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Many wave phenomena in physics are described by weakly nonlinear nearly monochromatic
solutions in the form of modulated wave packets. The examples include ocean waves as well as
waves in optics and in plasmas. There are a number of approaches to deriving the envelope
equations for these theories of amplitudemodulation. In this paper, we give a unified approach,
based on the principles of a Hamiltonian formulation of the equations of motion. Our principal
example is the system of equations of free surface water waves, for which we give a new
derivation of the classical nonlinear Schrödinger and Davey–Stewartson equations, as well as
the higher-order Dysthe system. One consequence of our analysis from this point of view is that
the Dysthe equation can be posed as a Hamiltonian partial differential equation.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Modulation theory is a well-established method in applied mathematics to study the long time evolution and stability of oscillatory
solutions to partial differential equations (PDEs). Typical PDEs towhich the theory is applied are nonlinear dispersive evolution equations
describing wave phenomena that arise in physical applications. The usual modulational Ansatz is to anticipate a weakly nonlinear
monochromatic form for solutions, and toderiveequationsdescribing theevolutionof its envelope. For surfacegravitywaterwaveswhich
are the focusof thispaper, one typicallyfinds thenonlinear Schrödinger (NLS)equationas a canonical equation for thefirstnontrivial term
(or possibly theDavey–Stewartson system in the case of higher spacedimensions).Well-knowncases includedescriptions of problems in
optics [1,2], in plasma physics [3], and in the problemofwaterwaves [4–8]. See also Ref. [9] for a review. For the next-order correction to
this description of water waves, one finds the Dysthe equation ([10–12] and more recently [13]). Higher-order corrections have been
understood to play an important role in the modulational approximation; indeed it has been observed that the addition of the higher-
order termsprovides improvements for stability properties offinite amplitudewaves [10,14], as compared to theNLSdescription. Further
numerical study of the Dysthe equation and comparison to experiments are presented in Refs. [15] and [16].

One of the usual approaches to modulation theory is a direct perturbation method involving multiple spatial and temporal scales.
This approach is however known for often giving rise to long calculations. An alternative approachwas codified inWhitham [17], who
developed an elegantmethod of averaged Lagrangians and a transformation theory. A third approach to suchderivationswas given by
Zakharov et al. [3], based on a Fourier mode coupling formalism and an expansion of the dispersion relation with respect to a small
parameter.

In this paper, we present a systematic approach to the derivation of the equations of modulation theory, based on averaged
Hamiltonians. It gives a simple and straightforward method for Hamiltonian PDEs. This is in the spirit of the paper of Craig and
aig), guyenne@math.udel.edu (P. Guyenne), sulem@math.toronto.edu (C. Sulem).
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Groves [19] which gives a uniform approach to the water wave problem in the long wave scaling regime. The method involves a
formal expansion in small parameter, and elements which enter our analysis include an expansion of Fourier multiplier operators,
and in the case of water waves, a precise description of the Dirichlet–Neumann operator. Our approach is logically independent of
the classical methods of multiple scales. It is closer to those of Stiassnie [11] and Zakharov et al. [3], however what differentiates it
is that throughout the approach we are careful to retain a certain point of view. Namely, that our PDEs are considered to be
Hamiltonian systems, that scaling transformations and Ansätze are considered to be canonical transformations under change of
symplectic form, and the formal expansion is performed in the expression of the Hamiltonian.

Our point of view does have essential differences from the method used in [11,3] where the modulational Ansatz comes into
play only after deriving the equations of motion from the truncated Hamiltonian, and, as a result, the original Hamiltonian
structure is not systematically preserved throughout the derivation of themodel equations, as presented e.g. in [11]. In the present
formalism, the modulational Ansatz is introduced directly in the Hamiltonian and the symplectic structure of the system is
transformed accordingly, thus leading to the derivation of Hamiltonian model equations in a consistent and systematic manner.
Furthermore, several aspects of the formal expansion method as presented here are able to be placed on mathematically rigorous
grounds, including two analytic results which concern the form of a Fourier multiplier operator expansion and a scale separation
lemma for multiple scale functions.

We first illustrate the method in Section 2 on the nonlinear Klein–Gordon equation as a model problem. Subsequently we
address the problem of the water wave equations, both in two and higher space dimensions. The approach uses only a few basic
features of these equations, namely that they are dispersive Hamiltonian PDEs and thatmomentum andwave action are conserved
quantities of motion. We distinguish two cases; in Section 3 we study the case of finite depth, and in Section 4 the case of infinite
depth. In all cases we give our derivation of the NLS equation at the leading order, and our version of the Dysthe system at higher
order, through which we exhibit the simplicity and straightforward nature of the approach. As a byproduct, we exhibit a
Hamiltonian for this version of the Dysthe equation; as far as we know, the facts that it can be written in the form of a Hamiltonian
PDE, and its subsequent properties of energy conservation, have not previously been noticed.

