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based on the principles of a Hamiltonian formulation of the equations of motion. Our principal
example is the system of equations of free surface water waves, for which we give a new
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1. Introduction

Modulation theory is a well-established method in applied mathematics to study the long time evolution and stability of oscillatory
solutions to partial differential equations (PDEs). Typical PDEs to which the theory is applied are nonlinear dispersive evolution equations
describing wave phenomena that arise in physical applications. The usual modulational Ansatz is to anticipate a weakly nonlinear
monochromatic form for solutions, and to derive equations describing the evolution of its envelope. For surface gravity water waves which
are the focus of this paper, one typically finds the nonlinear Schrédinger (NLS) equation as a canonical equation for the first nontrivial term
(or possibly the Davey-Stewartson system in the case of higher space dimensions). Well-known cases include descriptions of problems in
optics [1,2], in plasma physics [3], and in the problem of water waves [4-8]. See also Ref. [9] for a review. For the next-order correction to
this description of water waves, one finds the Dysthe equation ([10-12] and more recently [13]). Higher-order corrections have been
understood to play an important role in the modulational approximation; indeed it has been observed that the addition of the higher-
order terms provides improvements for stability properties of finite amplitude waves [10,14], as compared to the NLS description. Further
numerical study of the Dysthe equation and comparison to experiments are presented in Refs. [15] and [16].

One of the usual approaches to modulation theory is a direct perturbation method involving multiple spatial and temporal scales.
This approach is however known for often giving rise to long calculations. An alternative approach was codified in Whitham [17], who
developed an elegant method of averaged Lagrangians and a transformation theory. A third approach to such derivations was given by
Zakharov et al. [3], based on a Fourier mode coupling formalism and an expansion of the dispersion relation with respect to a small
parameter.

In this paper, we present a systematic approach to the derivation of the equations of modulation theory, based on averaged
Hamiltonians. It gives a simple and straightforward method for Hamiltonian PDEs. This is in the spirit of the paper of Craig and
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Groves [19] which gives a uniform approach to the water wave problem in the long wave scaling regime. The method involves a
formal expansion in small parameter, and elements which enter our analysis include an expansion of Fourier multiplier operators,
and in the case of water waves, a precise description of the Dirichlet-Neumann operator. Our approach is logically independent of
the classical methods of multiple scales. It is closer to those of Stiassnie [11] and Zakharov et al. [3], however what differentiates it
is that throughout the approach we are careful to retain a certain point of view. Namely, that our PDEs are considered to be
Hamiltonian systems, that scaling transformations and Ansdtze are considered to be canonical transformations under change of
symplectic form, and the formal expansion is performed in the expression of the Hamiltonian.

Our point of view does have essential differences from the method used in [11,3] where the modulational Ansatz comes into
play only after deriving the equations of motion from the truncated Hamiltonian, and, as a result, the original Hamiltonian
structure is not systematically preserved throughout the derivation of the model equations, as presented e.g. in [11]. In the present
formalism, the modulational Ansatz is introduced directly in the Hamiltonian and the symplectic structure of the system is
transformed accordingly, thus leading to the derivation of Hamiltonian model equations in a consistent and systematic manner.
Furthermore, several aspects of the formal expansion method as presented here are able to be placed on mathematically rigorous
grounds, including two analytic results which concern the form of a Fourier multiplier operator expansion and a scale separation
lemma for multiple scale functions.

We first illustrate the method in Section 2 on the nonlinear Klein-Gordon equation as a model problem. Subsequently we
address the problem of the water wave equations, both in two and higher space dimensions. The approach uses only a few basic
features of these equations, namely that they are dispersive Hamiltonian PDEs and that momentum and wave action are conserved
quantities of motion. We distinguish two cases; in Section 3 we study the case of finite depth, and in Section 4 the case of infinite
depth. In all cases we give our derivation of the NLS equation at the leading order, and our version of the Dysthe system at higher
order, through which we exhibit the simplicity and straightforward nature of the approach. As a byproduct, we exhibit a
Hamiltonian for this version of the Dysthe equation; as far as we know, the facts that it can be written in the form of a Hamiltonian
PDE, and its subsequent properties of energy conservation, have not previously been noticed.

