1500 m (average depth of the
Greenland Sea) and, for the CGG model, we assign the value � = 1*C =

0.83 to ice porosity.
Note that the field measurements under consideration are on the

wave spectrum, which is proportional to the square of the wave am-
plitude. Accordingly, we halve the corresponding decay rates when
comparing to theoretical predictions for the wave amplitude. We see
in Fig. 4 that the CGG model fits the field observations well, despite
the small number of data points available. Among all the models at
play, it is the only one that is able to reproduce some roll-over of q,
with a peak near f = 0.13 Hz. In fairness, we should mention that
experimental errors are more appreciable at this end of the spectrum.
The CGG model also captures the stronger decay of attenuation rate at
lower frequencies, although its predictions of q tend to be even lower
than the measured values in the limit f ô 0. By contrast, the EFS
and WS curves are monotonically increasing with f , almost linearly
over the range of frequencies considered. The SRCJ fit is also found to
be monotonically increasing with frequency and is not plotted in this
figure.

Instead, we show the KM fit which is extracted from Fig. 8 in Kohout
and Meylan (2008) (with appropriate rescaling to convert the dimen-
sionless energy rates per floe number in that figure to dimensional rates
of spatial attenuation for the wave amplitude). We point out that the
KM model is a scattering model and is of different nature from the
continuum formulation that is highlighted in the present study. It is
thus not further discussed here and the reader is directed to Kohout and
Meylan (2008) for more detail. Because scattering is believed to be the
dominant mechanism for wave attenuation in broken floe fields, the KM
model serves as a suitable independent reference for the comparison

with field observations from Wadhams et al. (1988). The KM curve
appears to be rougher than the other theoretical curves, as it represents
the average of 100 simulations with different random realizations of the
floe size distribution. We can nonetheless discern a general trend that is
monotonically increasing with frequency, and is approximately linear
with a slope close to that of the WS curve.

The CGG fit presented in Fig. 4 returns a pore size a = 14.6 m.
While it is difficult to give a physical interpretation for this parameter
from the viewpoint of effective medium theory, we may associate it
to a characteristic horizontal size of open-water areas in the context
of an extensive broken floe field. It is reassuring that we find a value
of a which is significantly larger than those obtained for the (smaller-
scale) laboratory experiments of Wang and Shen (2010a) and Zhao and
Shen (2015). Moreover, although pore size in the CGG model does not
signify floe size as mentioned earlier (and these two parameters are
not necessarily correlated), we deem it consistent that the estimated
value a = 14.6 m is somewhat comparable in order of magnitude to the
typical floe size (l = 50–80 m) observed on this expedition, as reported
in Kohout and Meylan (2008).

3.5. Bering Sea, 7 February 1983

This experiment was carried out as part of the MIZEX West study in
1983. Following Perrie and Hu (1996) and Kohout and Meylan (2008),
we take representative values for the ice concentration and thickness
in this case to be C = 0.72 and h = 1.5 m, respectively. The ice cover
was thus less fragmented than in the previous environment. We select
H = 1500 m for the average depth of the Bering Sea and prescribe
� = 1 * C = 0.28 in the CGG model.

As shown in Fig. 5, the roll-over is even more apparent here than
in the previous observations due to the larger number of data points
and smaller experimental errors. Overall, the same comments as in the
previous section can be made on the comparison between the mea-
surements and predictions. The CGG model can somewhat reproduce
the roll-over of q near f = 0.13 Hz, despite the fact that the corre-
sponding fit appears smoother in this region. It underestimates the peak
amplitude and slightly overshoots the peak frequency. Interestingly,
these relative features of the roll-over from the field observations and
numerical estimates are reminiscent of the comparison given in Liu
et al. (1991) (see their Fig. 13) between their viscoelastic theory and
the same Bering Sea data. Note that attenuation rate is plotted as a
function of wave period rather than frequency in their Fig. 13, where
the roll-over takes place at short periods. At the opposite end of the
spectrum, the CGG fit is also found to provide a good approximation
for the low-frequency tail.

We see again in Fig. 5 that none of the other models produce a
roll-over. The associated curves are all monotonically increasing with
frequency, and look similar to those in Fig. 4, although they seem
to display a more convex shape here. This convexity is especially
pronounced for the KM and WS curves (the former is extracted from
Fig. 11 in Kohout and Meylan, 2008). Notice again that the KM curve is
rougher than the other curves for the same reason as mentioned earlier.