2. A model equation

This section illustrates the approach tomodulation theory through the example of the nonlinear Klein–Gordon equation, which
is the following dispersive equation
for rea

so tha

with t

and w

4 On
∂2t v = Δxv−m2v−v3; x∈ℝd
; t∈ℝ; ð2:1Þ

l valued functions v and p. It can be written as a Hamiltonian PDE with the Hamiltonian

H = ∫ 1
2
p2 +

1
2
j∇v j2 þm2

2
v2 þ 1

4
v4

 !
dx: ð2:2Þ

t Eq. (2.1) is rewritten in first-order form

∂tv = p
∂tp = Δxv−m2v−v3:
This exhibits the Hamiltonian character of the problem, namely
∂t
v
p

� �
= J

δvH
δpH

� �
; ð2:3Þ

he symplectic structure expressed through

J = 0 I
−I 0

� �
;

ith I denoting the identity operator. The linear dispersion relation is ω2(k)=|k|2+m2 and it is thus natural to define the
r multiplier operator ω(Dx)=(|Dx|2+m2)1/2 where Dx=− i∂x is the usual choice of self-adjoint form for partial derivatives.
Fourie

Changing variables to complex symplectic coordinates, we define a(Dx)=ω(Dx)1/2 and then use it to define the complex
symplectic coordinates4
z =
1ffiffiffi
2

p a Dxð Þv + ia Dxð Þ−1p
� �

; ð2:4Þ
the usual Sobolev space Hs the operator a(Dx):Hs→Hs−1/2 is bounded and invertible.
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t

v =
1ffiffiffi
2

p a Dxð Þ−1 z + zð Þ; p =
1ffiffiffi
2

p
i
a Dxð Þ z−zð Þ; ð2:5Þ

the symbol ·̄ denotes complex conjugation. This transformation changes the expression of the symplectic structure to
where
standard complex form
J1 = 0 −iI
iI 0

� �
;

e Hamiltonian is rewritten as

H1 z;Pzð Þ = ∫ a Dxð Þzj j2 +
1
16

a Dxð Þ−1 z + Pzð Þ
��� ���4� �

dx

= ∫ P
zω Dxð Þzdx +

1
16

∫ ω−1=2 Dxð Þ z + Pzð Þ
��� ���4dx:

ð2:6Þ
We now introduce the modulational Ansatz
z = εu Xð Þeik0⋅x; X = εx∈ℝd
; ð2:7Þ

odulated planewave solutionwith carrier wave number k0. That is, z=z(x, X) has the form of amultiple scale function and ε
for am
is a small parameter. However, maintaining the point of view that our scaling and Ansätze are transformations, themapping from z
to u results from a translation of Fourier space variables, followed by a spatial scaling [20], and it is invertible. In order to analyse
the resulting expression in the Hamiltonian, the following result describes the action of Fourier multiplier operators on multiple
scale functions.

Theorem 1. Let m(Dx) be a Fourier multiplier. For sufficiently smooth functions f(X), we have
m Dxð Þ eik0⋅xf Xð Þ
� �

= eik0⋅xm k0 + εDXð Þf Xð Þ

= eik0⋅xðm k0ð Þ + ε∂kjm k0ð ÞDXj
f Xð Þ + ε2

2
∂2kjkℓm k0ð ÞD2

XjXℓ
f Xð Þ

+
ε3

3!
∂3kjkℓknm k0ð ÞD3

XjXℓXn
f Xð Þ + … +

ε j j j

j!
∂ j1
k1
…∂ jd

kd
m k0ð ÞD j1

X1
…D jd

Xd
f Xð Þ + O ε j j j + 1

� �Þ:
ð2:8Þ
In Eq. (2.8) and hereafter, the Einstein summation notation is used for repeated indices. The proof of this theorem appears as
Theorem 4.1 and extended in A2.1 of [21] where it was used to give a rigorous setting to modulation theory in the context of water
waves. The proof relies on the Fourier representation of Fourier multipliers and Taylor expansions. In formulation (2.8), the
operatorm acts on a multiple scale function in the simple monochromatic oscillatory form eik0 · xu(εx), and the expansion (2.8) has
the result of giving a Taylor expansion about the wave number k0. In the X-variables, the truncation of this series at any finite order
|j| acts as a differential operator in the X-variables, of order |j|.

The change of variables expressed by the modulational Ansatz (2.4), (2.7) is symplectic, up to a scaling factor, and therefore
changes the symplectic structure given by J1 only up to this factor:
J2 = εd 0 −iI
iI 0

� �
;

non-symplectic nature can be renormalized by simply rescaling time [20]. The transformed Hamiltonian is as follows

εdH2 u;uð Þ = ε2∫uω k0 + εDXð ÞudX +
ε4

16
∫ eik0⋅xω−1=2 k0 + εDXð Þu + e−ik0⋅xω−1=2 −k0 + εDXð Þu
��� ���4dX; ð2:9Þ

e evolution equations are

∂tu = −iδu H2; ∂tu = iδuH2: ð2:10Þ
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The second Eq. (2.10) is of course the complex conjugate of the first because of the original reality conditions imposed on v and
p. The quartic term in the Hamiltonian simplifies further because of the following scale separation lemma.