2. A model equation

This section illustrates the approach to modulation theory through the example of the nonlinear Klein-Gordon equation, which
is the following dispersive equation

*v = Av—m*v—v?, xeRY teR, (2.1)

for real valued functions v and p. It can be written as a Hamiltonian PDE with the Hamiltonian

1 1 m? 1
H= J'(sz +3 |vv|? +7v2 + 4v4>dx. (2.2)

so that Eq. (2.1) is rewritten in first-order form

ov=p
0,p = Av—m*v—v>.

This exhibits the Hamiltonian character of the problem, namely

() =I5 23)

with the symplectic structure expressed through

1=(% o)

and with I denoting the identity operator. The linear dispersion relation is w?(k) = |k|> +m? and it is thus natural to define the
Fourier multiplier operator w(Dy) = (|D,|* + m?)'/? where Dy = —id, is the usual choice of self-adjoint form for partial derivatives.

Changing variables to complex symplectic coordinates, we define a(Dy)=®(D,)'? and then use it to define the complex
symplectic coordinates*

1 : -1
2= (abyv + ia(dy) 'p), (2.4)

4 On the usual Sobolev space H® the operator a(D,):H* — H*~ '/ is bounded and invertible.
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so that

v=—=aD,) '(z+2). p=—=aD,)(z—2) (2.5)

1
V2i
where the symbol = denotes complex conjugation. This transformation changes the expression of the symplectic structure to
standard complex form

L= <l(])l —OiI[>7

and the Hamiltonian is rewritten as

Hy(z,Z) = f(\a(Dx) 16‘a(D Yz + ?)‘4>dx

(2.6)
_ 1 /2 —\ |4
fzw )zdx + 16”0) (D,)(z + z)‘ dx.
We now introduce the modulational Ansatz
z=seu(X)e™* X =exeRr?, (2.7)

for a modulated plane wave solution with carrier wave number ko. That is, z=z(x, X) has the form of a multiple scale function and &
is a small parameter. However, maintaining the point of view that our scaling and Ansdtze are transformations, the mapping from z
to u results from a translation of Fourier space variables, followed by a spatial scaling [20], and it is invertible. In order to analyse
the resulting expression in the Hamiltonian, the following result describes the action of Fourier multiplier operators on multiple
scale functions.

Theorem 1. Let m(D,) be a Fourier multiplier. For sufficiently smooth functions f(X), we have

m(D,) (" f(X)) = " m(ky + eDx)f(X)
. 2
= el (m(ky) + 53, m(ko)Dy F(X) + iaﬁk m(k)Dx, £ (X) 28)

3
. o 4
+ 57001, Mk0) D x FX) + .. + _a,gl Bfm(ko)DL ...DY FX) + 0(eV ‘))

In Eq. (2.8) and hereafter, the Einstein summation notation is used for repeated indices. The proof of this theorem appears as
Theorem 4.1 and extended in A2.1 of [21] where it was used to give a rigorous setting to modulation theory in the context of water
waves. The proof relies on the Fourier representation of Fourier multipliers and Taylor expansions. In formulation (2.8), the
operator m acts on a multiple scale function in the simple monochromatic oscillatory form e’ *u(&x), and the expansion (2.8) has
the result of giving a Taylor expansion about the wave number k. In the X-variables, the truncation of this series at any finite order
li] acts as a differential operator in the X-variables, of order [j|.

The change of variables expressed by the modulational Ansatz (2.4), (2.7) is symplectic, up to a scaling factor, and therefore
changes the symplectic structure given by J; only up to this factor:

a0 —il
h=¢ (i]l 0 )
whose non-symplectic nature can be renormalized by simply rescaling time [20]. The transformed Hamiltonian is as follows
eH,(u, 1) = & J-um (ko + €Dy )udX + _” "% 2 (ky + eDy)u + e w2 (—ky + eDy)T “ax, (2.9)

and the evolution equations are

B = —idy Hy, 0,11 = id,H. (2.10)
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The second Eq. (2.10) is of course the complex conjugate of the first because of the original reality conditions imposed on v and
p. The quartic term in the Hamiltonian simplifies further because of the following scale separation lemma.

Theorem 2. Let g be a function on R¢ which is periodic over the fundamental domain R%/T, a torus, and denote E(g) its average value.
For any function f(X) in the Schwartz space S&d) we have

Jetx /e 00dx = Eg) [fx)dx + 0(&"), 2.11)

for any N.