In comparison to these field data, the pore size deduced from the
CGG fit turns out to be a = 22.0 m, which is not so different from the
previous prediction (a = 14.6 m) for the Greenland Sea experiment.
Given the denser floe field here, we might have expected a smaller pore
size, nevertheless this value a = 22.0 m is definitely larger than those
found for the frazil/pancake ice covers generated in the laboratory
experiments of Wang and Shen (2010a) and Zhao and Shen (2015). It
is striking how close this estimated pore size is to the floe diameter l =

14.5 m that was assumed by Perrie and Hu (1996) in their simulations
of the Bering Sea observations.
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Fig. 5. Comparison of attenuation rate vs. frequency between model predictions and
data for a broken floe field from the Bering Sea 7 February 1983 experiment in
Wadhams et al. (1988). Predictions from the CGG, EFS, KM and WS models are shown.
Results for h = 1.5 m and H = 1500 m are presented.

Fig. 6. Comparison of attenuation rate vs. period between model predictions and data
for a broken floe field from the Antarctic MIZ (Kohout et al., 2014; Meylan et al.,
2014). Predictions from the CGG, EFS and WS models are shown. Results for h = 1 m
and H = 4300 m are presented.

Although it is difficult to discriminate any specific physical mech-
anism from the CGG formulation, which would be responsible for the
observed roll-over, we recall preliminary results from Chen et al. (2019)
suggesting that the relative motion between different constituents of
the ice cover induces friction that may interfere with other (bulk)
dissipative effects to help produce this non-monotonic behavior of the
attenuation rate. As can be seen from the definition (2) of its controlling
parameter b, this phenomenon in the CGG view is directly linked to the
porous (hence heterogeneous) nature of the ice cover. Details of the
frictional process are unclear in this effective medium approach and
so we prefer not to attempt to interpret it further at this point. We
have confirmed the previous presumption by fitting the CGG model
to the Bering and Greenland Seas data in the absence of frictional
effects (i.e. with b manually set to zero). No roll-over has emerged from
these computations (this is not shown here for convenience); the CGG
curve would be monotonically increasing with frequency and would
look similar to the WS curve.

3.6. Field observations of Kohout et al. (2014)

We turn our attention to a more recent data set that was collected
in the Antarctic MIZ as part of the Australian Antarctic Division’s
second Sea Ice Physics and Ecosystem Experiment in 2012 (Kohout and
Williams, 2012). Wave measurements were made simultaneously using
contemporary sensors at up to five locations on a transect spanning up
to 250 km. Kohout et al. (2014) provided a preliminary report on these
measurements to support the claim that wave activity and ice extent
are correlated. A spectral analysis of the data was performed by Meylan
et al. (2014) who examined in particular the dependence of attenuation
rates on wave periods.

Following Mosig et al. (2015), we assume h = 1 m and H = 4300

m for our computations in this setting. Four estimates of mean ice
concentration C = 0.210, 0.481, 0.498, 0.576 in areas of the Antarctic
MIZ where the wave sensors drifted, are given in Meylan et al. (2014).
These estimates were calculated using Nimbus-7 scanning multichannel
microwave radiometer and Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave/Imager Sounder (SSMIS) Passive
Microwave Data. As a representative value, we specify the average
� = 0.56 of the corresponding ice porosities in the CGG model. A
camera installed on the upper deck of the ship monitored the floe size
distribution during this expedition. Photographs of the broken floe field
taken by this camera can be seen in Meylan et al. (2014).

Attenuation rates extracted from Fig. 8 in Mosig et al. (2015) (see
also Fig. 4 in Meylan et al., 2014) are now shown in Fig. 6 and
compared to theoretical predictions. Again, we take into account the
difference between data on wave energy decay from Meylan et al.
(2014) and estimates on wave amplitude decay from the various models
by halving the former decay rates. For this particular data set, we plot
q as a function of T (wave period) rather than f (wave frequency), as
originally presented in Meylan et al. (2014) and Mosig et al. (2015),
to retain a uniform resolution over the range of periods considered.
Unlike the field observations discussed in the previous section, no roll-
over is discernible from the data points in Fig. 6. Accordingly, none
of the models involved in this comparison (including the CGG model)
predict such a phenomenon; their fitting curves are all monotonically
decreasing with increasing T .