Theorem 2. Let g be a function on ℝd which is periodic over the fundamental domain ℝd /Γ, a torus, and denote E gð Þ its average value.
For any function f(X) in the Schwartz space S ℝd

� �
, we have
for an

which
∫g X = εð Þf Xð ÞdX = E gð Þ∫f Xð ÞdX + O εN
� �

; ð2:11Þ

y N.
The proof of this result can be found in Ref. [22]. It expresses that on the LHS of Eq. (2.11), the contributions of the fast
oscillations homogenize, and this approximation is true at order O(εN) for f Xð Þ∈S ℝd

� �
. In general the order of approximation is

related to the smoothness of the given test function f.
Using the scale separation result, the Hamiltonian is now expressed as
εd−2H2 u;Puð Þ = 1
2
∫ Puω k0 + εDXð Þu + uω −k0 + εDXð ÞPuð ÞdX

+
3ε2

8
∫ ω−1=2 k0 + εDXð Þu
� �2

ω−1=2 −k0 + εDXð ÞPu
� �2

dX + O εN
� �

:

ð2:12Þ
Following Theorem 1, the Taylor expansion of the linear dispersion relation gives
ω k0 + εDXð Þf Xð Þ = ω k0ð Þf Xð Þ + ε∂kjω k0ð ÞDXj
f Xð Þ + 1

2
ε2∂2kjklω k0ð ÞD2

XjXl
f Xð Þ + 1

6
ε3∂3kjklkmω k0ð ÞD3

XjXlXm
f Xð Þ + ⋯: ð2:13Þ
Similarly,
ω−1=2 �k0 + εDXð Þ = ω−1=2 �k0ð Þ∓ ε
2
ω−3=2 �k0ð Þ∂kjω �k0ð ÞDXj

+ ⋯:
These expressions in the Hamiltonian provide the expansion of H2 in powers of ε that we seek:
εd−2H2 u;uð Þ = ∫ω k0ð Þ uj j2dX

+
ε
2
∫∂kjω k0ð ÞðPuDXj

u + u
P
DXj

uÞdX + ε2∫ 1
4
∂2kjkℓω k0ð Þ PuD2

XjXℓ
u + u

P

D2
XjXℓ

u
� �

+
3
8
ω−2 k0ð Þ uj j4

� �
dX

+ ε3∫ 1
12

∂3kjkℓkmω k0ð Þ PuD3
kjkℓkm

u + u
P

D3
kjkℓkm

u
� �

−3
8
ω−3 k0ð Þ∂kjω k0ð Þ uj j2 PuDXj

u + u
P
DXj

u
� �� �

dX

+ O ε4
� �

;

ð2:14Þ

we have used the fact that ω(k0) is an even function.
where
Of the four orders represented in perturbation theory in this Hamiltonian, the first two can be eliminated through elementary

considerations. Firstly, one transforms the system into a reference coordinate frame moving with the group velocity ∂kω(k0). This
is accomplished by subtracting from Eq. (2.14) a multiple of the impulse (or momentum)
I = ∫v∂xpdx =
1
2
∫ Pz Dxz + z

P
Dxz

� 	
dx;

εd−2I = k0∫ uj j2dX +
ε
2
∫ PuDXu + u

P
DXuÞdX;

� ð2:15Þ

is a conserved integral of motion [18–20], yielding

εd−2 H2−∂kω k0ð Þ⋅Ið Þ = ω k0ð Þ−k0⋅∂kω k0ð Þð Þ∫ uj j2dX

+ ε2∫ 1
4
∂2kjkℓω k0ð Þ PuD2

XjXℓ
u + u

P

D2
XjXℓ

u
� �

+
3
8
ω−2 k0ð Þ uj j4

� �
dX

+ ε3∫ 1
12

∂3kjkℓkmω k0ð Þ PuD3
XjXℓXm

u + u
P

D3
XjXℓXm

u
� �

−3
8
ω−3 k0ð Þ∂kjω k0ð Þ uj j2 PuDXj

u + u
P
DXj

u
� �� �

dX + O ε4
� �

:

ð2:16Þ
Secondly one adjusts the phase of solutions, subtracting a multiple of the L2 norm
εd−2M = ∫ uj j2dX; ð2:17Þ
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ain the reduced Hamiltonian

εd−2 Ĥ2 := εd−2 H2−∂kω k0ð Þ⋅I− ω k0ð Þ−k0⋅∂kω k0ð Þð ÞMð Þ

= ε2∫ 1
4
∂2kjkℓω k0ð Þ PuD2

XjXℓ
u + u
P

D2
XjXℓ

u
� �

+
3
8
ω−2 k0ð Þ uj j4

� �
dX

+ ε3∫ 1
12

∂3kjkℓkmω k0ð Þ uD3
XjXℓXm

u + u
P

D3
XjXℓXm

u
� �

−3
8
ω−3 k0ð Þ∂kjω k0ð Þ uj j2 PuDXj

u + u
P
DXj

u
� �� �

dX + O ε4
� �

:

ð2:18Þ
Posed as a system of equations for u, and dropping terms of order O(ε4), Eq. (2.3) becomes
∂tu = −iδ Pu Ĥ2: ð2:19Þ
The subtraction of Eq. (2.17) from H2 is justified by the fact that, although it is not by itself a constant of motion for the original
equation (2.1), it is however a conserved quantity for the approximate system (2.19). Indeed, it is a straightforward calculation to
show that dM /dt=0 using Eq. (2.19) or, equivalently, that Ĥ2 Poisson commutes with M, meaning that
Ĥ2;M
n o

= ∫ δPu Ĥ2δuM−δu Ĥ2δP
uM

� �
dX = 0:
The conservation of Eq. (2.17) is equivalent to the phase invariance of solutions of Eq. (2.19).
Expressed in coordinates, the system Eq. (2.19) is
∂tu = −iε2
1
2
∂2kjklω k0ð ÞD2

XjXl
u +

3
4
ω−2 k0ð Þ uj j2u + ε

1
6
∂3kjklkmω k0ð ÞD3

XjXlXm
u−3

2
ω−3 k0ð Þ∂kjω k0ð Þ uj j2DXj

u
� �
 �

:

Introducting the slow time scale τ=ε2t gives directly the cubic NLS equation at the lowest order of approximation, and an
equation reminiscent of the Dysthe equation when the next order of approximation is taken into account. Explicitly, this is
i∂τu = −1
2
∂2kjklω k0ð Þ∂2XjXl

u +
3

4ω2 k0ð Þ uj j2u + ε
i
6
∂3kjklkmω k0ð Þ∂3XjXlXm

u +
3i
2
ω−3 k0ð Þ∂kjω k0ð Þ uj j2∂Xj

u

 �

: ð2:20Þ
We note that the NLS equation takes essentially a universal form, as seen by this derivation. However the nonlinear term of
higher order does not have in general a universal form, as we will find in the next sections devoted to the water wave problem,
since it depends on the detailed structure of the nonlinear terms.

3. The water wave problem with finite depth

Wenowapply this analysis to thewaterwaveproblemthat describes themotion of a free surface on topof an incompressible, ideal
and irrotational fluid in a two- or three-dimensional channel. We consider the Euler equations in Hamiltonian form where the free
surface η(x) and the boundary values ξ(x) of the velocity potential φ(x, y) constitute the canonical variables for the system [5]
∂t
η
ξ

� �
= 0 I

−I 0

� �
δηH
δξH

� �
= J∇H: ð3:1Þ
The Hamiltonian functional is the total energy
H =
1
2
∫ξ xð ÞG ηð Þξ xð Þ + gη2 xð Þdx: ð3:2Þ
In the above Hamiltonian, g is the acceleration of gravity, and G(η) is the free-surface Dirichlet–Neumann operator associated
with the Laplace equation for the velocity potential φ:
G ηð Þξ xð Þ = ∇φ x;η xð Þð Þ⋅N ηð Þ 1 + ∂xη
�� ��2� �1=2

; ð3:3Þ

N(η) is the exterior unit normal on the free surface.
where
The time-dependent fluid domain consists of the region
S ηð Þ = x; yð Þ∈ℝn−1 × ℝ : −hbybη x; tð Þ
n o

;
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with t
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h is the (constant) fluid depth, and n=2 or 3 is the space dimension. For a given function f(x), let f̂ kð Þ =
whereffiffiffiffiffiffi
2π

p − n−1ð Þ∫ℝn−1 f xð Þe−ik⋅xdx denote its Fourier transform, and P0 is the projection that associates to f its zero frequency mode f (̂0).

3.1. Canonical transformations and Ansatz

Use the Dirichlet–Neumann operator G0(Dx) for a flat surface elevation and a finite-depth channel [23], given by
G0 Dxð Þ = Dxj jtanh h Dxj jð Þ;

ne the Fourier multiplier

a Dxð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g = G0 Dxð Þð Þ4

p
;

e this in turn for the canonical transformation (η,ξ)→(z,z ̄,η̃,ξ̃) given by

η =
1ffiffiffi
2

p a−1 Dxð Þ z + Pzð Þ + η̃; η̃ = P0η; ð3:4Þ

ξ =
1ffiffiffi
2

p
i
a Dxð Þ z−Pzð Þ + ξ̃; ξ̃ = P0ξ: ð3:5Þ
As above, the notation is that Dx=−i∂x. This operator reduces to G0(Dx)=|Dx| if the depth is infinite. The presence of the mean
fieldsη̃ and ξ̃ is due to the fact that a−1(0)=0, so that the change of variables (η,ξ)→(z,z̄) is not invertible.5 Thenewvariables (z,z̄,η,̃ξ̃)⊤

are expressed in terms of (η, ξ)⊤ as follows
z; z; η̃; ξ̃
� �⊤

= A1 η; ξð Þ⊤;

the 4×2 matrix A1 is given by

A1 =
1ffiffiffi
2

p
a Dxð Þ I−P0ð Þ ia−1 Dxð Þ I−P0ð Þ
a Dxð Þ I−P0ð Þ −ia−1 Dxð Þ I−P0ð Þffiffiffi

