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HAMILTONIAN DYSTHE EQUATION FOR THREE-DIMENSIONAL
DEEP-WATER GRAVITY WAVES\ast 

PHILIPPE GUYENNE\dagger , ADILBEK KAIRZHAN\ddagger , AND CATHERINE SULEM\ddagger 

Abstract. This article concerns the water wave problem in a three-dimensional domain of
infinite depth and examines the modulational regime for weakly nonlinear wavetrains. We use the
method of normal form transformations near the equilibrium state to provide a new derivation of
the Hamiltonian Dysthe equation describing the slow evolution of the wave envelope. A precise
calculation of the third-order normal form allows for a refined reconstruction of the free surface. We
test our approximation against direct numerical simulations of the three-dimensional Euler system
and against predictions from the classical Dysthe equation, and find very good agreement.
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1. Introduction. Modulation theory is a well-established theory to study the
long-time evolution and stability of oscillatory solutions to partial differential equa-
tions. In the setting of a modulational regime, an ansatz for the solutions is introduced
in the form of a weakly nonlinear modulated wavetrain and one derives reduced equa-
tions describing the evolution of its slowly varying envelope. In the context of surface
gravity waves, one finds the nonlinear Schr\"odinger (NLS) equation, or more generally
the Davey--Stewartson system in three dimensions. A higher-order approximation was
proposed by Dysthe [11] for deep water, using the perturbative method of multiple
scales. It was later extended to other settings such as finite depth [1], gravity-capillary
waves [17], exact linear dispersion [27], waves in the presence of dissipation [16], even
to higher order [25]. The Dysthe equation and its variants have been widely used in
the water wave community due to their efficiency at describing realistic waves, in par-
ticular, waves with moderately large steepness. Such a model exhibits contributions
from the mean flow induced by radiation stresses of the modulated wavetrain, which
in turn lead to improvement in the stability properties of finite-amplitude waves.

However, unlike the NLS equation, earlier versions of the Dysthe equation are
not Hamiltonian while the original water wave system has a Hamiltonian structure
[29]. Gramstad and Trulsen [12] used a refined version of Zakharov's four-wave in-
teraction model as obtained by Krasitskii [19] and derived a Hamiltonian version of
Dysthe's equation for three-dimensional gravity surface waves on finite depth. Craig,
Guyenne, and Sulem [7] considered the two-dimensional problem of gravity waves on
deep water and derived a Hamiltonian Dysthe equation from the original water wave
system through a sequence of canonical transformations involving scalings, a modu-
lational ansatz, as well as homogenization techniques that preserve the Hamiltonian
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350 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

character of the problem. A central tool in this approach is the Dirichlet--Neumann
operator that appears naturally in the Hamiltonian (total energy) of the water wave
system. It has a convergent Taylor series in terms of the surface elevation [9] which
in turn provides an expansion of the Hamiltonian for small-amplitude waves. This
analysis involves the construction of a Birkhoff normal form transformation that elim-
inates nonresonant cubic terms leading to a reduced Hamiltonian at fourth order. The
resulting Dysthe equation is Hamiltonian and has differences in the high-order non-
linear terms as compared to the original equation of [11]. Furthermore in [7], this
Hamiltonian Dysthe equation was tested against direct numerical simulations of the
Euler system and very good agreement was obtained. For this purpose, one needs to
reconstruct the surface elevation from the solution of the envelope equation. While
classically this reconstruction is carried out perturbatively in terms of a Stokes ex-
pansion [12], the procedure in [7] is achieved through a nonperturbative method that
requires solving an inviscid Burgers equation associated with the cubic Birkhoff nor-
mal form transformation. In subsequent work [14], an alternate spatial version of this
Hamiltonian Dysthe equation, well adapted for comparison with laboratory experi-
ments, was derived and tested against experimental results on periodic groups and
short-wave packets as previously discussed by Lo and Mei [20].

The purpose of this paper is to extend this analysis to the three-dimensional
problem of gravity waves on deep water. Our new contributions are twofold. First,
we present the derivation of a Hamiltonian Dysthe equation through a sequence of
canonical transformations that preserve the Hamiltonian character of the system,
starting from the three-dimensional Euler equations for an irrotational ideal fluid.
The surface reconstruction also involves solving a Hamiltonian system of differential
equations. As a consequence, the entire solution process fits within a Hamiltonian
framework. Second, we test our model against direct numerical simulations of the
three-dimensional Euler system and against numerical solutions of the classical Dysthe
equation. We propose a simplified version of our approach for surface reconstruction
that is more efficient numerically by exploiting the disparity in length scales between
the longitudinal and transverse wave dynamics.

Finally, the question on well-posedness of the Cauchy problem for the classical
Dysthe equation was first addressed by Chihara [2] who proved local well-posedness
for initial data in H3(\BbbR 2), using techniques developed for general NLS equations with
nonlinear terms containing derivatives. This result was later improved to initial data
in Hs(\BbbR 2), s \geq 3/2, by Koch and Saut [18]. More recently, Grande, Kurianski, and
Staffilani [13] established that the (classical) Dysthe equation is locally well-posed for
initial conditions in Hs(\BbbR 2), s > 1. They also proved that it is ill-posed in Hs(\BbbR 2) for
s < 0, in the sense that the flow map (data-solution) cannot be C3 in Hs(\BbbR 2), s < 0.
Mosincat, Pilod, and Saut [24] proved global well-posedness and scattering for small
data in the critical space L2(\BbbR 2). This result is sharp in view of the ill-posedness
result quoted above.

The paper is organized as follows. In section 2, the mathematical formulation of
three-dimensional deep-water water waves as a Hamiltonian system for the surface
elevation and trace of the velocity potential is recalled. Section 3 provides the ba-
sic tools of Birkhoff normal form transformations and, in particular, the third-order
normal form that eliminates all cubic terms from the Hamiltonian is obtained. In
section 4, we calculate the new Hamiltonian truncated at fourth order and introduce
the modulational ansatz where approximate solutions take the form of weakly modu-
lated monochromatic waves, leading to a Hamiltonian Dysthe equation for the wave
envelope as described in section 5. Section 6 is devoted to the reconstruction of the
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free surface, which includes inverting the third-order normal form transformation.
In section 7, we perform a modulational stability analysis for Stokes wave solutions.
Finally, we present numerical tests in section 8.

2. The water wave system. We consider a three-dimensional fluid in a domain
of infinite depth S(\eta , t) = \{ (x, z) : x = (x, y) \in \BbbR 2, - \infty < z < \eta (x, t)\} , where
z = \eta (x, t) represents the free surface at time t. Assuming the fluid is incompressible,
inviscid, and irrotational, it is described by a potential flow such that the velocity
field u(x, z, t) = \nabla \varphi satisfies

\Delta \varphi = 0

in the fluid domain S(\eta , t). On the surface \{ z = \eta (x, t)\} , two boundary conditions
are imposed, namely,

\partial t\eta = \partial z\varphi  - \partial x\eta \cdot \partial x\varphi , \partial t\varphi +
1

2
| \nabla \varphi | 2 + g\eta = 0 ,

where g is the acceleration due to gravity. The symbol \nabla denotes the spatial gra-
dient (\partial x, \partial z) when applied to functions or the variational gradient when applied to
functionals.

2.1. Hamiltonian formulation. It is known since the seminal paper of Za-
kharov [29] that the water wave system has a canonical Hamiltonian formulation with
conjugate variables (\eta (x, t), \xi (x, t) := \varphi (x, \eta (x, t), t)) such that

(2.1) \partial t

\biggl( 
\eta 
\xi 

\biggr) 
= J \nabla H(\eta , \xi ) =

\biggl( 
0 1
 - 1 0

\biggr) \biggl( 
\partial \eta H
\partial \xi H

\biggr) 
,

where the Hamiltonian H(\eta , \xi ) is the total energy and is expressed in terms of the
Dirichlet--Neumann operator (DNO) G(\eta ) as

(2.2) H(\eta , \xi ) =
1

2

\int 
\BbbR 2

\bigl( 
\xi G(\eta )\xi + g\eta 2

\bigr) 
dx .

This operator is defined as a map which associates with the Dirichlet data \xi the normal
derivative of the harmonic function \varphi at the surface with a normalizing factor, namely,

G(\eta ) : \xi \mapsto  - \rightarrow 
\sqrt{} 
1 + | \partial x\eta | 2 \partial n\varphi 

\bigm| \bigm| 
z=\eta 

.

It is analytic in \eta [3] and admits a convergent Taylor series expansion,

(2.3) G(\eta ) =

\infty \sum 
m=0

G(m)(\eta ) ,

about \eta = 0. For each m, G(m)(\eta ) is homogeneous of degree m in \eta and can be
calculated explicitly via recursive relations [9]. Denoting D =  - i \partial x, the first three
terms are

(2.4)

\left\{   
G(0)(\eta ) = | D| ,
G(1)(\eta ) = D \cdot \eta D  - G(0)\eta G(0) ,
G(2)(\eta ) =  - 1

2

\bigl( 
| D| 2\eta 2G(0) +G(0)\eta 2| D| 2  - 2G(0)\eta G(0)\eta G(0)

\bigr) 
.
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352 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

We denote the Fourier transform of the real-valued pair (\eta (x), \xi (x)) by

(\eta k, \xi k) =
1

2\pi 

\int 
\BbbR 2

e - ik\cdot x(\eta (x), \xi (x)) dx ,

where k = (kx, ky) \in \BbbR 2, and where we have dropped the usual ``hat"" notation as well
as the time dependence for simplicity. In Fourier variables, the water wave system
also has the form of a canonical Hamiltonian system (see Appendix A)

(2.5) \partial t

\biggl( 
\eta  - k

\xi  - k

\biggr) 
=

\biggl( 
0 1
 - 1 0

\biggr) \biggl( 
\partial \eta k

H
\partial \xi kH

\biggr) 
.

Substituting the expansion for G(\eta ) into the Hamiltonian (2.2), we get

(2.6) H = H(2) +H(3) +H(4) + \cdot \cdot \cdot ,

where each term H(m) is homogeneous of degree m in the (\eta , \xi ) variables. Using (2.4),
the first three terms of H, written in Fourier variables, are

(2.7)

H(2)(\eta , \xi ) =
1

2

\int 
\BbbR 2

\bigl( 
| k| | \xi k| 2 + g| \eta k| 2

\bigr) 
dk ,

H(3)(\eta , \xi ) =  - 1

4\pi 

\int 
\BbbR 6

(k1 \cdot k3 + | k1| | k3| )\xi 1\eta 2\xi 3\delta 123dk123 ,

H(4)(\eta , \xi ) =  - 1

16\pi 2

\int 
\BbbR 8

| k1| | k4| (| k1| + | k4|  - 2| k3 + k4| ) \xi 1\eta 2\eta 3\xi 4\delta 1234dk1234 .