Here the EFS model provides the closest fit as indicated in Fig. 6.
The agreement is especially good at long periods while, as T ô 0,
this model tends to underestimate the attenuation rate. Note that our
version of the EFS curve bears a resemblance to the original one shown
in Mosig et al. (2015) (see their Fig. 8), which may be viewed as further
evidence for the effectiveness of our fitting procedure. By contrast,
the CGG and WS curves are steeper, falling down more quickly as T
increases. These two models produce negligible values of q at long peri-
ods, which are distinctly lower than the field data over most of the time
interval being probed. On the other hand, they tend to overestimate the
decay rates at short periods. Despite these discrepancies, the CGG fit is
seen to lie within or near experimental error, while the WS fit tends to
lie further below. We remark in passing that the decay rates observed in
this case and in the Arctic MIZ (Wadhams et al., 1988) are significantly
lower than those measured in the laboratory experiments as discussed
earlier. This supports a previous statement from Section 2 that the
decay rates in frazil/pancake ice can be several orders of magnitude
greater than in a broken floe field (e.g. compare values of q between
Figs. 2 and 6).

The pore size returned by the CGG fit to these field measurements
is a = 72.0 m, which is larger than the predictions for the two previous
data sets from the Arctic MIZ. While the photographs in Meylan et al.
(2014) might suggest a lower value of a for this broken floe field,
we point out that these were taken immediately after deployment
of the sensors. Over the duration of their operation, these sensors
tended to drift into open ocean, as mentioned in Meylan et al. (2014).
Furthermore, considering that the MIZ explored was overall more on
the sparse side (� = 0.56), with dominant floe sizes l ranging from a
few meters to greater than 100 m in the various areas visited by the
sensors, we deem the pore size a = 72.0 m estimated from the CGG
model to be reasonable here as well.
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Fig. 7. Sensitivity of attenuation rate vs. frequency to varying parameters as predicted by the CGG model. Data for a broken floe field from the Bering Sea 7 February 1983
experiment (Wadhams et al., 1988) are considered. Results for varying (a) thickness h (m), (b) porosity �, (c) pore size a (m), (d) kinematic viscosity ⌘ (m2 s*1), (e) shear modulus
� (Pa), (f) Poisson’s ratio ⌫ are presented.

Table 1
Estimates of shear modulus and kinematic viscosity from the CGG, EFS and WS fits to data on attenuation rate for the various cases under consideration. Values of shear modulus
are normalized relative to �

0
= 10

9 Pa, while values of kinematic viscosity are normalized relative to ⌘
0
= 10

*2 m2 s*1. Lowest estimates are highlighted in red while highest
estimates are highlighted in blue.
Experiment Data set CGG model EFS model WS model

� (ù109) (Pa) ⌘ (ù10*2) (m2 s*1) � (ù109) (Pa) ⌘ (ù10*2) (m2 s*1) � (ù109) (Pa) ⌘ (ù10*2) (m2 s*1)

Newyear & Martin Test 1 5.00 ù 10
*7

7.52 1.17 ù 10
*7

2.50 6.40 ù 10*11
2.80

Test 2 6.00 ù 10
*7

9.00 1.26 ù 10
*7

2.64 1.20 ù 10
*10

3.76

Wang & Shen Tank 2 1.82 ù 10
*4 1.22 ù 10*2

4.80 ù 10
*4

2.25 ù 10
4

1.15 ù 10
*6

9.61
Tank 3 1.73 ù 10

*4
4.00 ù 10

*2
2.80 ù 10

*5
1.20 ù 10

3
4.00 ù 10

*7
5.10

Zhao & Shen
Test 1 7.34 ù 10

*6
8.32 ù 10

*2
7.20 ù 10

*6
8.00 ù 10

2
4.20 ù 10

*9
1.46

Test 2 4.21 ù 10
*5

4.68 ù 10
*2

9.40 ù 10
*4

1.62 ù 10
4

2.47 ù 10
*4

4.50 ù 10
3

Test 3 1.44 ù 10
*4

9.22 ù 10
*2

7.20 ù 10
*2

1.44 ù 10
6

8.32 ù 10
*4

1.32 ù 10
4

Wadhams et al. Greenland Sea 1.38 ù 10
*2

7.00 ù 10
*2 6.50 ù 102 4.62 ù 109 6.75 ù 10

*2
1.14 ù 10

5

Bering Sea 3.30 ù 10
*2

1.16 1.54 5.28 ù 10
6

4.00 ù 10
*2

2.00 ù 10
5

Kohout et al. Antarctic MIZ 1.58 ù 10
*2

1.00 4.20 ù 10
2

4.20 ù 10
8

6.00 ù 10
*3

1.20 ù 10
4
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4. Discussion on shear modulus and kinematic viscosity