2
p

P0 0
0

ffiffiffi
2

p
P0

0
BBB@

1
CCCA: ð3:6Þ
The equations of motion become
∂t

z
Pz
η̃
ξ̃

0
BB@

1
CCA= J1

δzH
δP

zH
δη̃H
δ˜ξH

0
BB@

1
CCA; ð3:7Þ

he symplectic form given by the matrix

J1 = A1 JA
⊤
1 =

0 −i I−P0ð Þ 0 0
i I−P0ð Þ 0 0 0

0 0 0 P0
0 0 −P0 0

0
BB@

1
CCA; ð3:8Þ

we have used the fact that P02=P0.
where
We look for solutions in the form of monochromatic waves with a modulated complex amplitude depending upon the second

variables X=εx,
z = εu X; tð Þeik0⋅x; z = εu X; tð Þe−ik0⋅x; ð3:9Þ

η̃ = εαη̃1 X; tð Þ; ξ̃ = εβ ξ̃1 X; tð Þ; ð3:10Þ

the exponents α≥1 and β≥1 are to be chosen.
ally the projection P0 is not well defined on the classical Sobolev spaces Hs, but it is so on weighted Sobolev spaces.
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Equivalently, the system has the form
with v

where
the tw

using

with t

where
u
Pu
η̃1

ξ̃1

0
BB@

1
CCA= A2

z
Pz
η̃
ξ̃

0
BB@

1
CCA; ð3:11Þ

A2 is the 4×4 diagonal matrix with the entries on the diagonal being (ε−1e− ik0 · x, ε−1eik0 · x, ε−α, ε−β). The equations of
where
motion are
∂tv = J2∇vH; ð3:12Þ

=(u,ū,η1̃,ξ̃1)⊤ and

J2 = εn−1A2J1A
⊤
2

=

0 −iεn−3e−ik0⋅x I−P0ð Þðeik0⋅x⋅Þ 0 0

iεn−3eik0⋅x I−P0ð Þ e−ik0⋅x⋅
� �

0 0 0

0 0 0 εn−1−α−βP0

0 0 −εn−1−α−βP0 0

0
BBBBBB@

1
CCCCCCA

=

0 −iεn−3I′ 0 0

iεn−3I′ 0 0 0

0 0 0 εn−1−α−β

0 0 −εn−1−α−β 0

0
BBBBB@

1
CCCCCA;

I′ is the identity on the class of functions {u(X)}, and the final 2×2 block retains essentially the standard symplectic form on
o-dimensional space of constants (η1̃,ξ̃1).
3.2. Expansion of Hamiltonian

We expand the Hamiltonian in powers of ε,
H = H 2ð Þ + H 3ð Þ + H 4ð Þ + ⋯; ð3:13Þ

the Taylor series expansion of the Dirichlet–Neumann operator [23],

G = G0 + G1 + G2 + ⋯; ð3:14Þ

he result that

H 2ð Þ =
1
2
∫ ξG0ξ + gη2
� �

dx; ð3:15Þ

H 3ð Þ =
1
2
∫ξG1 ηð Þξdx; ð3:16Þ

H 4ð Þ =
1
2
∫ξG2 ηð Þξdx; ð3:17Þ

G1 ηð Þ = Dxη⋅Dx−G0ηG0;

G2 ηð Þ = −1
2

Dxj j2η2G0 + G0η
2 Dxj j2−2G0ηG0ηG0

� �
:

Retaining terms of up to second order in η is sufficient for the purposes of the present paper, as this will include all of the
contributions to the NLS and Dysthe systems. Denoting by ω Dxð Þ = gG0ð Þ1=2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Dxj jtanh h Dxj jð Þp

the linear dispersion relation,
we get that
H 2ð Þ = ∫ Pzω Dxð Þz + iffiffiffi
2

p a Dxð Þ z−Pzð ÞG0ξ̃ +
1
2
ξ̃G0ξ̃ +

1
2
g η̃2 +

gffiffiffi
2

p η̃a−1 Dxð Þ z + Pzð Þ
� �

dx: ð3:18Þ
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In Eq. (3.18), the first term is calculated as before,
where

with c

which
∫Pzω Dxð Þzdx = ε3−n∫Pu Xð Þω k0 + εDXð Þu Xð ÞdX: ð3:19Þ
To calculate the second and last terms of Eq. (3.18), we apply Theorem 2 and find that all terms are nonresonant, and therefore
they do not contribute to the Hamiltonian. The remaining terms in H(2) are
εn−3H 2ð Þ = ∫Pu Xð Þω k0 + εDXð Þu Xð ÞdX

