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Internal flow properties in a capillary bore
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ABSTRACT
In this work, a detailed description of the internal flow field in a collapsing bore generated on a slope in a wave flume is given. It is found
that in the case at hand, just prior to breaking, the shape of the free surface and the flow field below are dominated by capillary effects. While
numerical approximations are able to predict the development of the free surface as it shoals on the laboratory beach, the internal flow field is
poorly predicted by standard numerical models.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5124038., s

I. INTRODUCTION

Wave breaking is an important and ubiquitous phenomenon
which happens virtually in all flows involving a free surface. As
clearly brought out by a number of review articles and mono-
graphs,3,6,18,29,31,38,39,42,43 wave breaking has been a major focus of
wave and ocean research for a long time. While it is well understood
that wave breaking is central for the study of the energy budget of
the oceans and air-sea interaction, it is also noted in the above works
that the nature of wave breaking remains poorly understood. Indeed,
wave breaking is a classical multiple-scale problem which exhibits
a number of complicating factors in the flow such as circulation,
turbulence, capillarity, and intermittency.

Wave breaking happens in many shapes and forms, and differ-
ent types of breakings require a variety of methods for study. The
object of the present paper is the study of a collapsing breaker on a
moderate slope. Collapsing breakers appear on the margin between
plunging and surging breakers, as found in the work by Galvin.22

Possibly because of their relatively rare occurrence, studies of col-
lapsing breakers are few and far between. Indeed, collapsing breakers
are not explicitly mentioned in Ref. 25, where the authors define a
detailed classification of breaking waves on a planar beach in terms

of a single parameter S0 based on the bottom slope, waveheight, and
wavelength.

The focus of the present work is twofold. On the one hand,
using new experiments performed in a wave flume at National
Chung Hsing University in Taiwan, we aim to give a detailed
description of the internal flow including velocity, Lagrangian accel-
eration, and pressure fields in the prebreaking stage of a capillarity-
dominated collapsing breaker. In particular, we aim to describe
details of the fluid flow below the free surface in order to identify
a number of indicators for the onset of wave breaking.

Second, the internal flow field is compared with the results
of numerical simulations using a Boussinesq model.48 It is found
that this numerical model has certain challenges when it comes to
describing the internal flow field in a flow of this kind.

In order to create a collapsing breaker, a solitary wave of a cer-
tain waveheight is initiated with a wavemaker at one end of the wave
flume. The wave propagates through the tank and starts deforming
as it comes upon the slope located at the point x = 0. As the wave
steepens, the wavefront starts to resemble a bore rushing onto the
slope and eventually collapses without spilling or overturning. In
this laboratory scale experiment, in the final stage before the bore
collapses, the flow near the free surface is dominated by capillary
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effects, which leads to interesting pressure anomalies. The shape of
the bore just before breaking takes a dolphin head-like appearance,
resembling similar profiles found in the context of capillary jumps
such as discussed in Refs. 20 and 37. The shape of the wavefront is
also similar to a spilling breaker in the presence of strong capillarity,
such as discussed in Refs. 18 and 19.

The collapsing of the breaker is eventually indicated by the
development of negative vertical velocity components which are
necessitated by the acceleration due to the pressure anomalies result-
ing from strong capillarity. As the bore collapses, its internal flow
structure resembles a plunging breaker (see, for example, Ref. 49)
even though the free surface is still intact in the early stages of wave
breaking. Eventually, as the toe of the capillary region gets ever more
acute, it acts essentially as a hydrofoil, spoiling the free surface and
creating a vortical motion in the breaking bore. The dynamics of the
ensuing eddy motion could possibly be described numerically, but
this is beyond the scope of the present article. Indeed, it is not clear
whether existing point-vortex models such as, for example, those
used in Ref. 15 will be able to capture the surface and eddy motion
to a satisfactory degree of accuracy.

The disposition of the paper is as follows. In Sec. II, the exper-
imental apparatus and setup are described. In Sec. III, the details of
the flow field in a collapsing breaker are presented. Section IV con-
tains a comparison with a numerical Boussinesq solver. Section V
contains a brief conclusion.