In the above expressions, we have used the compact notations kj = (kjx, kjy) \in \BbbR 2,
dk123 = dk1dk2dk3, (\xi j , \eta j) = (\xi kj

, \eta kj
), and \delta 1...n = \delta (k1 + \cdot \cdot \cdot + kn), where \delta (k) =\bigl( 

1
2\pi 

\bigr) 2 \int 
e - ik\cdot xdx is the Dirac distribution in two dimensions. Hereafter, the domain

of integration is omitted in integrals and is understood to be \BbbR 2 for each xj or kj .

2.2. Complex symplectic coordinates and Poisson brackets. The linear
dispersion relation for deep-water gravity waves is \omega 2

k = g| k| . It is convenient to
introduce the complex symplectic coordinates

(2.8)

\biggl( 
zk
z - k

\biggr) 
= P1

\biggl( 
\eta k
\xi k

\biggr) 
=

1\surd 
2

\biggl( 
ak i a - 1

k

ak  - i a - 1
k

\biggr) \biggl( 
\eta k
\xi k

\biggr) 
,

where a2k :=
\sqrt{} 
g/| k| = g/\omega k and to consider that the functions \eta (x) and \xi (x) are real

valued. In these variables, the system (2.1) reads

(2.9) \partial t

\biggl( 
zk
z - k

\biggr) 
= J1

\biggl( 
\partial zkH
\partial z - k

H

\biggr) 
=

\biggl( 
0  - i
i 0

\biggr) \biggl( 
\partial zkH
\partial z - k

H

\biggr) 
with J1 = P1JP

\ast 
1 [6], where the star denotes the adjoint with respect to the L2-scalar

product. The quadratic term H(2) becomes

H(2) =

\int 
\omega k| zk| 2dk ,

while the cubic term H(3) takes the form

(2.10) H(3) =
1

8\pi 
\surd 
2

\int 
(k1 \cdot k3+| k1| | k3| )

a1a3
a2

(z1 - z - 1)(z2+z - 2)(z3 - z - 3)\delta 123dk123 ,

where z\pm j := z\pm kj
and aj := akj

.
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The Poisson bracket of two functionalsK(\eta , \xi ) andH(\eta , \xi ) of real-valued functions
\eta and \xi is defined as

\{ K,H\} =

\int 
(\partial \eta H\partial \xi K  - \partial \xi H\partial \eta K) dx .

Assuming that K and H are real valued, we have

\{ K,H\} =

\int 
(\partial \eta k

H\partial \xi kK  - \partial \xi kH\partial \eta k
K)dk =

\int 
(\partial \eta k

H\partial \xi kK  - \partial \xi kH\partial \eta k
K)dk

=

\int 
(\partial \eta k

H\delta \xi  - k
K  - \partial \xi kH\partial \eta  - k

K)dk =

\int 
(\partial \eta k1

H\partial \xi k2K  - \partial \xi k1H\partial \eta k2
K)\delta 12dk12 .

In terms of the complex symplectic coordinates, the Poisson bracket is

(2.11) \{ K,H\} =
1

i

\int 
(\partial zk1H\partial z - k2

K  - \partial z - k1
H\partial zk2K)\delta 12dk12 .

3. Transformation theory. A monomial z1 . . . zlz - (l+1) . . . z - m in the Hamil-
tonian is resonant of order m if

l\sum 
j=1

\omega kj
 - 

m\sum 
j=l+1

\omega kj
= 0 for some k1 + k2 + \cdot \cdot \cdot + km = 0 .

It is known that, for pure gravity waves on deep water, there are no resonant triads,

that is, no triplets (k1, k2, k3) \in (\BbbR 2)
3
with kj \not = 0 such that k1 + k2 + k3 = 0 and

\omega k1
\pm \omega k2

\pm \omega k3
= 0. This is because \omega (k) is an increasing concave function of | k| .

3.1. Canonical transformation. To eliminate nonresonant terms as they are
not crucial at describing the wave dynamics, we look for a canonical transformation
of physical variables

\tau : w =

\biggl( 
\eta 
\xi 

\biggr) 
\mapsto  - \rightarrow w\prime ,

defined in a neighborhood of the origin, such that the transformed Hamiltonian sat-
isfies

H \prime (w\prime ) = H(\tau  - 1(w\prime )) , \partial tw
\prime = J \nabla H \prime (w\prime ) ,

and reduces to

H \prime (w\prime ) = H(2)(w\prime ) + Z(3) + Z(4) + \cdot \cdot \cdot + Z(m) +R(m+1) ,

where Z(m) consists only of resonant terms and R(m+1) is the remainder term [8]. We
construct the transformation \tau by the Lie transform method as a Hamiltonian flow \psi 
from ``time"" s =  - 1 to time s = 0 governed by

\partial s\psi = J \nabla K(\psi ) , \psi (w\prime )| s=0 = w\prime , \psi (w\prime )| s= - 1 = w ,

and associated with an auxiliary Hamiltonian K. Such a transformation is canonical
and preserves the Hamiltonian structure of the system. The Hamiltonian H \prime satisfies
H \prime (w\prime ) = H(\psi (w\prime ))| s= - 1 and its Taylor expansion around s = 0 is

H \prime (w\prime ) = H(\psi (w\prime ))| s=0  - 
dH

ds
(\psi (w\prime ))| s=0 +

1

2

d2H

ds2
(\psi (w\prime ))| s=0  - \cdot \cdot \cdot .

D
ow

nl
oa

de
d 

03
/2

3/
22

 to
 1

32
.1

74
.2

54
.7

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

354 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

Abusing notation, we further use w = (\eta , \xi )\top to denote the new variable w\prime . Terms
in this expansion can be expressed using Poisson brackets as

H(\psi (w))| s=0 = H(w) ,

dH

ds
(\psi (w))| s=0 =

\int 
(\partial \eta H\partial s\eta + \partial \xi H\partial s\xi ) dx

=

\int 
(\partial \eta H\partial \xi K  - \partial \xi H\partial \eta K) dx = \{ K,H\} (w) ,

and similarly for the remaining terms. The Taylor expansion of H \prime around s = 0 now
has the form

H \prime (w) = H(w) - \{ K,H\} (w) + 1

2
\{ K, \{ K,H\} \} (w) - \cdot \cdot \cdot .

Substituting this transformation into the expansion (2.6) of H, we obtain

H \prime (w) = H(2)(w) +H(3)(w) + \cdot \cdot \cdot 
 - \{ K,H(2)\} (w) - \{ K,H(3)\} (w) - \{ K,H(4)\} (w) - \cdot \cdot \cdot 

+
1

2
\{ K, \{ K,H(2)\} \} (w) + 1

2
\{ K, \{ K,H(3)\} \} (w) + \cdot \cdot \cdot .

IfK is homogeneous of degreem andH(n) is homogeneous of degree n, then \{ K,H(n)\} 
is of degree m+n - 2. Thus, if we construct an auxiliary Hamiltonian K = K(3) that
is homogeneous of degree 3 and satisfies the relation

(3.1) H(3)  - \{ K(3), H(2)\} = 0 ,

we will have eliminated all cubic terms from the transformed Hamiltonian H \prime . We
can repeat this process at each order.

3.2. Third-order Birkhoff normal form. To find the auxiliary Hamiltonian
K(3) from (3.1), we use the following diagonal property of the coadjoint operator
coadH(2) := \{ \cdot , H(2)\} when applied to monomial terms [10]. For example, taking
\scrI :=

\int 
z1z2z - 3\delta 123dk123, we have

(3.2) \{ \scrI , H(2)\} = i

\int 
(\omega 1 + \omega 2  - \omega 3)z1z2z - 3\delta 123dk123 ,

where \omega j := \omega kj . We will employ such notations throughout the paper when no
confusion should arise.

Proposition 3.1 ([10]). The cohomological equation (3.1) has a unique solution
K(3) which, in complex symplectic coordinates, is

K(3) =
1

8i\pi 
\surd 
2

\int 
(k1 \cdot k3 + | k1| | k3| )

\Bigl[ a1a3
a2

z1z2z3  - z - 1z - 2z - 3

\omega 1 + \omega 2 + \omega 3
(3.3)

 - 2
a1a3
a2

z1z2z - 3  - z - 1z - 2z3
\omega 1 + \omega 2  - \omega 3

+
a1a3
a2

z1z - 2z3  - z - 1z2z - 3

\omega 1  - \omega 2 + \omega 3

\Bigr] 
\delta 123dk123 .

Alternatively, in the (\eta , \xi ) variables, K(3) has the form

K(3) =
1

2\pi 

\int 
k1 \cdot k3 + | k1| | k3| 

d123

\Bigl[ 
g2(| k1|  - | k2|  - | k3| )\eta 1\eta 2\xi 3 + g2| k2| \eta 1\xi 2\eta 3(3.4)

+
g

2
| k2| (| k1|  - | k2| + | k3| )\xi 1\xi 2\xi 3

\Bigr] 
\delta 123dk123 ,
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where the denominator d123 is given by

d123 = d(\omega 1, \omega 2, \omega 3) = (\omega 1 + \omega 2 + \omega 3)(\omega 1 + \omega 2  - \omega 3)(\omega 1  - \omega 2 + \omega 3)(\omega 1  - \omega 2  - \omega 3)

= g2
\bigl( 
| k1| 2 + | k2| 2 + | k3| 2  - 2| k1| | k2|  - 2| k2| | k3|  - 2| k1| | k3| 

\bigr) 
=  - 2g2 (k1 \cdot k2 + k2 \cdot k3 + k3 \cdot k1 + | k1| | k2| + | k2| | k3| + | k3| | k1| ) .

Proof. We write H(3) given in (2.10) as a linear combination of third-order mono-
mials in zk and z - k. Identity (3.2) allows us to solve the cohomological equation (3.1).
We identify terms to obtain (3.3). The expression (3.4) is derived from substitution
of the relations (2.8). It will be useful later for the reconstruction of the surface eleva-
tion. Notice that the denominator d123 is symmetric with respect to any permutation
of the indices.

Remark 3.2. The absence of resonant triads implies that the denominators do not
vanish if none of the wavenumbers k1, k2, k3 vanish. However, in these integrals, any
of the kj could be arbitrarily close to 0. In such a case, the denominator becomes
small but is compensated for by a small numerator. For example, if | k1| \sim | k2| are
\scrO (1) while | k3| is small, the denominator d123 \sim | k3| while, in the numerator, the
term | k1 \cdot k3 + | k1| | k3| | \sim | k3| . On the other hand, if | k1| \sim | k3| are \scrO (1) while | k2| is
small, the denominator d123 \sim | k2| and we can use that | | k1|  - | k3| | \leq | k1 +k3| = | k2| 
to compensate for it. In all cases, all integrals are convergent.