The proof of this result can be found in Ref. [22]. It expresses that on the LHS of Eq. (2.11), the contributions of the fast
oscillations homogenize, and this approximation is true at order O(g") for f(X)ES (Rd). In general the order of approximation is
related to the smoothness of the given test function f.

Using the scale separation result, the Hamiltonian is now expressed as

e Hy(u, ) = %j(ﬁm(ko + eDy)u + uw(—ky + eDy) U )dX (2.12)

+ 3%'2 (w_l/z(ko + SDX)U)2<0)_1/2(7]<0 + aDX)E)ZdX n O(aN),

Following Theorem 1, the Taylor expansion of the linear dispersion relation gives
1 1
(ko + eDY)f (X) = (ko) (X) + £d 0(ko)Dyy F(X) + 58", 0(ko)Digx, SX) + 58 0, (ko) Dy, SX) + = (2.13)
Similarly,
o V2 (4ky + eDy) = 0V Z(iko):Fgufg/ 2 (ko) 0y, 0 (ko)Dy, + =
These expressions in the Hamiltonian provide the expansion of H; in powers of ¢ that we seek:
&' ?H, (u, 1) = [o(k)lu[dX
_ — 1 — " — 3 -
+ %jak]m(ko)(unxju + uDygu)dX + 82f<zaijk/w(ko)<uD)2<jx/u + qu(JX,u) +go 2(k0)|u|4>dX
sef1 a3 _ 3 S\ 3 S o (2.14)
+é 730k, 1, @ (ko) ( WD i, + UDi i, 1 | = 507 (ko)By (ko)1 (uDXju + uDXju) dx
+ O(a“),
where we have used the fact that (ko) is an even function.
Of the four orders represented in perturbation theory in this Hamiltonian, the first two can be eliminated through elementary

considerations. Firstly, one transforms the system into a reference coordinate frame moving with the group velocity d (ko). This
is accomplished by subtracting from Eq. (2.14) a multiple of the impulse (or momentum)

1._ _
1= fvaxpdx = f-[(ZD"Z + 2D,z )dx,

(2.15)
&2 = ko [JuPdX + = [ (uDxu + uDyu)dX,
2
which is a conserved integral of motion [18-20], yielding
&7 (Hy— 0,00 (ko) T) = (0(ko) —ko 0y0d(ko)) [|u*dX
+ sz_f(%aijk/w(ko)(ﬂngx/u + uD)ng/u) + %w_z(ko)|u|4>dx
+ £3f la3 o(k )(ED3 u+ ub} u>f§m73(k )0, o (k )\u|2(HD u+ uD_u) dX + 0(84)
12 YKk, ke Ko XiX, Xon XiX, X s 0) 0k, O Ko X; X; :
(2.16)

Secondly one adjusts the phase of solutions, subtracting a multiple of the L?> norm

&M = [jufdx, (2.17)
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to obtain the reduced Hamiltonian
77 Hy : = " (Hy— 80 (ky) - (0 (ko>—ko-6kw<ko>>M>

= szf< akk o(ky) (uD)z(jX/u + uD)Z(I_X/u) + co 2(k0)|u|4>

_ 3 —_ —
+ s3f<ﬁ6kjk/kmw(ko)(qu(]X/Xmu + Uijx,xmu> —g® (ko)akjm(ko)|u|2(uDXJu + uDXju)>dX + O<84).
(2.18)

Posed as a system of equations for u, and dropping terms of order 0(&*), Eq. (2.3) becomes
Ou = —id - H,. (2.19)
The subtraction of Eq. (2.17) from H, is justified by the fact that, although it is not by itself a constant of motion for the original

equation (2.1), it is however a conserved quantity for the approximate system (2.19). Indeed, it is a straightforward calculation to
show that dM/dt=0 using Eq. (2.19) or, equivalently, that A, Poisson commutes with M, meaning that

{Hz, } (6—H26 M—36, H,5; M)dx =0.