+
1
2
ε2β−2∫ξ̃1G0 ξ̃1dX +

g
2
ε2α−2∫η̃2

1dX:
ð3:20Þ
In the above expression, we furthermore have
∫ξ̃1G0ξ̃1dX = ε2h∫ξ̃1 DXj j2ξ̃1dX + O ε4
� �

: ð3:21Þ
We now compute H(3)
H 3ð Þ =
1
2
∫η Dxξj j2− G0ξð Þ2
� �

dx: ð3:22Þ
From the terms that come out of the expansion, it is natural to choose the exponentsα and β such that α=β+1.We find
εn−3H 3ð Þ = εβ + 1∫ α1 k0ð Þ uj j2η̃1−i uj j2k0⋅DXξ̃1
� �

dX

+ εβ + 2αj
2 k0ð Þ∫ PuDXj

u + u
P
DXj

u
� �

η̃1dX

−εβ + 2 i
2
∫ PuDXj

u + u
P
DXj

u
� �

DXj
ξ̃1dX;

the coefficients are

α1 k0ð Þ = a2 k0ð Þ
2

k0j j2−G2
0 k0ð Þ

� �
;

αj
2 k0ð Þ = a2 k0ð Þ

2
k0j + k0j j2

∂kj a
a k0ð Þ−G0 k0ð Þ∂kjG0 k0ð Þ−G2

0 k0ð Þ
∂kj a
a k0ð Þ

 !
:

ð3:23Þ
The contributions from H(4) are
εn−3H 4ð Þ = ε2α3 k0ð Þ∫ uj j4dX + ε3αj
4 k0ð Þ∫ uj j2 PuDXj

u + u
P
DXj

u
� �

dX; ð2:24Þ

oefficients

α3 k0ð Þ = 1
4

G0 k0ð Þ2G0 2k0ð Þ− k0j j2G0 k0ð Þ
� �

;

αj
4 k0ð Þ = 3

8
G0 k0ð Þ k0j j−2 G0 2k0ð ÞG0 k0ð Þ− k0j j2

� �
k0j

+
h
8

1−tanh2 h k0j jð Þ
� �

2G0 2k0ð ÞG0 k0ð Þ− k0j j2
� �

k0j
+

h
2
G0 k0ð Þ2 1−tanh2 2h k0j jð Þ

� �
k0j :
The conserved impulse vector valued integral is given by
I = ∫η∂xξdx; ð3:25Þ

in the present coordinates is given by

εn−3I = ∫ k0 uj j2 + εPuDXu + iε2βη̃1DXξ̃1
� �

dX: ð3:26Þ
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In analogy with the Klein–Gordon equation, we also make use of the quantity
which

we ob

ε

ε

which
εn−3M = ∫ uj j2dX;
is known as the wave action integral. After subtracting terms proportional to I and M,

Ĥ = H−∂kω k0ð Þ⋅I− ω k0ð Þ−k0⋅∂kω k0ð Þð ÞM; ð3:27Þ

tain the renormalized Hamiltonian

εn−3 Ĥ = ε2∫ð1
2
∂2kjklω k0ð ÞPuD2

XjXl
u + α3 k0ð Þ uj j4 + ε2β−2 h

2
ξ̃1 DXj j2ξ̃1 +

g
2
η̃2
1−i∂kjω k0ð Þ η̃1DXj

ξ̃1

� �

+ α1 k0ð Þεβ−1 η̃1 uj j2−iεβ−1 uj j2k0⋅DXξ̃1 +
ε
6
∂3kjklkmω k0ð ÞPuD3

XjXlXm
u

+ ε αj
2 k0ð Þεβ−1 η̃1−

i
2
εβ−1DXj

ξ̃1 + αj
4 k0ð Þ uj j2

� �
PuDXj

u + u
P
DXj

u
� �

+ O ε2
� �ÞdX:
Here, as in the case of the Klein–Gordon equation, it can be shown thatM is a conserved quantity of this system at the order of
approximation that is being considered.

3.3. Hamilton equations

It is now natural to choose β=1 (and thus α=2) for the exponents of the mean fields. Introducing the slow time variables
τ=ε2t, the corresponding equations of motion are
i∂τu = −1
2
∂2kjklω∂2XjXl

u + 2α3 uj j2u + α1η̃1−ik0⋅DX ξ̃1
� �

u

+ iε
1
6
∂3kjklkmω∂3XjXlXm

u−αj
2 η̃1∂Xj

u + ∂Xj
uη̃1ð Þ

� �
+

1
2

∂Xj
ξ̃1∂Xj

u + ∂Xj
u∂Xj

ξ̃1
� �� �

−4αj
4 ju j2∂Xj

u
� �

+ O ε2
� �

;

∂τη̃1 = h DXj j2 ξ̃1 + k0⋅∂X uj j2 + i∂kjωDXj
η̃1 +

ε
2
∂Xj

PuDXj
u + u

P
DXj

u
� �

+ O ε2
� �

;

∂τξ̃1 = − gη̃1 + α1 uj j2−i∂kjωDXj
ξ̃1

� �
−εαj

2 uDXj
u + u

P
DXj

u
� �

+ O ε2
� �

:

For simplicity of notation, we have dropped the explicit dependency on k0 of the coefficients αi and ω. This is the NLS equation
in the case n=2 and the Davey–Stewartson system in a certain form, in the case n=3.