The third-order normal form defining the new coordinates is obtained as the
solution map at s = 0 of the Hamiltonian flow

\partial s

\biggl( 
\eta 
\xi 

\biggr) 
=

\biggl( 
0 1
 - 1 0

\biggr) \biggl( 
\partial \eta K

(3)

\partial \xi K
(3)

\biggr) 
with initial condition at s =  - 1 being the original variables (\eta , \xi ). Equivalently, in
Fourier coordinates,

\partial s\eta  - k = \partial \xi kK
(3) , \partial s\xi  - k =  - \partial \eta k

K(3) ,(3.5)

where

\partial \xi kK
(3) =

1

2\pi 

\int 
P12k\eta 1\eta 2\delta 1k2dk12 +Qk23\xi 2\xi 3\delta 2k3dk23 ,

\partial \eta k
K(3) =

1

2\pi 

\int 
Rk23\eta 2\xi 3\delta k23dk23 ,

by virtue of (3.4). The coefficients in the above integrals are given by

P12k =  - 1

2
| k| + g2

d12k
(k1 \cdot k + | k1| | k| )(| k1|  - | k2|  - 3| k| ) ,

Qk23 =  - 1

4g

\bigl[ 
2(k \cdot k3 + | k| | k3| ) + (k2 \cdot k3 + | k2| | k3| )

\bigr] 
 - g

2dk23

\bigl[ 
2(k \cdot k3 + | k| | k3| )2 + (k2 \cdot k3 + | k2| | k3| )2

\bigr] 
,

Rk23 =  - | k3| +
g2

dk23

\Bigl[ 
(k \cdot k3 + | k| | k3| )(| k|  - | k2|  - 3| k3| )

+(k2 \cdot k3 + | k2| | k3| )(| k2|  - | k|  - 3| k3| )
\Bigr] 
.
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356 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

4. Reduced Hamiltonian. After applying the third-order normal form trans-
formation, the new Hamiltonian H \prime becomes (with the prime dropped)

H(w) = H(2)(w) +H(4)(w) - \{ K(3), H(3)\} (w) + 1

2
\{ K(3), \{ K(3), H(2)\} \} (w) +R(5)

= H(2)(w) +H
(4)
+ (w) +R(5) ,

where R(5) denotes all terms of order 5 and higher, and H
(4)
+ is the new fourth-order

term

(4.1) H
(4)
+ = H(4)  - 1

2
\{ K(3), H(3)\} .

4.1. Fourth-order term \bfitH 
(\bffour )
+ . Let

(4.2) S123 := (k1 \cdot k3 + | k1| | k3| )
a1a3
a2

, A123 :=
1

8\pi 
\surd 
2
(S123 + S312  - S231) .

Lemma 4.1. We have

(4.3) H(3) =

\int 
A123(z1z2z3 + z - 1z - 2z - 3  - z1z2z - 3  - z - 1z - 2z3)\delta 123dk123 ,

(4.4) K(3) =
1

i

\int 
A123

\Bigl[ z1z2z3  - z - 1z - 2z - 3

\omega 1 + \omega 2 + \omega 3
 - z1z2z - 3  - z - 1z - 2z3

\omega 1 + \omega 2  - \omega 3

\Bigr] 
\delta 123dk123 .

Proof. Expanding the brackets in (2.10), we find

H(3) =
1

8\pi 
\surd 
2

\int 
S123

\Bigl[ 
(z1z2z3 + z - 1z - 2z - 3) - (z1z2z - 3 + z - 1z - 2z3)

+ (z1z - 2z3 + z - 1z2z - 3) - (z1z - 2z - 3 + z - 1z2z3)
\Bigr] 
\delta 123dk123 .(4.5)

By symmetry, the first term on the right-hand side (RHS) of (4.5) identifies to the
two terms of (4.3). Applying the index rearrangement (1, 2, 3) \rightarrow (2, 3, 1) to the third
term of (4.5) and (1, 2, 3) \rightarrow (3, 1, 2) to its fourth term, the last three terms on the
RHS of (4.5) reduce to the last two terms of (4.3).

The modified fourth-order term H
(4)
+ given in (4.1) is the sum of integrals with

all possible combinations of fourth-order monomials in zk and z - k, that is,

(4.6)
H

(4)
+ =

\int \Bigl[ 
T+z1z2z3z4 + T\pm z1z2z3z - 4 + T+

 - z1z2z - 3z - 4 + T\mp z1z - 2z - 3z - 4

+ T - z - 1z - 2z - 3z - 4

\Bigr] 
\delta 1234dk1234 .

In view of the forthcoming modulational ansatz and homogenization process, it is,
however, not necessary to calculate explicitly all the coefficients above. We only need
the coefficient T+

 - of monomial z1z2z - 3z - 4. We thus denote by

H
(4)
R =

\int 
T1z1z2z - 3z - 4\delta 1234dk1234 , \{ K(3), H(3)\} R =

\int 
T2z1z2z - 3z - 4\delta 1234dk1234 ,
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the contributions from these monomials to H(4) and \{ K(3), H(3)\} , respectively, and

(4.7) H
(4)
+R =

\int 
T+
 - z1z2z - 3z - 4\delta 1234dk1234

with H
(4)
+R = H

(4)
R  - 1

2\{ K
(3), H(3)\} R and T+

 - = T1  - 1
2T2.

Proposition 4.2. The coefficient T1 has the form

T1 =
4
\sqrt{} 

| k1| | k2| | k3| | k4| 
64\pi 2

\Bigl[ \sqrt{} 
| k1| | k2| 

\bigl( 
| k1| + | k2|  - 2| k2  - k3| 

\bigr) 
+
\sqrt{} 

| k3| | k4| 
\bigl( 
| k3| + | k4|  - 2| k1  - k4| 

\bigr) 
 - 2
\sqrt{} 

| k1| | k4| 
\bigl( 
2| k1| + 2| k4|  - | k1 + k2|  - | k3 + k4|  - | k1  - k3|  - | k2  - k4| 

\bigr) \Bigr] 
.

Proof. Write H(4) given in (2.7) in terms of complex symplectic coordinates

H(4) =

\int 
D1234(z1  - z - 1)(z2 + z - 2)(z3 + z - 3)(z4  - z - 4)\delta 1234dk1234 ,

where

D1234 =
4
\sqrt{} 

| k1| | k2| | k3| | k4| 
64\pi 2

\sqrt{} 
| k1| | k4| (| k1| + | k4|  - 2| k3 + k4| ) .

Extracting terms of type ``zzzz,"" we have

H
(4)
R =

\int 
D1234( - z1z2z - 3z - 4  - z - 1z - 2z3z4  - z1z - 2z3z - 4  - z - 1z2z - 3z4

+ z1z - 2z - 3z4 + z - 1z2z3z - 4)\delta 1234dk1234 .

This integral can alternatively be written after index rearrangements as

H
(4)
R =

\int 
( - D1234  - D4321  - D1324  - D4231 +D1432 +D3214)z1z2z - 3z - 4\delta 1234dk1234

with the coefficient above equal to T1 as given in Proposition 4.2.

Proposition 4.3. Denoting \ell k2

k1
:= | k1| | k2| +k1\cdot k2\surd 

| k1| | k2| 
, we have T2 = I + II + III with

I =
g1/2

128\pi 2

\bigl( 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| 

\bigr) 1/4\bigl( 
\ell k2

k1
+ \ell  - k1

k1+k2
+ \ell  - k2

k1+k2

\bigr) 
\times 
\bigl( 
\ell k4

k3
+ \ell  - k3

k3+k4
+ \ell  - k4

k3+k4

\bigr) \Bigl( 1

\omega k1 + \omega k2 + \omega k1+k2

+
1

\omega k3 + \omega k4 + \omega k3+k4

\Bigr) 
,(4.8)

II =
g1/2

32\pi 2
(| k1| | k2| | k3| | k4| | k1 + k3| | k2 + k4| )1/4(\ell k3

k1
+ \ell  - k3

k1+k3
 - \ell  - k1

k1+k3
)

\times (\ell k2

k4
+ \ell  - k2

k2+k4
 - \ell  - k4

k2+k4
)
\Bigl( 1

\omega k1 + \omega k1+k3  - \omega k3

+
1

\omega k4 + \omega k4+k2  - \omega k2

\Bigr) 
,(4.9)

III =  - g1/2

128\pi 2

\bigl( 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| )1/4

\bigl( 
\ell  - k1

k1+k2
+ \ell  - k2

k1+k2
 - \ell k2

k1

\bigr) 
\times 
\bigl( 
\ell  - k3

k3+k4
+ \ell  - k4

k3+k4
 - \ell k4

k3

\bigr) \Bigl( 1

\omega k1 + \omega k2  - \omega k1+k2

+
1

\omega k3 + \omega k4  - \omega k3+k4

\Bigr) 
.(4.10)

The proof is a little more technical so we present it in Appendix B.2.
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358 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

4.2. Modulational ansatz and homogenization. We are interested in solu-
tions in the form of near-monochromatic waves with carrier wavenumber k0 = (k0, 0),
k0 > 0. In Fourier space, this corresponds to a narrowband approximation where \eta k
and \xi k are localized near k0. Accordingly, when dealing with variables of type zkj

and z - kj as shown in (4.6), we introduce the modulational ansatz

(4.11) \pm kj = k0 + \varepsilon \chi j , where \chi j = (\lambda j , \mu j) ,
| \chi j | 
k0

= \scrO (1) , \varepsilon \ll 1 ,

respectively. A scale-separation lemma will show that, in this regime, all integrals in
(4.6), except the third one, are arbitrarily small as \varepsilon \rightarrow 0. The third integral will be

used later to derive a suitable approximation for the fourth-order term H
(4)
+ .

We introduce the function U defined in the Fourier space as

(4.12) U(\chi ) = \varepsilon z(k0 + \varepsilon \chi ) , U(\chi ) = \varepsilon z(k0 + \varepsilon \chi ) ,

and we employ the notation Uj = U\chi j := U(\chi j) when no confusion should arise (again
the time dependence is omitted). The first integral in (4.6) has the form

\scrI 1 :=

\int 
Tk1,k2,k3,k4

z1z2z3z4\delta 1234dk1234

=
1

4\pi 2

\int \int 
Tk1,k2,k3,k4

z1z2z3z4e
 - i(k1+k2+k3+k4)\cdot xdk1234dx ,

where we have used the identity \delta 1234 = 1
4\pi 2

\int 
e - i(k1+k2+k3+k4)\cdot xdx. After the change

of variables (4.11), \scrI 1 becomes

\scrI 1 =
\varepsilon 4

4\pi 2

\int 
e - 4ik0x

\int \widetilde T\chi 1,\chi 2,\chi 3,\chi 4U1U2U3U4e
 - i(\chi 1+\chi 2+\chi 3+\chi 4)\cdot (\varepsilon x)d\chi 1234dx ,

where \widetilde T\chi 1,...,\chi 4
= Tk0+\varepsilon \chi 1,...,k0+\varepsilon \chi 4

. The inner integral above,\int \widetilde T\chi 1,\chi 2,\chi 3,\chi 4
U1U2U3U4e

 - i(\chi 1+\chi 2+\chi 3+\chi 4)\cdot (\varepsilon x)d\chi 1234 ,

identifies as a function f(\varepsilon x). Thus, \scrI 1 = \varepsilon 4

4\pi 2

\int 
e - 4ik0xf(\varepsilon x)dx.