We further check the performance of the CGG model by comparing
its estimates of shear modulus � and kinematic viscosity ⌘ with predic-
tions by the EFS and WS models. These two parameters are important
measures of effective viscoelastic properties of the ice cover and are
common to all three continuum formulations. Such an assessment
would be suitable as part of the calibration of these models in view
of potential applications to large-scale wave forecasting in the polar
regions. Similar parametric calibration of the EFS and WS models has
been conducted in Cheng et al. (2017), Mosig et al. (2015) and Zhao
and Shen (2015), although these studies used different methods to fit
the theoretical predictions to experimental data.

Table 1 lists values of � and ⌘ as determined from the CGG, EFS and
WS fits to the laboratory experiments and field observations that we
discussed in the previous sections. To highlight the effective character
of these models as applied to wave propagation in various ice-cover
types, these estimates are presented in such a way that they are nor-
malized relative to typical values � Ù �

0
= 10

9 Pa for pack ice (Mosig
et al., 2015; Williams and Francois, 1992) and ⌘ Ù ⌘

0
= 10

*2 m2 s*1 for
grease or pancake ice (Doble et al., 2015; Newyear and Martin, 1999).
As alluded to in Section 2, Table 1 confirms that both parameters can
take a wide range of values depending on the particular model and ice
conditions. Among all the cases considered, the highest values of � and
⌘ are both achieved by the EFS fit to the Greenland Sea observations
(Wadhams et al., 1988). The lowest value of � is given by the WS fit to
the laboratory Test 1 of Newyear and Martin (1997). The lowest value
of ⌘ is returned by the CGG fit to the Tank 2 experiment of Wang and
Shen (2010a). These extreme values are highlighted in blue (highest)
and red (lowest) in Table 1. As expected, for all three models, the shear
modulus � (which is a measure of the ice-cover’s elasticity) is found to
be smallest for grease ice (Test 1 in Newyear and Martin, 1997) and
largest for a broken floe field (Arctic MIZ Wadhams et al., 1988). Their
estimates of � for both Antarctic and Arctic MIZ remain overall within
two orders of magnitude from the typical value �

0
for pack ice. By

contrast, the kinematic viscosity ⌘ (which may represent a combination
of various attenuating effects in this continuum framework) exhibits a
more complicated behavior depending on the particular model and ice
conditions. We point out however that all three models predict ⌘ to be
on the order of ⌘

0
for the grease-ice experiments (Newyear and Martin,

1997), which is consistent with values ⌘ = 2–3 ⌘
0
inferred by Newyear

and Martin (1999) who fitted data from Newyear and Martin (1997)
to Keller’s two-layer viscous model (Keller, 1998). For a broken floe
field, the viscosity estimates from both EFS and WS models are found
to be larger by several orders of magnitude than their counterparts for
grease ice. On the other hand, the corresponding predictions from the
CGG model remain comparable between these two types of ice cover.

On a related note, we see that � and ⌘ as determined by the CGG fit
only vary over 6 and 3 orders of magnitude respectively, among all the
cases considered. By contrast, � and ⌘ as predicted by the WS fit vary
over 10 and 6 orders of magnitude respectively, while both parameters
in the EFS model vary over 10 orders of magnitude. This suggests that
both � and ⌘ in the CGG model may only require moderate tuning
in view of potential applications to operational wave forecasting. For
both CGG and WS models, the order of magnitude of � tends to exhibit
more scatter than that of ⌘. Recognizing that the CGG and WS models
provide a more refined representation (two-layer formulation) of the
ice cover as opposed to the EFS model, and given that � is an important
measure of elastic properties, this distinction observed between � and
⌘ may be explained by the fact that a wide range of ice conditions
(spanning laboratory experiments and field observations) is examined
in the present study.