The conservation of Eq. (2.17) is equivalent to the phase invariance of solutions of Eq. (2.19).
Expressed in coordinates, the system Eq. (2.19) is

L2142 2 3 2 3 2
du = —ie Eak,k,w(ko)Dx,x,u + 40 (ko)[ul"u + 8( akk,k w(ko)Dxx,x u— (ko)ak o(ko)[ul Dx,“)]-
Introducting the slow time scale 7= g2t gives directly the cubic NLS equation at the lowest order of approximation, and an

equation reminiscent of the Dysthe equation when the next order of approximation is taken into account. Explicitly, this is

i 3i _
P+ & [ 81, 0k B, 1 + 50 (ko) (ko) D] (2.20)

. 1
i0.u= —iaiklw(ko)a)zgx,“ + 2

3
40° (ko)

We note that the NLS equation takes essentially a universal form, as seen by this derivation. However the nonlinear term of
higher order does not have in general a universal form, as we will find in the next sections devoted to the water wave problem,
since it depends on the detailed structure of the nonlinear terms.
3. The water wave problem with finite depth

We now apply this analysis to the water wave problem that describes the motion of a free surface on top of an incompressible, ideal

and irrotational fluid in a two- or three-dimensional channel. We consider the Euler equations in Hamiltonian form where the free
surface 1)(x) and the boundary values §(x) of the velocity potential ¢(x, y) constitute the canonical variables for the system [5]

N _ (0 T\/8H\_
()= (2 5)(2) -
The Hamiltonian functional is the total energy
=3 fﬁ ) + g’ (R)dx (3.2)

In the above Hamiltonian, g is the acceleration of gravity, and G(n) is the free-surface Dirichlet-Neumann operator associated
with the Laplace equation for the velocity potential ¢:

GER) = Ve ne) N (1 + @), (33)

where N(n) is the exterior unit normal on the free surface.
The time-dependent fluid domain consists of the region

so) = { xR x R: —hey=n(x,0)},
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where h is the (constant) fluid depth, and n=2 or 3 is the space dimension. For a given function f(x), let f(k) =

VoL IRH f(x)e~**dx denote its Fourier transform, and P, is the projection that associates to f its zero frequency mode f(0).
3.1. Canonical transformations and Ansatz
Use the Dirichlet-Neumann operator Go(Dy) for a flat surface elevation and a finite-depth channel [23], given by
Go(Dx) = |Dx|tanh(h|Dy]),
to define the Fourier multiplier

a(Dy) = v/(g/ Go(Dy)),

and use this in turn for the canonical transformation (1,€) — (z.Z/,€) given by

n= %a”@)(z +7)+7, 7= P, (34)
— 1 _ = e e _
§= D7) +& E= Pk, (35)

As above, the notation is that Dy= — i0,. This operator reduces to Go(Dy) = |Dy] if the depth is infinite. The presence of the mean
fields7jand € is due to the fact thata= !(0) = 0, so that the change of variables (1,§) — (z.2) is not invertible.” The new variables (z.z17§)"
are expressed in terms of (1, §)" as follows

—_ ~ =\T
<Zv Z,'T], g) = A] <n7g)Tw
where the 4 x 2 matrix A; is given by

a(D,)(I—P,) ia~'(D,)(I—Py)

_ 1 [aDya—Py) —ia” (Dy)(I—Py)
=5 | O =R (36)
0 V2P,

The equations of motion become

=h| &H | (3.7)

S SN N

with the symplectic form given by the matrix

0 —i1—Py) 0 O
i(1—P, 0 0 0

p=aam =00 R (38)
0 0 —Py O

where we have used the fact that P3=P.
We look for solutions in the form of monochromatic waves with a modulated complex amplitude depending upon the second
variables X = ¢x,

z=ceuX, ne*, z = emX,t)e "o, (3.9)

ﬁ :8aﬁ](x7t)v é :8V)£«1(X7t)7 (310)
where the exponents «>1 and 3>1 are to be chosen.

5 Actually the projection Py is not well defined on the classical Sobolev spaces H?, but it is so on weighted Sobolev spaces.
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Equivalently, the system has the form

u

ﬁlj (3.11)

&

where A, is the 4 x4 diagonal matrix with the entries on the diagonal being (g~ Te~ o X g=lelko X =@ ¢=B) The equations of

motion are

dv = J,V,H, (3.12)

with v= (u,i,7;,§;)" and

Jz =" A 1A;

0 e 3 —1k0 ( )( zko'x_) 0 0
ig" 3o (1— P)( “"0") 0 0 0
0 0 0 g1 Ppy
0 Sn 1—a SPO 0
0 —ig"r 0 0
e 0 0 0
- 0 0 0 & 1—a—p |’
0 0 _Sn—l—a—B 0

where I’ is the identity on the class of functions {u(X)}, and the final 2 x 2 block retains essentially the standard symplectic form on
the two-dimensional space of constants (1]1,§1).