The second integral in (4.6) has the form

\scrI 2 =

\int 
Tk1,k2,k3,k4

z1z2z3z - 4\delta 1234dk1234

=
1

4\pi 2

\int \int 
Tk1,k2,k3,k4

z1z2z3z - 4e
 - i(k1+k2+k3+k4)\cdot xdk1234dx .

After the change of variables (4.11), \scrI 2 becomes

\scrI 2 =
\varepsilon 4

4\pi 2

\int 
e - 2ik0x

\int \widetilde T\chi 1,\chi 2,\chi 3,\chi 4
U1U2U3U4e

 - i(\chi 1+\chi 2+\chi 3 - \chi 4)\cdot (\varepsilon x)d\chi 1234dx ,

where \widetilde T\chi 1,...,\chi 4 = Tk0+\varepsilon \chi 1,..., - k0 - \varepsilon \chi 4 . Again, the inner integral,\int \widetilde T\chi 1,\chi 2,\chi 3,\chi 4U1U2U3U4e
 - i(\chi 1+\chi 2+\chi 3 - \chi 4)\cdot (\varepsilon x)d\chi 1234 ,

identifies as a function f(\varepsilon x). Consequently, \scrI 2 = \varepsilon 4

4\pi 2

\int 
e - 2ik0xf(\varepsilon x)dx. To evaluate

the integrals \scrI 1 and \scrI 2, we use the following scale-separation lemma.
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Lemma 4.4. Let f be a real-valued function of Schwartz class and \alpha \in \BbbR 2 be a
nonzero constant vector. Then, for all N ,\int 

ei\alpha \cdot xf(\varepsilon x) dx = \scrO (\varepsilon N ) .

Proof. By the Plancherel identity\int 
ei\alpha \cdot xf(\varepsilon x) dx = \varepsilon  - 2

\int \widehat f \biggl( k

\varepsilon 

\biggr) 
\delta (k - \alpha ) dk = \varepsilon  - 2 \widehat f \Bigl( \alpha 

\varepsilon 

\Bigr) 
.

Using that | \widehat f(k)| \leq CN (1 + | k| 2) - N
2 for all N , we obtain\bigm| \bigm| \bigm| \bigm| \int ei\alpha \cdot xf(\varepsilon x) dx

\bigm| \bigm| \bigm| \bigm| \leq CN\varepsilon 
 - 2
\bigm| \bigm| \bigm| \widehat f \Bigl( \alpha 

\varepsilon 

\Bigr) \bigm| \bigm| \bigm| = \scrO (\varepsilon N - 2) .

Consequently, \scrI 1 = \scrO (\varepsilon N ), \scrI 2 = \scrO (\varepsilon N ) for all N , and all integrals in (4.6)
except the third one are negligible in this modulational regime. All terms with fast
oscillations essentially homogenize to zero for \varepsilon \ll 1.

This result is a particular case of the homogenization Lemma 3.2 of [5].

4.3. Quartic interactions in the modulational regime. The homogeniza-
tion step above allows us to omit the first, second, fourth, and fifth integrals in (4.6)

when approximating H
(4)
+ up to order \scrO (\varepsilon 2). Then using the expression (4.7) with

T+
 - = T1  - 1

2T2 after the change of variables (4.11), we obtain

(4.13) H
(4)
+ = \varepsilon 2

\int \biggl( 
T1  - 

1

2
T2

\biggr) 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 ,

where Uj is defined by (4.12) and \delta 1+2 - 3 - 4 = 1
4\pi 2

\int 
e - i(\chi 1+\chi 2 - \chi 3 - \chi 4)\cdot xdx.

Proposition 4.5. The term H
(4)
+ in the reduced Hamiltonian has the form

H
(4)
+ =

k30\varepsilon 
2

8\pi 2

\int \biggl( 
1+

3\varepsilon 

2k0
(\lambda 2 + \lambda 3) - 

\varepsilon (\lambda 1  - \lambda 3)
2

k0| \chi 1  - \chi 3| 

\biggr) 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234+\scrO (\varepsilon 4) .

In view of (4.13), the proof is based on the following lemmas.

Lemma 4.6. Under the modulational ansatz (4.11), the coefficient T1 in Proposi-
tion 4.2 becomes
(4.14)\int 

T1U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =
k30

16\pi 2

\int 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234

+
3k20\varepsilon 

32\pi 2

\int 
(\lambda 2 + \lambda 3)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 +\scrO (\varepsilon 2) .

Proof. Using that | kj | = k0 + \varepsilon \lambda j +\scrO (\varepsilon 2),

(4.15)

T1 =
k20

16\pi 2

\Bigl( 
k0 + \varepsilon 

\lambda 1 + \lambda 4 + 5(\lambda 2 + \lambda 3)

4

\Bigr) 
+

k20\varepsilon 

32\pi 2
(| \chi 1  - \chi 3| + | \chi 2  - \chi 4|  - | \chi 2  - \chi 3|  - | \chi 1  - \chi 4| ) +\scrO (\varepsilon 2) .
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This expression for T1 can be simplified by rearranging the indices. Since\int 
| \chi 1  - \chi 3| U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =

\int 
| \chi 2  - \chi 3| U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234

and\int 
| \chi 2  - \chi 4| U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =

\int 
| \chi 1  - \chi 4| U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 ,

the contribution from the second line in (4.15) to the RHS integral (4.14) is zero. The
first line in (4.15) is treated via\int 

(\lambda 1 + \lambda 4)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =

\int 
(\lambda 2 + \lambda 3)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 ,

leading to the desired result.

Lemma 4.7. Let I, II, III be given as in Proposition 4.3. Assuming (4.11), we
have\int 

IU1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =
k30

16\pi 2
(
\surd 
2 - 1)

\int 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234

+
3k20\varepsilon 

32\pi 2
(
\surd 
2 - 1)

\int 
(\lambda 2 + \lambda 3)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 +\scrO (\varepsilon 2) ,

\int 
IIU1U2U3U4\delta 1+2 - 3 - 4d\chi 1234

=
k20\varepsilon 

4\pi 2

\int 
(\lambda 1  - \lambda 3)

2

| \chi 1  - \chi 3| 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 +\scrO (\varepsilon 2) ,

\int 
IIIU1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =  - 

\int 
k30

16\pi 2
(
\surd 
2 + 1)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234

 - 3k20\varepsilon 

32\pi 2
(
\surd 
2 + 1)

\int 
(\lambda 2 + \lambda 3)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 +\scrO (\varepsilon 2) .

Proof. Under assumption (4.11), \ell  - k1

k1+k2
= \scrO (\varepsilon 2), and so are \ell  - k2

k1+k2
, \ell  - k3

k3+k4
, \ell  - k4

k3+k4
.

Expanding the remaining terms in (4.8), we get

I =
k30

16\pi 2
(
\surd 
2 - 1) +

3k20\varepsilon 

32\pi 2
(
\surd 
2 - 1)(\lambda 1 + \lambda 2 + \lambda 3 + \lambda 4) +\scrO (\varepsilon 2) .

The identities for II and III are obtained similarly.

5. Hamiltonian Dysthe equation. The third-order normal form transforma-
tion eliminates all cubic terms from the Hamiltonian H. We find that, in the modu-
lational regime (4.11), the reduced Hamiltonian is
(5.1)

H = H(2) +H
(4)
+ =

\int 
\omega (k0 + \varepsilon \chi )| U\chi | 2d\chi 

+
k30\varepsilon 

2

8\pi 2

\int \biggl( 
1 +

3\varepsilon 

2k0
(\lambda 2 + \lambda 3) - 

\varepsilon (\lambda 1  - \lambda 3)
2

k0| \chi 1  - \chi 3| 

\biggr) 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 +\scrO (\varepsilon 4) .

D
ow

nl
oa

de
d 

03
/2

3/
22

 to
 1

32
.1

74
.2

54
.7

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HAMILTONIAN DYSTHE EQUATION FOR 3D GRAVITY WAVES 361

5.1. Derivation of the Dysthe equation. For the purpose of returning to
variables in the physical space, we introduce

z(x) =
1

2\pi 

\int 
z(k)eik\cdot xdk =

\varepsilon 

2\pi 

\int 
U(\chi )eik0xei\chi \cdot \varepsilon xd\chi = \varepsilon u(X)eik0x ,

where u is the inverse Fourier transform of U depending on the long spatial scale
X = (X,Y ) = \varepsilon x, hence,\biggl( 

u
u

\biggr) 
= P2

\biggl( 
z
z

\biggr) 
= \varepsilon  - 1

\biggl( 
e - ik0x 0

0 eik0x

\biggr) \biggl( 
z
z

\biggr) 
.

From (2.9), the evolution equations for (u, u) are

(5.2) \partial t

\biggl( 
u
u

\biggr) 
= J2

\biggl( 
\partial uH
\partial uH

\biggr) 
=

\biggl( 
0  - i
i 0

\biggr) \biggl( 
\partial uH
\partial uH

\biggr) 
,

where J2 = \varepsilon 2P2J1P
\ast 
2 .

We now derive a Dysthe equation for the slowly varying wave envelope u which,
by construction, has the property of being Hamiltonian. The starting point is (5.2)
with H being the truncated Hamiltonian (5.1). In the (u, u) variables, the quadratic
part H(2) becomes

H(2) =

\int 
u\omega (k0 + \varepsilon D)u dX .

Taylor expanding the linear dispersion relation leads to

H(2) =

\int 
\omega 0| u| 2dX

+
\omega 0

2

\int 
u

\biggl( 
\varepsilon 

k0
DX  - \varepsilon 2

4k20
D2

X +
\varepsilon 2

2k20
D2

Y + i
\varepsilon 3

8k30
D3

X  - 3\varepsilon 3

4k30
DXD

2
Y

\biggr) 
u dX+\scrO (\varepsilon 4) ,

where \omega 0 =
\surd 
gk0 and D = (DX , DY ) =  - i (\partial X , \partial Y ). Turning to the quartic term of

the truncated Hamiltonian, we obtain the following result.

Lemma 5.1. In the (u, u) variables, the quartic term H
(4)
+ in (5.1) is

(5.3)

H
(4)
+ =

1

2

\int \bigl( 
\varepsilon 2k30| u| 4 + 3\varepsilon 3k20| u| 2Im(u\partial Xu) + \varepsilon 3k20| u| 2 \partial 2X | D|  - 1| u| 2

\bigr) 
dX+\scrO (\varepsilon 4) .