When n=3, in order to recover the more usual form of the Davey–Stewartson system, we neglect all the Dysthe terms,
obtaining
i∂τu = −1
2
∂2kjklω∂2XjXl

u + 2α3 uj j2u + α1 η̃1−ik0⋅DXξ̃1
� �

u; ð3:28Þ

h DXj j2ξ̃1 + k0⋅∂X uj j2 + ∂kjω∂Xj
η̃1 = 0; ð3:29Þ

gη̃1 + α1 uj j2−∂kjω∂Xj
ξ̃1 = 0: ð3:30Þ
From Eq. (3.30) we can solve η1̃. After substitution in Eqs. (3.28), (3.29), the system reads
i∂τu = −1
2
∂2kjklω∂2XjXl

u + α5 uj j2u−αj
6u∂Xj

ξ̃1;

Lξ̃1 + αj
6∂Xj

uj j2 = 0;
ð3:31Þ

is a standard form of the Davey–Stewartson system, where

L = h DXj j2 +
1
g
∂kjω∂klω∂2XjXl
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cond-order differential operator with constant coefficients, and

α5 = 2α3−
α2

1

g
; αj

6 = k0j−
α1

g
∂kjω:
When one retains the Dysthe terms, there is no further apparent simplification. However, by construction, the present method
provides a conserved Hamiltonian for the above Dysthe system, which takes the form
H = ∫ð12∂2kjklω k0ð Þ∂Xj
u∂Xl

u + α3 k0ð Þ uj j4 +
h
2
ξ̃1 DXj j2ξ̃1 +

g
2
η̃2
1−i∂kjω k0ð Þη̃1DXj

ξ̃1 + α1 k0ð Þη̃1 uj j2− uj j2k0j∂Xj
ξ̃1

+
ε
6
∂3kjklkmω k0ð Þℑ ∂Xj

u∂2XlXm
u

� �
+ ε αj

2 k0ð Þη̃1−
1
2
∂Xj

ξ̃1 + αj
4 k0ð Þ uj j2

� �
uDXj

u + u
P
DXj

u
� �ÞdX

;

I stands for the imaginary part.
4. The water wave problem with infinite depth

It is of interest to extend the analysis to the water wave problemwith infinite depth as it gives a simplified Dysthe system. The
only difference in the initial Hamiltonian lies in the form of the Dirichlet–Neumann operator G0(Dx) for the unperturbed fluid
domain given by a flat surface elevation, which now has the form G0(Dx)=|Dx|. As a consequence, it modifies the ordering in H(2)

as Eq. (3.21) is now replaced by
∫ξ̃1G0ξ̃1dX = ε∫ξ̃1 DXj jξ̃1dX: ð4:1Þ
This results in a modification of the values of the coefficients αi(k0); namely, α1(k0) as defined in Eq. (3.23) vanishes,
α3 k0ð Þ = k0j j3

4 and αj
4 k0ð Þ = 3

8 k0j jk0j. The resulting modified Hamiltonian is rewritten as
εn−3 Ĥ = ε2∫ð12 ∂2kjklω k0ð ÞuD2
XjXl

u + α3 k0ð Þ uj j4 +
1
2
ε2β−3ξ̃1 DXj jξ̃1 + ε2β−2 g

2
η̃2
1−i∂kjω k0ð Þη̃1DXj

ξ̃1
� �

−iεβ−1 uj j2k0⋅DXξ̃1

+
ε
6
∂3kjklkmω k0ð ÞuD3

XjXlXm
u + ε αj

2 k0ð Þεβ−1η̃1−
i
2
εβ−1DXj

ξ̃1 + αj
4 k0ð Þ uj j2

� �
PuDXj

u + uDXj
u

� �
+ O ε2

� �ÞdX: ð4:2Þ
The presence of the term ε2β−3ξ̃1|DX|ξ̃1 in the second line of the RHS of Eq. (4.2) suggests that β should be equal to 2. Under this
condition, Eq. (4.2) takes the form
εn−3 Ĥ = ε2∫ð12 ∂2kjklω k0ð ÞuD2
XjXl

u +
k0j j3
4

uj j4 + εð16 ∂3kjklkmω k0ð ÞuD3
XjXlXm

u +
1
2
ξ̃1 DXj jξ̃1−i uj j2k0⋅DXξ̃1

+
3
8

k0j jk0j uj j2ðPuDXj
u + u

P
DXj

uÞÞ + O ε2
� �ÞdX; ð4:3Þ

we have written terms up to O(ε) inside the integral. The conserved impulse vector valued integral I reduces to