3.2. Expansion of Hamiltonian
We expand the Hamiltonian in powers of &,
H=H?® +H® + HY + - (3.13)
using the Taylor series expansion of the Dirichlet-Neumann operator [23],
G=Gy+ G +Gy + -, (3.14)

with the result that

H? = % ] (gcog + gn2>dx, (3.15)

H® = 2 jgcl )Edx, (3.16)

HY = fgcz )Edx, (3.17)
where

G1(M) = DN Dy —GonGo,
1
Gy(1) = —5 (ID*1°Go + Gy’ Dy ~2GoMGoGo ) -

Retaining terms of up to second order in 7] is sufficient for the purposes of the present paper, as this will include all of the
contributions to the NLS and Dysthe systems. Denoting by w(Dy) = (8Go)'/? = ./g|Dx|tanh(h|Dy|) the linear dispersion relation,
we get that

H? = [(Z0D)z + D216k + 586 + 3277 +

-1 —
75 (D)(z + z))dx. (3.18)

v s
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In Eq. (3.18), the first term is calculated as before,
[Zo(Dy)zdx = 7" [UX)w(ky + eDy)u(X)dX. (3.19)

To calculate the second and last terms of Eq. (3.18), we apply Theorem 2 and find that all terms are nonresonant, and therefore
they do not contribute to the Hamiltonian. The remaining terms in H® are

" H? = [uX)o(ky + eDy)u(X)dX

+ jsz“*zfilco?;]dx + %aza*szﬁdx

(3.20)

In the above expression, we furthermore have

J&GotadX = &2n[& Dy "% dX + O(s"). (3.21)

We now compute H®

D = 2 [n(ID&R ~(Got)?) dx (322)

From the terms that come out of the expansion, it is natural to choose the exponents «cand 3 such that « =3+ 1. We find
" HY =" * 1J-<0‘1 (ko) [uf*7; —ilul*ko- Dx§1>dx
et 2ol (ko)f(ﬂDX u+ um)ﬁldx

- 2; (uDXu + quu)ng1

where the coefficients are

a* (ko)
2

2

: a (k ) 2 aka 2 ak,a

oty (ko) = TO (koj + (Kol WJ(O)—Go(ko)akjco(ko)—Go(ko)WLO) :

oy (ko) = <|’<0|2_G(2)(k0))»

(3.23)

The contributions from H® are

" HY = 0 (ko) [lul*dX + & oy (ko) [ \u|2(EDXj u+ u[Tju)dx, (2.24)
with coefficients
s (ko) = 7 (Golko)*Go(2ko) —Ikol*Go(ko) ).

0‘];1(’(0) =

W N

Go(ko)ko|~ (Go(2ko)Go(ko)— kol ) ko

h h
§<1 tanhz(h|k0\))<ZGO(ZkO)GO(k0)—|I<0|2>k0j + jGo(ko)z(1—tanhz(zmko|))k0

The conserved impulse vector valued integral is given by

I = [md,&dx, (3.25)

which in the present coordinates is given by

el I(k0|u| + guDyu + ic nleg]> (3.26)
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In analogy with the Klein-Gordon equation, we also make use of the quantity

"M = [ju’dX,
which is known as the wave action integral. After subtracting terms proportional to I and M,

H = H=0,0(ky) I—(0(kg)—ko 0,0 (ko) )M, (3.27)

we obtain the renormalized Hamiltonian

he o= - . L
"7 H= 82_[( akk, (ko) UDxxu + oz (ko)ul* + & (jgl IDx|*€; + %nf—lak,m(ko)m%]>
+ oty (k)e ™ iy ul —ie" " ulko Dty + gk, (ko) T,
+ s(oc"z(ko)s"’“ ﬁl—%s““uxjél + oc’;l(ko)|u|2> (uDXu + uDXu )dx

Here, as in the case of the Klein-Gordon equation, it can be shown that M is a conserved quantity of this system at the order of
approximation that is being considered.