Our estimates of � (4.2 ù 10
11 Pa) and ⌘ (4.2 ù 10

6 m2 s*1) from the
EFS fit to the Antarctic MIZ data are consistent with those reported in
Mosig et al. (2015) for the same model (� = 4.9ù 10

12 Pa, ⌘ = 5.0ù 10
7

m2 s*1). Both of them are several orders of magnitude larger than the
reference values �

0
and ⌘

0
(especially for ⌘). Regardless of how close

the fit is, the EFS model tends to require very large values of these
parameters in order to reproduce wave attenuation in broken floe fields
of the Antarctic and Arctic MIZ. This may be interpreted as a way to
make up for the thin-plate approximation so that elastic properties of
the ice cover would be sufficiently well captured in these situations.
Recalling the good agreement obtained by the SRCJ fit to laboratory
data of Zhao and Shen (2015) (Section 3.3) and by the EFS fit to
Antarctic MIZ data (Section 3.6), our results suggest that simple models
like EFS or SRCJ (with few parameters) may be successful at fitting
experimental data, especially for data sets showing a monotonic trend.
However, their rheological parameters may be required to take extreme
values as indicated here, or these models may be unable to describe
more complex phenomena such as a roll-over in other situations.

Our estimates of � ({4.2, 2.5 ù 10
5, 8.3 ù 10

5
} Pa) and ⌘ ({1.5 ù

10
*2, 45.0, 131.6} m2 s*1) from the WS fit to the laboratory measure-

ments of Zhao and Shen (2015) are in good agreement with their own
findings (� = {21, 5 ù 10

5, 1 ù 10
6
} Pa, ⌘ = {1.4 ù 10

*2, 61, 140} m2 s*1)
for Test 1, 2, 3 respectively (see their Table 2). These authors also
fitted the WS model to a data set from Wang and Shen (2010a) (it
was not clearly stated which experiment was considered) and obtained
� = 48 Pa, ⌘ = 4 ù 10

*2 m2 s*1 which again are fairly close in terms
of order of magnitude to our own results (� = {1.1 ù 10

3, 4.0 ù 10
2
} Pa,

⌘ = {9.6ù10
*2, 5.1ù10

*2
} m2 s*1) for Tank 2 and 3 respectively. When

examining the CGG and WS models against the field observations, we
see that their predictions of � are comparable to each other on the order
of 107 Pa, which contrasts with the much higher values from the EFS
fit, as noted above. This similarity however does not extend to ⌘ since
the WS model yields values that are higher than the CGG predictions
by several orders of magnitude. Again, the range of estimated ⌘ from
the CGG fit is strikingly narrow among all the cases considered, in
comparison to the other two models.

It is also worth mentioning that the estimates � = 3.3 ù 10
7 Pa and

⌘ = 1.2ù 10
*2 m2 s*1 from the CGG fit to the Bering Sea measurements

are consistent with those (� = 2.3 ù 10
9 Pa, ⌘ = 1.5 ù 10

*2 m2 s*1)
reported in Liu et al. (1991) for the same data set. As stated earlier,
these authors used a thin-plate viscoelastic model and were able to
emulate the roll-over phenomenon to some extent (see their Fig. 13).
In that study, � was assigned a typical value Ì �

0
for pack ice while ⌘

was deduced from the data fitting. Interestingly, the fitting curve shown
in Fig. 13 of Liu et al. (1991) bears a resemblance to the CGG curve
in our Fig. 5 (modulo the switch between wave frequency and period
for the horizontal axis). Lastly, we remark that the CGG predictions of
⌘ Ì 10

*2–100 ⌘
0
for the data sets from the Antarctic and Arctic MIZ are

encouraging in view of earlier measurements that reported values of
eddy viscosity under large ice floes, ranging from 2.4 ù 10

*3 m2 s*1 in
the central Arctic Ocean (Hunkins, 1966) to 2.1 ù 10

*2 m2 s*1 in the
Weddell Sea (Antarctic MIZ) (McPhee and Martinson, 1994).