Proof. Using that U is the Fourier transform of u, we have

U1U2U3U4 =
1

16\pi 4

\int 
u1u2u3u4e

 - i(\chi 1\cdot X1+\chi 2\cdot X3 - \chi 3\cdot X3 - \chi 4\cdot X4)dX1234 ,

and using the definition of \delta 1+2 - 3 - 4 yields\int 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 = 4\pi 2

\int 
| u| 4dX .(5.4)

Similarly, \int 
\lambda 2U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =  - 4i\pi 2

\int 
| u| 2u \partial Xu dX ,\int 

\lambda 3U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 = 4i\pi 2

\int 
| u| 2u \partial Xu dX ,
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and

(5.5)

\int 
(\lambda 2 + \lambda 3)U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 = 8\pi 2

\int 
| u| 2Im(u\partial Xu) dX .

The remaining term of H
(4)
+ amounts to

(5.6)

\int 
(\lambda 1  - \lambda 3)

2

| \chi 1  - \chi 3| 
U1U2U3U4\delta 1+2 - 3 - 4d\chi 1234 =  - 4\pi 2

\int 
| u| 2\partial 2X | D|  - 1| u| 2 dX .

Combining (5.4)--(5.6), we get the quartic term H
(4)
+ given in (5.3).

The resulting reduced Hamiltonian takes the form

H =

\int 
\omega 0| u| 2 + \varepsilon 

\omega 0

2k0
Im(u\partial Xu) - \varepsilon 2

\omega 0

8k20
| \partial Xu| 2 + \varepsilon 2

\omega 0

4k20
| \partial Y u| 2 + \varepsilon 2

k30
2
| u| 4

+\varepsilon 3
\omega 0

16k30
Im
\bigl[ 
(\partial Xu)(\partial 

2
Xu)

\bigr] 
 - \varepsilon 3

3\omega 0

8k30
Im
\bigl[ 
(\partial Xu)(\partial 

2
Y u)

\bigr] 
+ \varepsilon 3

3k20
2

| u| 2 Im(u\partial Xu)

+\varepsilon 3
k20
2
| u| 2\partial 2X | D|  - 1| u| 2dX+\scrO (\varepsilon 4) .(5.7)

It follows from (5.2) that the evolution equation for u up to order \scrO (\varepsilon 3) is

i \partial tu = \partial uH

= \omega 0u - i\varepsilon 
\omega 0

2k0
\partial Xu+ \varepsilon 2

\omega 0

8k20
\partial 2Xu - \varepsilon 2

\omega 0

4k20
\partial 2Y u+ \varepsilon 2k30| u| 2u

+i\varepsilon 3
\omega 0

16k30
\partial 3Xu - i\varepsilon 3

3\omega 0

8k30
\partial X\partial 

2
Y u - 3i\varepsilon 3k20| u| 2\partial Xu+ \varepsilon 3k20u \partial 

2
X | D|  - 1| u| 2 ,(5.8)

which is a Hamiltonian version of Dysthe's equation for three-dimensional gravity
waves on deep water. It describes modulated waves moving in the positive x-direction
at group velocity \partial kx

\omega (k0) = \omega 0/(2k0) as shown by the advection term. The nonlocal
term u \partial 2X | D|  - 1| u| 2 is a signature of the Dysthe equation. It reflects the presence of
the wave-induced mean flow as in the classical derivation using the method of multiple
scales. It reduces to  - u | DX | | u| 2 in the two-dimensional case.

The general form of the Hamiltonian Dysthe equation (5.8) coincides with that
derived by Gramstad and Trulsen [12], a difference being that the starting system in
our derivation is the full three-dimensional Euler equations for potential flow while,
in [12], the authors start from a reduced four-wave interaction system introduced by
Zakharov [29] and revised by Krasitskii [19].

Remark 5.2. It has been suggested in [27] that keeping the linear dispersion re-
lation exact, rather than expanding it in powers of \varepsilon as done above, may provide
an overall better approximation. In this Hamiltonian setting, the resulting envelope
equation would take the form

i \partial tu = \omega (k0 + \varepsilon D)u+ \varepsilon 2k30| u| 2u - 3i\varepsilon 3k20| u| 2\partial Xu+ \varepsilon 3k20u \partial 
2
X | D|  - 1| u| 2 .

5.2. Moving reference frame. We can further simplify the Hamiltonian (5.7)
by subtracting a multiple of the wave action M =

\int 
| u| 2 dX together with a multiple

of the impulse

I =

\int 
\eta \partial x\xi dx =

\int 
k0| u| 2 + \varepsilon Im(u\partial Xu) dX ,
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yielding

\widehat H = H  - \partial k\omega (k0) \cdot I  - 
\Bigl[ 
\omega 0  - k0 \cdot \partial k\omega (k0)

\Bigr] 
M .

SinceM and I are conserved with respect to the flow of \widehat H, they Poisson commute with
H [8]. This transformation preserves the symplectic structure J2 and the resulting
simplification of (5.8) reads, after introduction of the slow time \tau = \varepsilon 2t,

i \partial \tau u =
\omega 0

8k20
\partial 2Xu - \omega 0

4k20
\partial 2Y u+ k30| u| 2u

+ i\varepsilon 
\omega 0

16k30
\partial 3Xu - i\varepsilon 

3\omega 0

8k30
\partial X\partial 

2
Y u - 3i\varepsilon k20| u| 2\partial Xu+ \varepsilon k20u \partial 

2
X | D|  - 1| u| 2 .

6. Reconstruction of the free surface.

6.1. Approximation of auxiliary Hamiltonian \bfitK (\bfthree ). Reconstruction of the
free surface from the wave envelope requires solving the auxiliary Hamiltonian system
(3.5). Its numerical computation is costly in general because this involves evaluating
multiple multidimensional integrals which are not convolutions and thus cannot be
calculated by the FFT. As an alternative, we propose a simplified version that can
be solved efficiently by exploiting the fact that wave propagation is primarily in the
x-direction according to the modulational ansatz (4.11).

Introducing \kappa = (\kappa x, \kappa y) with kx = \kappa x, ky = \varepsilon \kappa y such that

(6.1) \eta \prime \kappa = \eta \prime (\kappa x, \kappa y) := \eta (\kappa x, \varepsilon \kappa y) , \xi \prime \kappa = \xi \prime (\kappa x, \kappa y) := \xi (\kappa x, \varepsilon \kappa y) ,

the coefficients inside the integrals (3.4) can be expanded. In particular,

d123 = dx123 + \varepsilon 2dR123 +\scrO (\varepsilon 4) ,

where

dx123 := g2
\bigl( 
\kappa 21x + \kappa 22x + \kappa 23x  - 2| \kappa 1x| | \kappa 2x|  - 2| \kappa 1x| | \kappa 3x|  - 2| \kappa 2x| | \kappa 3x| 

\bigr) 
,

dR123
g2

:=
\kappa 21y
| \kappa 1x| 

(| \kappa 1x|  - | \kappa 2x|  - | \kappa 3x| ) +
\kappa 22y
| \kappa 2x| 

(| \kappa 2x|  - | \kappa 1x|  - | \kappa 3x| )

+
\kappa 23y
| \kappa 3x| 

(| \kappa 3x|  - | \kappa 1x|  - | \kappa 2x| ) .

The contribution dx123 corresponds to the denominator in the two-dimensional case.
It reduces to  - 4g2| \kappa 1x| | \kappa 3x| in the region where \kappa 1x + \kappa 2x + \kappa 3x = 0 and \kappa 1x\kappa 3x > 0.

The above computations allow us to derive the expansion of K \prime (3) up to order
\scrO (\varepsilon 6). The leading-order term corresponds to the formula for K(3) in two dimensions
(see [10, Theorem 3.8]), while the correction term is much more complicated as shown
below.

Proposition 6.1. The expansion of K
\prime (3) in the regime (6.1) is

(6.2)

K
\prime (3)(\eta \prime , \xi \prime ) = - \varepsilon 2

4\pi 

\int 
sgn(\kappa 1x)sgn(\kappa 2x)| \kappa 3x| \eta \prime 1\eta \prime 2\xi \prime 3\delta 123d\kappa 123

+
\varepsilon 4

2\pi 

\int 
(R123\eta 

\prime 
1\eta 

\prime 
2\xi 

\prime 
3 +Q123\xi 

\prime 
1\xi 

\prime 
2\xi 

\prime 
3) \delta 123d\kappa 123 +\scrO (\varepsilon 6) ,
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where R123 and Q123 are given by

R123 =
\kappa 21y| \kappa 2x| 
4\kappa 21x

\bigl( 
sgn(\kappa 1x)sgn(\kappa 2x) - sgn(\kappa 1x)sgn(\kappa 3x)

\bigr) 
 - 

\kappa 21y
4| \kappa 1x| 

\bigl( 
1 + sgn(\kappa 1x)sgn(\kappa 3x)

\bigr) 
 - \kappa 1y\kappa 2y

2| \kappa 1x| 
\bigl( 
1 - sgn(\kappa 2x)sgn(\kappa 3x)

\bigr) 
,

Q123 =  - 1

8g

\Bigl( \kappa 21y| \kappa 3x| 
| \kappa 1x| 

+
\kappa 23y| \kappa 1x| 
| \kappa 3x| 

 - 2\kappa 1y\kappa 3ysgn(\kappa 1x)sgn(\kappa 3x)
\Bigr) 
.

6.2. Reconstruction procedure. Retaining only the leading-order term in
(6.2) for K \prime (3), the new coordinates are obtained as solutions of

\partial s\eta 
\prime 
\kappa = \varepsilon  - 1\partial \xi \prime  - \kappa 

K
\prime (3) =  - \varepsilon 

4\pi 

\int 
sgn(\kappa 1x)sgn(\kappa 2x)| \kappa x| \eta \prime 1\eta \prime 2\delta 1+2 - \kappa d\kappa 12 ,

\partial s\xi 
\prime 
\kappa =  - \varepsilon  - 1\partial \eta \prime 

 - \kappa 
K

\prime (3) =  - \varepsilon 

2\pi 

\int 
sgn(\kappa x)sgn(\kappa 1x)| \kappa 2x| \eta \prime 1\xi \prime 2\delta 1+2 - \kappa d\kappa 12 .

Back to the physical space,

(\eta (x), \xi (x)) =
\varepsilon 

2\pi 

\int 
(\eta \prime \kappa , \xi 

\prime 
\kappa )e

i\kappa \cdot (x,\varepsilon y)d\kappa 

satisfy the evolution equations

\partial s\eta (x) =  - 1

2
| Dx| (sgn(Dx)\eta )

2
, \partial s\xi (x) =  - sgn(Dx)

\bigl( 
(sgn(Dx)\eta )(| Dx| \xi )

\bigr) 
.