II. EXPERIMENTAL TECHNIQUES
A. Experimental apparatus

The experiments were conducted in a wave flume located at the
Department of Civil Engineering, National Chung Hsing University,
Taiwan. The internal dimensions of the wave flume are 14.00 m long,
0.25 m wide, and 0.50 m deep. The bottom and two sidewalls of the
wave flume were made of tempered glass to allow optical access. A
piston-type wavemaker driven by a servo-motor is mounted at one
end of the wave flume. The method proposed by Goring in Ref. 23
for generating the solitary wave is used. As shown in Refs. 33–36,
highly repeatable solitary waves can be produced by this wavemaker.

A sloping beach made of tempered glass with a slope of 1:20 was
installed in the wave flume. This is a moderately steep slope, much
more gentle than the steep slopes used in Refs. 28 and 52. The toe
of the sloping beach was fixed 6.48 m away from the wave paddle at
rest. A Cartesian coordinate system with the origin (x, y) = (0, 0) cm
being located at the toe of the sloping beach is used. The x-axis is

oriented in the horizontal direction and measured positive onshore
from the toe. The y-axis is oriented in the vertical direction and mea-
sured positive upward from the horizontal bottom. The schematic
diagram of the experimental setup and coordinate system is shown
in Fig. 1.

The free surface elevation was measured using two ultrasonic
wave gauges. The first gauge located at x =−150 cm was used to mea-
sure the time series of free surface elevation η0 and the waveheight
H0 for the incident solitary wave propagating over the horizontal
bottom with a still water depth of h0. A voltage signal output from
this wave gauge was employed to trigger the camera for capturing
the images. Furthermore, the second gauge is placed at the toe at
x = 0 cm to precisely identify the time, t = 0 s, at which the wave
crest exactly reaches the toe. As shown in Fig. 1, η(x, t) is the instan-
taneous wave profile and h(x) is the still-water depth at a specified
location over the sloping beach.

B. Flow visualization and velocity measurements
The structure of the prebreaking, breaking, and postbreak-

ing waves was explored using flow visualization techniques (FVT)
and high-speed particle image velocimetry (HSPIV) measure-
ments. Titanium dioxide (TiO2) was used for the seeding parti-
cles. These seeding particles have a refractive index of 2.6 and
a mean diameter of 1.8 μm, together with mean specific gravity
and settling velocity (estimated by Stoke’s law) equal to 3.547 and
4.5 × 10−4 cm/s, respectively. The fall velocity is very small and
thus ignored as compared with the typical velocity of interest in this
study. An argon-ion laser head (Innova-300, Coherent Inc.) with a
maximum power of 4 W was used as a light source. A fan-shaped
laser light sheet (1.5 mm thick) was formed while the laser beam
was guided by three reflection mirrors and then passed through the
cylindrical lens. The light sheet, located 8 cm away from the glass
sidewall, was eventually projected upward through the glass bottom
of the wave flume to illuminate the seeding particles suspended uni-
formly in the water column. A high-speed digital camera (Phantom
M310, Vision Research) with a maximum framing rate of 3260 Hz
under the largest resolution of 1280 × 800 pixels was used to cap-
ture the images of both the free surface profile and the flow structure
underneath the free surface.

The flow visualization images were captured by using a particle-
trajectory photography method, with a high exposure time to allow
the path-line of the particles to be captured. The framing rate and
the exposure time of the high-speed camera for taking flow visu-
alization images were 500 Hz and 1900 μs. On the other hand, to

FIG. 1. Schematic diagram showing the coordinate system, the incident solitary wave, and the position of the field of view (FOV1).
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ensure high time-resolved HSPIV measurements, the framing rate
was 2000 Hz, much higher than FVT, and the exposure time was
490 μs, smaller than FVT. The images of flow fields with the illu-
minated moving seeding particles were recorded continuously by
using the high-speed camera. The free surface profile of the shoaling
solitary waves, η(x, t), was extracted from the images of the HSPIV
measurements. The time interval in between each such image was
very short, and a high-resolution record of η(x, t) could be obtained.
Furthermore, due to the mirror effect of the interface between the
air and water, the particles on the free surface were illuminated by
the laser light sheet and can be clearly identified.