5. Sensitivity tests

Given the rather large number of rheological parameters associated
with the ice cover in the CGG formulation, it is of interest to check
their individual relevance to this problem and test the sensitivity
of attenuation rate predictions with respect to these parameters. For
this purpose, we take the Bering Sea observations as a representative
discriminating case because it exhibits unusual features such as the roll-
over phenomenon and contains a fair number of data points. We focus
our attention on the following parameters: h (thickness), � (porosity), a
(pore size), ⌘ (kinematic viscosity), � (shear modulus) and ⌫ (Poisson’s
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ratio). As alluded to in previous sections, some of them which are
related to geometrical features of the ice cover (e.g. thickness, porosity,
pore size) may be estimated by in-situ measurement or remote sensing,
while others which are related to material properties (e.g. kinematic
viscosity, shear modulus) would be more difficult to determine or guess.
With this in mind, a sensitivity analysis may help assign predefined
values to some of these parameters (as opposed to other parameters
that may require more tuning), in order to reduce the parameter space
for the CGG model.

For each of these parameters, Fig. 7 displays a set of curves for
the attenuation rate as predicted by the CGG model. The reference
regime of parameters is given by the corresponding best fit to the Bering
Sea data, as discussed in the previous section (see Fig. 5). This set
of curves is obtained by varying the parameter under consideration
while freezing the other parameters at their original best-fitting values.
The objective of such an analysis is to examine how perturbations in
individual parameters would affect the original best fit. The range of
perturbations for each parameter is chosen to be an interval around its
best-fitting value.

Ice thickness is a distinctive feature of the ice cover in the CGG
formulation, as opposed to the viewpoint in the thin-plate approxima-
tion. Fig. 7(a) reveals that the roll-over tends to shift upward and to
higher frequencies as h is decreased. This tendency is quite pronounced
and suggests strong sensitivity of q with respect to h. A decrease in
h by a factor of 3 shifts the peak outside the frequency range of the
experimental data, and moves it out of sight in this figure. The fact that
shorter waves (i.e. at higher frequencies) experience more attenuation
in thinner ice (i.e. for smaller h), which is rather counter-intuitive,
is reminiscent of a common feature in models for water waves over
seabed composed of a viscous mud layer, where dissipation has a non-
monotonic dependence on mud-layer thickness, with thicker layers
being less dissipative (Chen et al., 2019; Collins et al., 2017; Dalrymple
and Liu, 1978). Ice porosity and pore size are rheological parameters
that are characteristic of the present model. As illustrated in Figs. 7(b)
and (c), increasing � or decreasing a has the basic effect of raising the
attenuation rate and accentuating the roll-over. In either case, the peak
remains around f = 0.13 Hz as � or a is varied. Note that the dichotomy
in variation between � and a is attributed to their contrasting roles
in the friction process. Because the parameter b depends linearly on �
while it is inversely proportional to a2 according to (2), friction is thus
enhanced (and so is the roll-over) as � is increased or a is decreased.
A similar behavior occurs as ⌘ is increased (see Fig. 7d), which is
anticipated considering the linear dependence of b on ⌘. A slightly more
complicated picture is observed for the variation with respect to �.
Inspecting Fig. 7(e), the roll-over tends to shift upward and to lower
frequencies as � is increased. The sensitivity of q to ⌫ is relatively weak
and is confined to the high-frequency region, as suggested by Fig. 7(f).
This explains why, for convenience and given that 0 < ⌫ < 1_2, we
set ⌫ = 0.4 in the previous computations (which is close to the typical
value ⌫ = 1_3 for pack ice Williams and Francois, 1992).

Our sensitivity tests indicate that all these parameters have some
influence on the roll-over, affecting its amplitude and/or position.
Sensitivity of q with respect to h and � seems to be most nontrivial,
and is particularly strong for h. Liu et al. (1991) also concluded from
their model-data comparison that the frequency at which the roll-over
occurs depends on ice conditions, especially ice thickness. In light of
this sensitivity analysis and results from Section 3, to help reduce the
parameter space, it would also be reasonable to fix the pore size with
some predefined value of order O(10) m for potential applications to
wave forecasting in the MIZ. This is even more relevant considering
that this parameter only appears in the expression (2) of the friction
coefficient for the CGG model.