Via the new variables \widetilde \eta :=  - i sgn(Dx)\eta and \widetilde \xi :=  - i sgn(Dx)\xi involving the Hilbert
x-transform, this system simplifies to

(6.3) \partial s\widetilde \eta (x) =  - (\partial x\widetilde \eta )\widetilde \eta , \partial s\widetilde \xi (x) =  - \widetilde \eta \partial x\widetilde \xi ,
which preserves the canonical Hamiltonian structure as in the two-dimensional case
[7, 10]. The equation for \widetilde \eta is the inviscid Burgers equation while the equation for \widetilde \xi is
its linearization along the Burgers flow. Integrating (6.3) back to s =  - 1, with initial
conditions at s = 0 being the transformed variables, provides a reconstruction of the
actual free surface and velocity potential from the wave envelope. For convenience,
we will only illustrate the reconstruction of the free surface in the next section, as
this requires solving a single closed equation for \widetilde \eta . We have obtained similar results
for the reconstruction of the velocity potential (which are not shown here). At any
instant t, the free surface can be reconstructed by solving the first equation of (6.3)
over s \in [ - 1, 0) with ``initial"" condition

\eta (x, t)
\bigm| \bigm| 
s=0

=
\varepsilon \surd 
2
a - 1(D)

\Bigl[ 
u(X, t)eik0x + u(X, t)e - ik0x

\Bigr] 
,

as dictated by the transformations (2.8) and (4.11), where u obeys (5.8) and a - 1(D) =
4
\sqrt{} 
| D| /g.

7. Numerical results. We present numerical results to illustrate the perfor-
mance of our Hamiltonian approach in the context of modulational instability of
Stokes waves. We first present a theoretical analysis and then show some numerical
simulations in comparison to other models.
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7.1. Stability of Stokes waves. Equation (5.8) admits a uniform solution of
the form

u0(t) = B0e
 - i(\omega 0+\varepsilon 2k3

0B
2
0)t ,

representing a progressive Stokes wave (B0 being a positive real constant). Such
a solution is known to be linearly unstable with respect to sideband perturbations,
which is referred to as modulational or Benjamin--Feir (BF) instability. We provide a
version of this analysis based on (5.8) for the three-dimensional problem.

Inserting a perturbation of the form

u(X, t) = u0(t)
\bigl[ 
1 +B(X, t)

\bigr] 
,

where

B(X, t) = B1e
\Omega t+i(\lambda X+\mu Y ) +B2e

\Omega t - i(\lambda X+\mu Y ) ,

and B1, B2 are complex coefficients, we find that the condition Re(\Omega ) \not = 0 for insta-
bility implies

(7.1)

\biggl( 
\lambda 2

2
 - \mu 2

\biggr) \Biggl[ 
2k20B

2
0

\Biggl( 
k0  - \varepsilon 

\lambda 2\sqrt{} 
\lambda 2 + \mu 2

\Biggr) 
 - \omega 0

4k20

\biggl( 
\lambda 2

2
 - \mu 2

\biggr) \Biggr] 
> 0 .

This is a tedious but straightforward calculation for which we skip the details. We
refer the reader to [11, 12, 27] for similar calculations.

Figure 1 shows instability regions in the (\lambda , \mu )-plane as predicted by condition
(7.1) for k0 = 10 and two different amplitudes B0 = 0.003 and 0.0035. Hereafter, all
the variables are rescaled to absorb \varepsilon back into their definition, and all the equations
are nondimensionalized so that g = 1. These two plots correspond to wave steepnesses
\varepsilon = k0A0 = 0.075 and 0.088, respectively, based on the relationship

B0 = A0
4

\sqrt{} 
g

4k0

Fig. 1. Region of modulational instability (shaded area) for (5.8). The corresponding region
for the NLS equation is the extension represented by a red curve. The black dot represents the
mode associated with maximum growth. Left panel: (B0, k0) = (0.003, 10). Right panel: (B0, k0) =
(0.0035, 10).
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between the envelope amplitude B0 and the surface amplitude A0 according to (2.8).
In both cases, we see that the instability region is unbounded, extending in the form
of a narrow strip to higher wavenumbers from the origin. Maximum growth (strongest
instability) is achieved at \mu = 0 and \lambda \simeq 1.5 which is a longitudinal long-wave mode.
The instability region for the NLS equation, if \varepsilon = 0 in (7.1), turns out to be larger and
its extent relative to the Dysthe prediction is represented by a red curve in Figure 1.

7.2. Simulations and comparisons. To validate our Hamiltonian approach,
we test it against the full water wave system (2.1) which is given more explicitly by

(7.2) \partial t\eta = G(\eta )\xi , \partial t\xi =  - g\eta  - 1

2
| \partial x\xi | 2 +

\bigl( 
G(\eta )\xi + \partial x\eta \cdot \partial x\xi 

\bigr) 2
2(1 + | \partial x\eta | 2)

.

We also compare our model predictions to solutions of the classical (non-Hamiltonian)
Dysthe equation

i \partial tA =  - i\omega 0

2k0
\partial xA+

\omega 0

8k20
\partial 2xA - \omega 0

4k20
\partial 2yA+

1

2
\omega 0k

2
0| A| 2A+

i\omega 0

16k30
\partial 3xA

 - 3i\omega 0

8k30
\partial x\partial 

2
yA - 3i

2
\omega 0k0| A| 2\partial xA - i

4
\omega 0k0A

2\partial xA+ k0A\partial x\Phi ,(7.3)

where

\Phi =
1

2
\omega 0\partial x| D|  - 1| A| 2 , \partial x\Phi =

1

2
\omega 0\partial 

2
x| D|  - 1| A| 2 ,

denote contributions from the wave-induced mean flow. In this formulation, the sur-
face elevation and velocity potential are reconstructed perturbatively in terms of the
Stokes expansion

\eta (x, t) =
1

2\omega 0
\partial x\Phi +Re

\biggl[ 
Aei\theta +

1

2
(k0A

2  - iA\partial xA)e
2i\theta +

3

8
k20A

3e3i\theta 
\biggr] 
+ \cdot \cdot \cdot ,

\varphi (x, z, t) = \Phi + Re

\biggl[ \Bigl( 
 - i\omega 0

k0
A+

\omega 0

2k20
\partial xA+

3i\omega 0

8k30
\partial 2xA

 - i\omega 0

4k30
\partial 2yA+

i

8
\omega 0k0| A| 2A

\Bigr) 
ei\theta ek0z

\biggr] 
+ \cdot \cdot \cdot (7.4)

up to third harmonics, as typically reported in the literature [12, 26]. The phase func-
tion is given by \theta = k0x  - \omega 0t. As mentioned earlier, (7.3) and (7.4) are expressed
in terms of unscaled variables for the purposes of this comparative study. Note that
(7.4) can be used to estimate the velocity potential \varphi at any depth z \leq \eta given the
wave envelope A. By contrast, the reconstruction procedure in the present modula-
tional approach only applies to \eta and \xi (the trace of the velocity potential at the free
surface).

The full equations (7.2) are solved numerically following a high-order spectral
approach [9]. They are discretized in space by a pseudospectral method based on
the FFT. The computational domain spans 0 \leq x \leq Lx, 0 \leq y \leq Ly with doubly
periodic boundary conditions and is divided into a regular mesh of Nx\times Ny collocation
points. The DNO is computed via its series expansion (2.3) but, by analyticity, a small
number m of terms is sufficient to achieve highly accurate results. The number m = 4
is selected based on previous extensive tests [15, 28]. Time integration of (7.2) is
carried out in the Fourier space so that the linear terms can be solved exactly by
the integrating factor technique. The nonlinear terms are integrated in time by using
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a fourth-order Runge--Kutta scheme with constant step \Delta t. The same numerical
methods are applied to the envelope equations (5.8) and (7.3), as well as to their
reconstruction formulas, with the same resolutions in space and time. In particular,
the Burgers system (6.3) is integrated over s by using the same step size \Delta s = \Delta t. As
noted in our previous work on the two-dimensional problem [7], the additional cost
of solving the relatively simple equation for \widetilde \eta is insignificant when reconstructing the
free surface.

Initial conditions of the form

u(x, 0) = B0

\bigl[ 
1 + 0.1 cos(\lambda x) cos(\mu y)

\bigr] 
, A(x, 0) = A0

\bigl[ 
1 + 0.1 cos(\lambda x) cos(\mu y)

\bigr] 
,

are specified to define a perturbed Stokes wave for (5.8) and (7.3), respectively. Ac-
cordingly, it is important to ensure that appropriate initial conditions are prescribed
for (7.2): (6.3) with u(x, 0) (resp., (7.4) with A(x, 0)) are used when the full equations
are compared to predictions from (5.8) (resp., (7.3)). More specifically, the starting
conditions on \eta (x, 0) and \xi (x, 0) at s = 0 for (6.3) are given by

\eta (x, 0)
\bigm| \bigm| 
s=0

=
1\surd 
2
a - 1(D)

\Bigl[ 
u(x, 0)eik0x + u(x, 0)e - ik0x

\Bigr] 
,

\xi (x, 0)
\bigm| \bigm| 
s=0

=
1

i
\surd 
2
a(D)

\Bigl[ 
u(x, 0)eik0x  - u(x, 0)e - ik0x

\Bigr] 
,

according to (2.8) and (4.11). The closing solution of (6.3) at s =  - 1 provides
the initial conditions (\eta (x, 0), \xi (x, 0)) for the full system (7.2) in order to compare

with (5.8). The variables (\eta , \xi ) and (\widetilde \eta , \widetilde \xi ) are directly related through the Hilbert
x-transform.

The following tests focus on the two cases considered in the previous stability
analysis. The initial wave parameters are k0 = 10, B0 = 0.003 or 0.0035, and (\lambda , \mu ) =
(1, 1) so that the initial condition is a Stokes wave under three-dimensional long-
wave (i.e., sideband) perturbations. The computational domain is taken to be of size
Lx \times Ly = 2\pi \times 2\pi . The spatial and temporal resolutions are set to \Delta x = 0.012
(Nx = 512), \Delta y = 0.098 (Ny = 64), and \Delta t = 0.005. This difference in resolution
between x and y reflects the choice of x as the preferred direction of wave propagation.