I = ∫η∂xξdx = ε3−n∫ k0 uj j2 + εuDXu
� �

dX + O ε7−n
� �

: ð4:4Þ
Proceeding as before, Hamilton's canonical equations are
∂tu = −iε2
1
2
∂2kjklω k0ð ÞD2

XjXl
u +

k0j j3
2

uj j2u + ε
1
6
∂3kjklkmω k0ð ÞD3

XjXlXm
u−ik0⋅uDXξ̃1 +

3 jk0 j
2

uj j2k0⋅DXu
� �" #

+ O ε4
� �

;

∂tη̃1 = DXj jξ̃1 + ik0⋅DX uj j2 + O εð Þ;
∂tξ̃1 = O εð Þ:

ð4:5Þ
Introducing the slow time τ=ε2t and solving for ξ̃1 at lowest order in terms of u yield
ξ̃1 = −i DXj j−1k0⋅DX uj j2 + O εð Þ; ð4:6Þ

leads to the NLS equation at lowest order, and to a Dysthe-type equation [10] when one considers the next-order
which
corrections. This latter takes the form
2i∂τu = −∂2kjklω k0ð Þ∂2XjXl
u + k0j j3 uj j2u

+ ε
i
3
∂3kjklkmω k0ð Þ∂3XjXlXm

u−3i k0j j uj j2k0⋅∂Xu + 2uk0jk0l DXj j−1∂2XjXl
uj j2

� �
:

ð4:7Þ
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We note the presence of the nonlocal operator |DX|−1=(−Δ)−1/2 in the equation, which is a consequence of the mean flow
terms, and which can be expressed using the Hilbert transform.

Again, there is a conserved Hamiltonian for the Dysthe equation that we have derived, both for dimensions n=2 or 3, given
by
and
H =
1
2
∫ ∂2kjklω k0ð Þ∂Xj

u∂Xl
u +

k0j j3
2

uj j4 + ε
1
3
∂3kjklkmω k0ð Þℑ ∂Xj

u∂2XlXm
u

� �
−k0jk0l ∂Xj

uj j2
� �

DXj j−1∂Xl
uj j2 +

3
2

k0j jk0j uj j2ℑ u∂Xj
u

� �� �" #
dX:

ð4:8Þ
In the above formulas,
∂2kjklω k0ð Þ = k0j j−1 δjl−
k0jk0l
k0j j2

 !
;

∂3kjklkmω k0ð Þ = − k0j j−3 δjlk0m + δlmk0j + δmjk0l +
k0jk0lk0m

k0j j2
 !

:

It can be checked that evaluating
∂τu = −iδuH;

the closed form (4.8) of the Hamiltonian yields Eq. (4.7).
using
In order to compare our Eq. (4.7) in Hamiltonian form with the Dysthe-type equations that have previously appeared in the

literature, introduce the new variables
ψ =
1ffiffiffi
2

p k0j j
g

� �1=4
1 +

ε
4 k0j j2 k0⋅DX

 !
u; ð4:9Þ

is similar to Stiassnie [11]. This variable can be thought of as a first-order approximation of η as given by Eq. (3.4), which is
which
to say that ψ(X) is directly related to the free-surface elevation. Inverting Eq. (4.9), inserting it in Eq. (4.7) and retaining only O(ε)
terms, leads to the following equation
2i∂τψ = −∂2kjklω k0ð Þ∂2XjXl
ψ + 2g1=2 k0j j5=2 ψj j2ψ

+ ε
i
3
∂3kjklkmω k0ð Þ∂3XjXlXm

ψ−6ig1=2 k0j j1=2 ψj j2k0⋅∂Xψ−ig1=2 k0j j1=2ψ2k0⋅∂Xψ + 4g1=2 k0j j−1=2ψk0jk0l DXj j−1∂2XjXl
ψj j2

� �
:

ð4:10Þ
This equation contains all the usual Dysthe terms including the high-order nonlinear term in ψ2k0·∂Xψ
―

as can be seen in
[10,11,14–16]. The Hamiltonian structure is however lost in the transformation to the ψ-variables. We also note that the numerical
coefficients in Eq. (4.10) are very similar to those in the equation derived by Stiassnie [11]. However, in general, we should not
expect to obtain precisely the same coefficients as in previous work, since the various approaches do not use precisely the same
physical variables (in particular the choice of the velocity potential). Our own choice of physical variables is quite natural,
consisting of the canonically conjugate variables η and ξ as related to (z,z ̄,η,̃ξ̃) through Eqs. (3.4) and (3.5).

Therefore, our versions of the Dysthe equation can be viewed as new model equations in the sense that, although they agree
with existing versions on their general form, details such as their numerical coefficients and the relation of their dependent
variables to the original physical variables are different, and more importantly they possess a well-defined Hamiltonian structure
which is consistent with the Hamiltonian formulation of the Euler equations for water waves.
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