6. Conclusions

To assess the recently proposed CGG model, we test it against a
selection of laboratory experiments and field observations taken from
the literature, concerning wave attenuation in sea ice. Altogether,
these measurements span a wide range of ice conditions and wave
frequencies. We fit the theoretical predictions to data on attenuation
rate via error minimization, which in turn yields estimates for effective
rheological parameters in addition to estimates for the attenuation
rate. Whenever the information is available, the porosity parameter is
assigned a value that is the complement of the mean ice concentration.
To further check this model’s performance, we also compare it to
other existing viscoelastic theories under the same various conditions.
Numerical solutions of the dispersion relations can be found using
relatively simple selection criteria. As a byproduct, we independently
recover (via a different fitting procedure) a number of results that are
similar to those reported in previous studies. While the CGG system
features a larger number of physical parameters than other existing
viscoelastic formulations, our investigation suggests that some of these
parameters may be assigned predefined values, or may be estimated by
in-situ measurement or remote sensing.

Special attention is paid to the EFS and WS formulations which
share some common features with the CGG system. For such parameters
as � (shear modulus) and ⌘ (kinematic viscosity) which control the
viscoelastic properties, we find that the range of estimated values (over
all the situations considered) may differ significantly from one model to
another. Among these three representations, the CGG (resp. EFS) model
turns out to be the one for which the predicted range of both � and ⌘ is
the narrowest (resp. widest) in orders of magnitude. Even for individual
situations, this difference in parameter recovery may be considerable.
As expected, for grease ice, all three models predict ⌘ on the order
of ⌘

0
= 10

*2 m2 s*1 and � to be essentially negligible compared to
the typical value �

0
= 10

9 Pa for pack ice. On the other hand, for
broken floe fields, there is more variability in the determination of these
parameters, especially for ⌘. We obtain in this case values of � that may
be lower (for CGG and WS) or higher (for EFS) than �

0
by a few orders

of magnitude. Estimates of ⌘ from the EFS and WS fits tend to be larger
than ⌘

0
by several orders of magnitude, while those from the CGG fit

remain around this reference value. Overall, the CGG model provides
good fits to the data on attenuation rate for the various cases under
consideration.

Against the Antarctic MIZ data, the EFS counterpart appears to be a
clear favorite, but the corresponding fit is achieved for values of � and
⌘ that are both excessively high, a fact which has also been pointed out
in Mosig et al. (2015). By contrast, the CGG fit returns markedly lower
values for these parameters, with � being lower than �

0
by two orders

of magnitude and ⌘ being essentially equal to ⌘
0
. In comparison to the

Arctic MIZ data (from both the Bering and Greenland Seas), the CGG
model is able to reasonably reproduce the roll-over of attenuation rate,
unlike both EFS and WS counterparts which only predict a monotonic
growth with frequency. According to the poroelastic formulation, this
intriguing phenomenon is attributed to friction caused by the relative
motion between fluid and solid components of the ice cover, which
highlights the role of porosity in the present description of wave–
ice interactions, as such friction is directly connected to the porous
nature of the ice cover. This dissipative mechanism could possibly
be a contributing factor in the roll-over effect as reported in field
observations.
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While the present results are encouraging, further calibration and
validation are needed in order to determine the extent to which the
CGG model is applicable. The current version has limitations, in partic-
ular it is linear and two-dimensional. It would be suitable to compare
with more recent measurements from the Arctic MIZ as in Cheng et al.
(2017) and de Santi et al. (2018) where previous viscous or viscoelastic
models were tested. Using such data requires substantial processing and
analysis to extract the apparent attenuation rate from directional wave
spectra. Because the fitting procedure in Cheng et al. (2017) and de
Santi et al. (2018) is based on minimizing an objective function similar
to (6), and considering the overall good agreement found in the present
study, we expect the CGG model to perform satisfactorily in comparison
with those data sets as well.

In the future, it would be of interest to extend these results to
the three-dimensional setting (for wave propagation in two horizontal
directions) as well as to the nonlinear case. Discrepancies that we have
observed may partly be attributed to such effects. Nonlinear theory of
wave–ice interactions has drawn increasing attention in recent years
(Dinvay et al., 2019; Guyenne and P†r†u, 2012, 2014, 2017).
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Appendix. Coefficients in the dispersion relation

Coefficients in the dispersion relation (1) have the following expres-
sions:
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The expressions of �, Q, R, Dj (j = 1, 2, 3) and Fj (j = 1,… , 8) in terms
of wave parameters and rheological parameters can be found in Chen
et al. (2019). The complex shear modulus �c is given by (5).
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