For the first case with small initial data (B0 = 0.003), we examine the wave
dynamics over a long time up to t = 2500 = \scrO (\varepsilon  - 3) given the initial steepness
\varepsilon = 0.075. This corresponds to the time scale over which the Dysthe approximation
with such initial data is supposed to be valid. Figure 2 shows the full surface elevation
\eta at t = 2500 as predicted from (5.8) and (7.2). A more direct comparison between
these two solutions is reported in Figure 3(a) along the cross section y = Ly/2. A
similar test for the classical Dysthe equation (7.3) is depicted in Figure 3(b). Under
such a mild disturbance, effects of modulational instability are not felt yet. In both
cases, the wave profiles remain close to their initial configuration and, as a result,
both plots look quite similar. A more quantitative assessment is provided in Figure 4
which displays the time evolution of the relative L\infty and L2 errors,

(7.5)
\| \eta f  - \eta w\| \infty 

\| \eta f\| \infty 
,

\| \eta f  - \eta w\| 2
\| \eta f\| 2

,

of \eta between the fully (\eta f ) and weakly (\eta w) nonlinear solutions. The low values con-
firm that both Dysthe models perform very well in this case, with the predictions from
(5.8) being slightly better than those from (7.3). This is consistent with results for the
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368 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

Fig. 2. Surface elevation \eta at t = 2500 for B0 = 0.003, k0 = 10, and (\lambda , \mu ) = (1, 1). Left panel:
Hamiltonian Dysthe equation. Right panel: fully nonlinear equations.

(a) (b)

Fig. 3. Comparison of \eta between the fully and weakly nonlinear solutions in the cross-section
y = Ly/2 at t = 2500 for B0 = 0.003, k0 = 10, and (\lambda , \mu ) = (1, 1). Left panel: Hamiltonian Dysthe
equation in blue. Right panel: classical Dysthe equation in red. The black curve represents the fully
nonlinear solution.

Fig. 4. Relative errors on \eta versus time between the fully and weakly nonlinear solutions for
B0 = 0.003, k0 = 10, and (\lambda , \mu ) = (1, 1). The blue curve represents the Hamiltonian Dysthe equation
while the red curve represents the classical Dysthe equation. Left panel: L\infty error. Right panel: L2

error.

two-dimensional problem and is expected considering that the surface reconstruction
for (5.8) is a nonperturbative procedure as opposed to the perturbative calculation
for (7.3).
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HAMILTONIAN DYSTHE EQUATION FOR 3D GRAVITY WAVES 369

The second case with larger initial data (B0 = 0.0035, \varepsilon = 0.088) is more prone
to modulational instability. Snapshots of the full surface elevation up to t = 1000
are presented in Figure 5. As expected, the Stokes wave becomes unstable under
the incipient development of the longitudinal sideband mode \lambda = 1 (and near mode
\lambda = 2) around t = 680. However, unlike the two-dimensional situation where a
quasi-recurrent cycle of modulation-demodulation typically takes place over a long

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Surface elevation \eta as predicted from the Hamiltonian Dysthe equation at (a) t = 0,
(b) t = 540, (c) t = 680, (d) t = 810, (e) t = 930, (f) t = 1000 for B0 = 0.0035, k0 = 10, and
(\lambda , \mu ) = (1, 1).
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370 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

time [7], these perturbations quickly trigger the excitation of higher sideband modes
in both horizontal directions, leading to the emergence of an irregular short-crested
wave field. This phenomenon is observed in both our weakly and fully nonlinear
simulations, which is consistent with results from previous numerical studies [21, 23].
In particular, computations by McLean et al. [23] showed that three-dimensional
instabilities become dominant when the wave steepness is sufficiently large. In the
present modulational regime, the gradual excitation of higher modes during wave
evolution may be anticipated based on the stability analysis from section 7.1, which
reveals that the instability region for three-dimensional perturbed Stokes waves is not
confined to the first few modes but extends over a wide range in the (\lambda , \mu )-plane.
The energy initially contained in low sidebands can leak to higher unstable modes,
similarly to the scenario reported by Martin and Yuen [22] in the context of the NLS
equation. The resulting choppy sea appearance as illustrated in Figure 5 at t = 930
and 1000 is an indication of the limited range of applicability of the narrowband
approximation in this three-dimensional case, even for moderate initial steepnesses.

Comparison of (5.8) and (7.3) with (7.2) is given in Figures 6 and 7 along the cross
sections y = Ly/2 and 3Ly/4, respectively. Snapshots of \eta at t = 540 (early stage
of BF instability), t = 680 (around the time of BF maximum growth), and t = 1000
(short-crested wave field) are presented, where we can clearly see the development of
the longitudinal mode \lambda = 1 and near mode \lambda = 2 reaching a maximum amplitude of
about 0.02. As suspected earlier, discrepancies between the weakly and fully nonlinear
solutions are quite pronounced at t = 1000 along both cross sections. This is especially
true for the crest and trough heights, while there is still good agreement on the
phase overall. Differences between the classical and Hamiltonian Dysthe solutions
also become more noticeable as time goes by.

The relative L\infty and L2 errors in Figure 8 again tend to slightly favor our Hamil-
tonian approach. We note however that the situation seems to be reversed around
t = 960, with the errors for the classical Dysthe equation being lower from this point
on. Having said that, this switch occurs at a late stage of modulational instability
when errors are significant (near 80\%) and thus very likely either weakly nonlinear

Fig. 6. Comparison of \eta between the fully and weakly nonlinear solutions in the cross section
y = Ly/2 at t = 540, 680, 1000 (from left to right) for B0 = 0.0035, k0 = 10, and (\lambda , \mu ) = (1, 1).
Upper panels: Hamiltonian Dysthe equation in blue. Lower panels: classical Dysthe equation in red.
The black curve represents the fully nonlinear solution.
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HAMILTONIAN DYSTHE EQUATION FOR 3D GRAVITY WAVES 371

Fig. 7. Comparison of \eta between the fully and weakly nonlinear solutions in the cross section
y = 3Ly/4 at t = 540, 680, 1000 (from left to right) for B0 = 0.0035, k0 = 10, and (\lambda , \mu ) = (1, 1).
Upper panels: Hamiltonian Dysthe equation in blue. Lower panels: classical Dysthe equation in red.
The black curve represents the fully nonlinear solution.

Fig. 8. Relative errors of \eta versus time between the fully and weakly nonlinear solutions for
B0 = 0.0035, k0 = 10, and (\lambda , \mu ) = (1, 1). The blue curve represents the Hamiltonian Dysthe
equation while the red curve represents the classical Dysthe equation. Left panel: L\infty error. Right
panel: L2 error.

model is no longer suitable, as suggested in Figures 6 and 7. An interpretation for
this switch is that, because the Burgers equation automatically generates higher-
order harmonics of the surface wave spectrum via nonlinear interactions, it may in
turn excessively amplify errors as the validity of the Hamiltonian Dysthe equation
deteriorates over time. From these plots, it seems that the time of validity is under
t = 1000 which contrasts with the expected time scale \scrO (\varepsilon  - 3) \sim 1500 based on the
initial steepness. This value however is an overestimate in this case because the wave
steepness increases as a result of modulational instability. Predictions from the two
Dysthe models (5.8) and (7.3) are directly compared to each other in Figure 9 along
the cross sections y = Ly/2 and 3Ly/4. Consistent with the error plots in Figure 8,
the corresponding surface profiles look almost indistinguishable in the early stages of
BF instability and around the time of maximum growth. Discrepancies develop and
become more significant over time, as depicted at t = 1000.
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372 P. GUYENNE, A. KAIRZHAN, AND C. SULEM

Fig. 9. Comparison of \eta between the classical and Hamiltonian Dysthe predictions in the cross
sections y = Ly/2 (upper panels) and y = 3Ly/4 (lower panels) at t = 540, 680, 1000 (from left to
right) for B0 = 0.0035, k0 = 10, and (\lambda , \mu ) = (1, 1). Blue line: Hamiltonian Dysthe equation. Red
line: classical Dysthe equation.

Fig. 10. Relative error of H versus time for the Hamiltonian Dysthe equation with k0 = 10
and (\lambda , \mu ) = (1, 1). Left panel: B0 = 0.003. Right panel: B0 = 0.0035.

Finally, the time evolution of the relative error,

\Delta H

H0
=

| H  - H0| 
H0

,

of energy (5.7) associated with the Hamiltonian model (5.8) is illustrated in Figure
10 for B0 = 0.003 and 0.0035. Double integrals in (5.7) and in the L2 norm (7.5)
are computed via the double trapezoidal rule over the periodic square [0, 2\pi ]\times [0, 2\pi ].
The reference value H0 denotes the initial value of (5.7) at t = 0. Overall, H is very
well conserved in both cases, despite a gradual loss of accuracy over time that is likely
due to accumulation of numerical errors.

8. Conclusions. We propose a new Hamiltonian version of Dysthe's equation for
the nonlinear modulation of three-dimensional gravity waves on deep water. Starting
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from Zakharov's formulation of the water wave problem, we perform a change to
Birkhoff normal form that is devoid of nonresonant triads, together with a sequence
of canonical transformations, in order to obtain a reduced system. The slowly varying
wave envelope is introduced via a modulational ansatz and the presence of multiple
scales is handled through a homogenization procedure. The free surface is recon-
structed by solving an auxiliary Hamiltonian system of differential equations. As a
consequence, the entire solution process fits within a Hamiltonian framework. To
validate this approach, we conduct numerical simulations on the modulational insta-
bility of Stokes waves and compare them to direct computations based on the full
three-dimensional water wave system as well as to predictions from the classical Dys-
the equation. Various wave conditions are examined and very good agreement is
obtained within the range of validity of this approximation. In the future, we en-
vision extending these results to the finite-depth case for which a derivation of the
third-order Birkhoff normal form is expected to be significantly more complicated.

Appendix A. From physical to Fourier variables.
We rewrite the Hamiltonian system (2.1) as

\partial t

\left(    
\eta 
\xi 
\eta 

\xi 

\right)    = J1 \nabla H(\eta , \xi , \eta , \xi ) =

\biggl( 
J O2\times 2

O2\times 2 J

\biggr) \left(    
\partial \eta H
\partial \xi H
\partial \eta H
\partial \xi H

\right)    ,

where J is given by (2.1) and O2\times 2 is the 2\times 2 zero matrix. Denoting by (\scrF \eta ,\scrF \xi ) the
Fourier transforms of (\eta , \xi ), we define the transformation \tau : v = (\eta , \xi , \eta , \xi ) \mapsto \rightarrow w =

(\scrF \eta ,\scrF \xi ,\scrF \eta ,\scrF \xi ) and write \widetilde H(w) = H(v). Applying calculus rules of transformations
[4], w satisfies the system

(A.1) \partial tw = J2 \nabla \widetilde H(w) ,

where J2 = (\partial v\tau )J1(\partial v\tau )
\ast and (\partial v\tau )

\ast is the adjoint matrix operator such that

\partial v\tau =

\biggl( 
O2\times 2 F - 1

F O2\times 2

\biggr) 
, (\partial v\tau )

\ast =

\biggl( 
O2\times 2 F
F - 1 O2\times 2

\biggr) 

with F = \scrF I2\times 2 and F - 1 = \scrF  - 1I2\times 2. Computing the product of matrices,

J2 =

\biggl( 
F - 1JF - 1 O2\times 2

O2\times 2 FJF

\biggr) 
=

\biggl( 
F - 2J O2\times 2

O2\times 2 F 2J

\biggr) 
.