3.3. Hamilton equations

It is now natural to choose =1 (and thus a=2) for the exponents of the mean fields. Introducing the slow time variables
T=¢°t, the corresponding equations of motion are
o= — 102, w2 2 iy —iko Dy
107U = — 5 Oy, OOy x U + 205[ul"u + (0‘17]1_’ 0 ngl)u
. (1.3 3 o (7 - 1 & c o 1) 2
+ ie Ea,g,{,,(mma&x,xmu— z(n]axju + 8)(}(un1)) t5 (axjgaxju + Z?X} (ua)(l§]>>—4 Al axju + O(s ),
£0.71; = hiDyl*&; + ko xlul® + B, @Dy Ty + 53y (Wyu + ubgu) + O(&”),
j J 2 % J J
£0.6, = —(gﬁ] + ()Ll|u|2—i6kju)DXj€1>—aoci2 (HDXju + uﬁju) + 0(82>.
For simplicity of notation, we have dropped the explicit dependency on kg of the coefficients ¢; and w. This is the NLS equation

in the case n=2 and the Davey-Stewartson system in a certain form, in the case n=3.
When n=3, in order to recover the more usual form of the Davey-Stewartson system, we neglect all the Dysthe terms,

obtaining

. 1 o
i0,u = — 5 0 00t + 206[ulu + (o Ty —iky Dy )u, (3.28)
hIDy %€, + ko' Oxlul* + 8,03y Tl = O, (3.29)
gy + o uf* —9, 03y € = 0. (3.30)

From Eq. (3.30) we can solve 1J;. After substitution in Egs. (3.28), (3.29), the system reads

o 19 2 2 i =
i0.u= —iak},k,maxjx,u + oy u—(x’suaxjgl, 331)

L&) + oy |ul® =0,

which is a standard form of the Davey-Stewartson system, where

1
£ = hiDy|* + gakjmaklmaf(jx,
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is a second-order differential operator with constant coefficients, and
o o
= 1 = ki — —1
o5 = 204 " o = ky; g 0y, ©.
When one retains the Dysthe terms, there is no further apparent simplification. However, by construction, the present method
provides a conserved Hamiltonian for the above Dysthe system, which takes the form
142 _ 4, hg 2 | 82 . I ~ 2 &
H= f(jakjk,(‘)(ko)axjuax,“ + a3 (ko) [uf” + *gl IDx|"€; + 5T —i0, (ko)Ti Dx &1 + oty (ko)Tly jul—ul kojOx &

+ gaijklkmm(ko)s(a)gaai,xmu) + s(oc’ (ko)Ti; 73X €, + o (ko)|ul )(uDXu + uDXu

where J stands for the imaginary part.
4. The water wave problem with infinite depth

It is of interest to extend the analysis to the water wave problem with infinite depth as it gives a simplified Dysthe system. The
only difference in the initial Hamiltonian lies in the form of the Dirichlet-Neumann operator Go(Dy) for the unperturbed ﬂuid
domain given by a flat surface elevation, which now has the form Go(Dy) = |Dy|. As a consequence, it modifies the ordering in H?
as Eq. (3.21) is now replaced by

fglcogldx = Sjél \Dx\gldx' (4.1)

This results in a modification of the values of the coefficients «;(ko); namely, o4 (ko) as defined in Eq. (3.23) vanishes,
as (ko) = “‘“‘ and o, J(ko) = 3|ko|ko;. The resulting modified Hamiltonian is rewritten as

s a 1
e H = j( akk, (ko) UDxxu + 0‘3(k0)\u| 5¢ - 3%1\Dx\§1 + &% z(g 2_’ak w(’<o)me%1)—18 |ul ko ngl
. , , (4.2)
+ %aijl<,kmw(ko)ﬁD§<,x,xm” + a(oﬂz(ko)sﬁﬂﬁl—%gﬁ*]Dxlgl + oc’4(k0)|u\2> (ﬂDxiu + quu> + o(&))dx.

The presence of the term 2~ 3¢;|Dy|¢; in the second line of the RHS of Eq. (4.2) suggests that 3 should be equal to 2. Under this
condition, Eq. (4.2) takes the form

3 A 1 _ k 1 _ 1z s =
& i = e[ S0 otk uDEu + O ol ¢ £ g ks, Oko HD s, 1 + 5 E4ID s —iluPhy Dy,
(4.3)
+ 3 kol u? (TDgu + ubga ) ) + o(sz) dx
3 01™0j X; X; )
where we have written terms up to O(¢) inside the integral. The conserved impulse vector valued integral I reduces to
I= fnaxgdx = 83_"f(k0|u|2 + gﬂDXu)dX + O(g7_"). (4.4)
Proceeding as before, Hamilton's canonical equations are
.21 k . = 31k
a[u = _182 |:zaijk1m(k0)D)2(jX1u + | 0‘ ‘u| u—+ 8( aijk(kmw(kO)D?(szxmu_lk().uDXgl | <O| |u| kO DXu>:| + 0(84)7
(4.5)
0y = |Dx|§1 + ko’ Dx\u| + 0O(¢),
3:€, = 0(e).
Introducing the slow time 7= ¢t and solving for &; at lowest order in terms of u yield
€ = —ilDyl ko Dyluf* + O(e), (4.6)

which leads to the NLS equation at lowest order, and to a Dysthe-type equation [10] when one considers the next-order
corrections. This latter takes the form

2i0.u = —aﬁl,{,m(ko)ailxlu + [koPPluffu
i3 3 . 2, . —142 2 4.7)
+ ¢ §E)kjklkm(z)(ko)axjxlxmu—31|k0\\u\ ko Oxut + 2uke;ko Dy 5)9)(,|u| .
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~12in the equation, which is a consequence of the mean flow

We note the presence of the nonlocal operator [Dy|~'= (—A)
terms, and which can be expressed using the Hilbert transform.
Again, there is a conserved Hamiltonian for the Dysthe equation that we have derived, both for dimensions n=2 or 3, given

by

3
Iko

1 , 1 _ _ 3 _
H= i.[{aﬁ]k,m(ko)axjuaxlu + T\u\4 + s(gaijk'kmw(koﬁ(ijua)z(lxmu)—kojko, (axj\u\z)\Dﬂ "9y ul® + j\ko|k0j\u\23(uaxju))}dx.

(4.8)

In the above formulas,

_ koik
B, (ko) = [ko| 1(6,7— y 2’>,
kol

and

_ koikork
azjk,kmﬂ)(ko) = —|ko| > (SjIkOm + Oymkoj + Spyikor + Oj|k0120m>~
0

It can be checked that evaluating
aTu = —iﬁﬁH,
using the closed form (4.8) of the Hamiltonian yields Eq. (4.7).

In order to compare our Eq. (4.7) in Hamiltonian form with the Dysthe-type equations that have previously appeared in the
literature, introduce the new variables

1 |k0|)”4 €
=20 1+ ‘D 4.
\/f(g 4|k0\2k0 x |t (49)

which is similar to Stiassnie [11]. This variable can be thought of as a first-order approximation of 1) as given by Eq. (3.4), which is
to say that ¢s(X) is directly related to the free-surface elevation. Inverting Eq. (4.9), inserting it in Eq. (4.7) and retaining only O(¢)
terms, leads to the following equation

200, = — 8, 0 (ko) x b + 28" ko> 2 s

i . . — _ _
+ 8<§aijk,kmw(k())a?gx,xm‘b_elgl/z\ko\l/zwzko'axll‘_’gl/2|k0|1/2¢2k0'ax‘11 +4g' |k, Uz‘l»‘kojkol\Dﬂ la)zgx,W\z)-
(4.10)

This equation contains all the usual Dysthe terms including the high-order nonlinear term in ?ko-0xy as can be seen in
[10,11,14-16]. The Hamiltonian structure is however lost in the transformation to the ys-variables. We also note that the numerical
coefficients in Eq. (4.10) are very similar to those in the equation derived by Stiassnie [11]. However, in general, we should not
expect to obtain precisely the same coefficients as in previous work, since the various approaches do not use precisely the same
physical variables (in particular the choice of the velocity potential). Our own choice of physical variables is quite natural,
consisting of the canonically conjugate variables 1) and § as related to (z,21,§) through Egs. (3.4) and (3.5).

Therefore, our versions of the Dysthe equation can be viewed as new model equations in the sense that, although they agree
with existing versions on their general form, details such as their numerical coefficients and the relation of their dependent
variables to the original physical variables are different, and more importantly they possess a well-defined Hamiltonian structure
which is consistent with the Hamiltonian formulation of the Euler equations for water waves.
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