Applying the matrix representation of J2 to (A.1), we find

\partial t

\biggl( 
\eta k
\xi k

\biggr) 
= F 2J

\Biggl( 
\partial \eta k

\widetilde H
\partial \xi k

\widetilde H
\Biggr) 

\Leftarrow \Rightarrow \partial tF
 - 2

\biggl( 
\eta k
\xi k

\biggr) 
= \partial t

\biggl( 
\eta  - k

\xi  - k

\biggr) 
= J

\Biggl( 
\partial \eta k

\widetilde H
\partial \xi k

\widetilde H
\Biggr) 
,

where we have used that \scrF  - 2(\eta k, \xi k) = (\eta  - k, \xi  - k). The water wave system in the
Fourier space corresponds to (2.5).
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Appendix B. Poisson bracket calculations.

B.1. Useful identities.

Lemma B.1.
(B.1)

i

\biggl\{ \int 
F123z1z2z3\delta 123dk123 ,

\int 
G456z - 4z - 5z - 6\delta 456dk456

\biggr\} 
=  - 

\int 
(F123 + F312 + F231)(G456 +G645 +G564)z2z3z - 5z - 6\delta 123\delta 456\delta 14dk1...6 ,

(B.2)\int 
F k2,k3
k1

Gk5,k6
k4

z2z3z - 5z - 6\delta 123\delta 456\delta 14dk1...6 =

\int 
F k1,k2
 - k1 - k2

Gk3,k4
 - k3 - k4

z1z2z - 3z - 4\delta 1234dk1...4 .

Assuming that F123 = F213 and G456 = G546, then
(B.3)

i

\biggl\{ \int 
F123z1z2z - 3\delta 123dk123 ,

\int 
G456z - 4z - 5z6\delta 456dk456

\biggr\} 
=

\int 
( - 4F123G456z2z - 3z - 5z6\delta 123\delta 456\delta 14 + F123G456z1z2z - 4z - 5\delta 123\delta 456\delta 36)dk1...6 ,

(B.4)\int 
F k2,k3
k1

Gk5,k6
k4

z2z - 3z - 5z6\delta 123\delta 456\delta 14dk1...6 =

\int 
F k1,k3
 - k1 - k3

Gk4,k2
 - k2 - k4

z1z2z - 3z - 4\delta 1234dk1...4 ,

(B.5)\int 
F k2,k3
k1

Gk5,k6
k4

z1z2z - 4z - 5\delta 123\delta 456\delta 36dk1...6=

\int 
F k2, - k1 - k2
k1

Gk4, - k3 - k4
k3

z1z2z - 3z - 4\delta 1234dk1...4.

We only prove (B.1). The other identities are proved in a similar manner. Ap-
plying the Poisson bracket formula (2.11),\biggl\{ \int 

F123z1z2z3\delta 123dk123 ,

\int 
G456z - 4z - 5z - 6\delta 456dk456

\biggr\} 
=  - 1

i

\sum 
(l,m,n)\in P (1,2,3)
(p,q,r)\in P (4,5,6)

\int 
F123G456zlzmz - pz - q\delta 123\delta 456\delta 14dk1...6 ,

where the summation goes over the sets of all permutations P of (1, 2, 3) and (4, 5, 6).
We then apply index rearrangements to turn all integrals in the summation into
those with monomial z2z3z - 5z - 6. For example, rearranging (1, 2, 3) \rightarrow (2, 3, 1) and
(4, 5, 6) \rightarrow (5, 6, 4), we get\int 

F123G456z1z2z - 4z - 5\delta 123\delta 456\delta 36dk1...6 =

\int 
F231G564z2z3z - 5z - 6\delta 123\delta 456\delta 14dk1...6 .

B.2. Proof of Proposition 4.3. We look for terms of the form zzzz in the
Poisson bracket \{ K(3), H(3)\} with H(3) and K(3) given in (4.3)--(4.4). To distinguish
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HAMILTONIAN DYSTHE EQUATION FOR 3D GRAVITY WAVES 375

between the indices associated withK(3) andH(3), we use (1, 2, 3) forK(3) and (4, 5, 6)
for H(3). We have

i \{ K(3), H(3)\} R =

\biggl\{ \int 
A123 z1z2z3
\omega 1 + \omega 2 + \omega 3

\delta 123dk123 ,

\int 
A456z - 4z - 5z - 6\delta 456dk456

\biggr\} 

 - 
\biggl\{ \int 

A123 z - 1z - 2z - 3

\omega 1 + \omega 2 + \omega 3
\delta 123dk123 ,

\int 
A456z4z5z6\delta 456dk456

\biggr\} 

+

\biggl\{ \int 
A123 z1z2z - 3

\omega 1 + \omega 2  - \omega 3
\delta 123dk123 ,

\int 
A456z - 4z - 5z6\delta 456dk456

\biggr\} 

 - 
\biggl\{ \int 

A123 z - 1z - 2z3
\omega 1 + \omega 2  - \omega 3

\delta 123dk123 ,

\int 
A456z4z5z - 6\delta 456dk456

\biggr\} 
.

The second and fourth lines can be modified using the antisymmetry property of the
Poisson bracket and interchanging the indices (1, 2, 3) and (4, 5, 6):

(B.6)

i \{ K(3), H(3)\} R =

\biggl\{ \int 
A123 z1z2z3
\omega 1 + \omega 2 + \omega 3

\delta 123dk123 ,

\int 
A456z - 4z - 5z - 6\delta 456dk456

\biggr\} 

+

\biggl\{ \int 
A123z1z2z3\delta 123dk123 ,

\int 
A456 z - 4z - 5z - 6

\omega 4 + \omega 5 + \omega 6
\delta 456dk456

\biggr\} 

+

\biggl\{ \int 
A123 z1z2z - 3

\omega 1 + \omega 2  - \omega 3
\delta 123dk123 ,

\int 
A456z - 4z - 5z6\delta 456dk456

\biggr\} 

+

\biggl\{ \int 
A123z1z2z - 3\delta 123dk123 ,

\int 
A456z - 4z - 5z6
\omega 4 + \omega 5  - \omega 6

\delta 456dk456

\biggr\} 
:= i (R1 +R2 +R3 +R4) ,

where we denote each line of (B.6) by R1, R2, R3, R4, respectively.
Step 1. We show that the coefficient I = R1 + R2. Using the identity (B.1), we

get
(B.7)

R1 =

\int 
A123 +A312 +A231

\omega 1 + \omega 2 + \omega 3
(A456 +A645 +A564)z2z3z - 5z - 6\delta 123\delta 456\delta 14dk123456 .

From (4.2),

S123 = 4
\sqrt{} 
g| k1| | k2| | k3| \ell k3

k1
, A123 +A312 +A231 =

S123

8\pi 
\surd 
2
(\ell k3

k1
+ \ell k2

k1
+ \ell k3

k2
) .

To simplify the integral in (B.7), we use the identity (B.2) with

Fk1,k2,k3 :=
A123 +A312 +A231

\omega 1 + \omega 2 + \omega 3
, Gk4,k5,k6 := A456 +A645 +A564 ,

and obtain
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R1 =

\int 
IAz1z2z - 3z - 4\delta 1234dk1234 ,

IA =
g1/4

128\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| 

\omega k1 + \omega k2 + \omega k1+k2

\times (\ell k2

k1
+ \ell  - k1

k1+k2
+ \ell  - k2

k1+k2
)(\ell k4

k3
+ \ell  - k3

k3+k4
+ \ell  - k4

k3+k4
) .

We repeat these steps to compute R2 (the second line of (B.6)) and find

R2 =

\int 
IBz1z2z - 3z - 4\delta 1234dk1234 ,

IB =
g1/4

128\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| 

\omega k3
+ \omega k4

+ \omega k3+k4

\times (\ell k2

k1
+ \ell  - k1

k1+k2
+ \ell  - k2

k1+k2
)(\ell k4

k3
+ \ell  - k3

k3+k4
+ \ell  - k4

k3+k4
) .

Thus R1 +R2 =
\int 
I z1z2z - 3z - 4\delta 1234dk1234, where I = IA + IB is given in (4.8).

Step 2. We show that the combination of R3 and R4 corresponds to II + III. We
apply the identity (B.3) and get

(B.8)

R3 =

\int 
4A123A456

\omega 1 + \omega 2  - \omega 3
z2z - 3z - 5z6\delta 123\delta 456\delta 14dk123456

 - 
\int 

A123A456

\omega 1 + \omega 2  - \omega 3
z1z2z - 4z - 5\delta 123\delta 456\delta 36dk123456 .

To further simplify the RHS, we turn all its monomials into z1z2z - 3z - 4. This can be
done by using the identities (B.4) and (B.5). We now identify the terms on the RHS
of (B.8)

R3 =

\int 
(IIA + IIIA)z1z2z - 3z - 4\delta 1234dk1234 ,

where IIA comes from the first term in (B.8),

IIA =
g1/4

32\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k3| | k2 + k4| 

\omega k1 + \omega k1+k3  - \omega k3

\times (\ell k3

k1
+ \ell  - k3

k1+k3
 - \ell  - k1

k1+k3
)(\ell k2

k4
+ \ell  - k2

k2+k4
 - \ell  - k4

k2+k4
) ,

and IIIA from the second term in (B.8),

IIIA = - g1/4

128\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| 

\omega k1
+ \omega k2

 - \omega k1+k2

\times (\ell  - k1

k1+k2
+ \ell  - k2

k1+k2
 - \ell k2

k1
)(\ell  - k3

k3+k4
+ \ell  - k4

k3+k4
 - \ell k4

k3
) .

We repeat these steps to compute R4 (fourth line in (B.6)) and obtain

R4 =

\int 
(IIB + IIIB)z1z2z - 3z - 4\delta 1234dk1234 ,

where

IIB =
g1/4

32\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k3| | k2 + k4| 

\omega k4 + \omega k2+k4  - \omega k2

\times (\ell k3

k1
+ \ell  - k3

k1+k3
 - \ell  - k1

k1+k3
)(\ell k2

k4
+ \ell  - k2

k2+k4
 - \ell  - k4

k2+k4
) ,
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and IIIB comes from the second term in (B.8),

IIIB = - g1/4

128\pi 2

4
\sqrt{} 
| k1| | k2| | k3| | k4| | k1 + k2| | k3 + k4| 

\omega k3
+ \omega k4

 - \omega k3+k4

\times (\ell  - k1

k1+k2
+ \ell  - k2

k1+k2
 - \ell k2

k1
)(\ell  - k3

k3+k4
+ \ell  - k4

k3+k4
 - \ell k4

k3
) .

Thus R3 + R4 =
\int 
(IIA + IIB + IIIA + IIIB)z1z2z - 3z - 4\delta 1234dk1234, where IIA + IIB

corresponds to II in (4.9) and IIIA+IIIB corresponds to III in (4.10). This completes
the proof.
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