One field of view (FOV1) was employed in this study. As shown
in Fig. 1, the FOV1 was located between x = 270.76 cm and x
= 276.34 cm, y = 13.18 cm and y = 16.66 cm. The width and height
of FOV1 were 5.58 cm and 3.48 cm, respectively. The resolution was
4.356 × 10−3 cm/pixel. A cross-correlation calculation was used to
determine the velocity vector from the images in which the bright-
ness of the seeding particles had been intensified by using the Lapla-
cian edge-enhancement technique.1 The multipass PIV algorithm
was then employed to calculate the instantaneous velocity field from
three correlated images. The calculation is started from an interro-
gation window size of 64 × 64 pixels and ending with a window size
of 8 × 8 pixels with a 50% overlap. Consequently, spurious vectors
were removed by employing both global-range and median filters.
Missing vectors are then interpolated to complete the whole velocity
vector field.

C. Experimental conditions
An incident solitary wave with waveheight H0 = 1.12 cm was

created on water of an undisturbed depth of h0 = 14 cm so that the
ratio H′0 = H0/h0 was equal to 0.08. The wave conditions are listed
in Table I. Ten repeated runs were conducted for the HSPIV mea-
surements. An ensemble average of all runs was used to describe the
spatial or temporal variation of the velocity fields.

In order to obtain a collapsing breaker, the classification of
Grilli et al.25 was used. In that work, the authors define the
parameter

S0 = sL0

h0
,

where s = tan θ is the slope, h0 is the undisturbed depth prior to
the sloping bottom, and L0 is the wavelength. Following Ref. 25,
the wavelength in Boussinesq’s solitary wave theory is measured at
the point of maximal slope on the wave profile, which leads to the
relation

L0 = 2h0√
3H′0/4

arctanh
√

3
3

.

With this definition of L0, S0 is given in terms of the slope s and
relative waveheight H′0 by

TABLE I. Experimental conditions.

H0 (cm) h0 (cm) H0/h0

1.12 14.0 0.080

S0 = 1.521
s√
H′0

.

Grilli et al.25 observed the following breaker types:

● spilling: S0 < 0.025,
● plunging: 0.025 < S0 < 0.3, and
● surging: 0.3 < S0 < 0.37.

In the present case, we are using a slope of 1:20 so that s = 0.05.
Since the relative waveheight is H′0 = 0.08, the parameter value for
the current experiment is S0 = 0.269. Thus, the waveform used here
is in the range of plunging breakers, but close to surging accord-
ing to the classification above. As noted by Galvin,22 some waves
fall between plunging and surging and can be classified as collapsing
breakers, and this is the case here.

III. DESCRIPTION OF THE FLOW
A. Wave generation and propagation

A solitary wave was generated in the wave flume by executing
a quarter stroke with the piston wavemaker. The early stage of the
evolution of the solitary wave was checked against a potential flow
solver,24,26 where the solitary wave was generated numerically using
a variant of Tanaka’s method (see Refs. 14 and 51). The resulting
time series can be seen in Fig. 2. Note that in both time series, there
is a nearly perfect match between experimental data and numerical
simulation.

B. Details of the wave breaking process
As the wave passes the toe of the sloping bottom, it starts to

feel the upward slope and the wave starts to steepen. The slope
provides a force in the direction opposing the wave motion, which
eventually stops the motion. The reflection then leads to a rundown
and backward motion. The rundown is not in focus in the present
study.

As the wave collapses on the beach, there is little air entrain-
ment. Moreover, the width of the tank is relatively small at 25 cm.
With these restrictions, we notice that the flow is not being able to

FIG. 2. Comparison of time series for solitary waves. The circles indicate the time
series measured at two measuring stations in the wave flume. Blue: x = −150 cm.
Black: x = 0. The solid curves indicate time series at two points in the numerical
domain.
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form three-dimensional turbulent structures even in the postbreak-
ing stage. In a sense, the flow is what one might call quasilaminar.

Next, we describe the details of the prebreaking development.
From Fig. 3, it can be seen that fluid velocities near the top of the
surging wave become larger. The wavefront gets steeper as more and
more fluid concentrates behind the surging wavefront, creating a
bulging “dolphin head” shape. A study of the individual terms in the
Lagrangian acceleration, i.e., the terms ∂u

∂t , u∂u
∂x , and v ∂u

∂y , shows that
the large velocities in Fig. 3 are not due to acceleration of fluid par-
ticles, but rather due to convective effects and concentration of fast

FIG. 3. Fluid particle velocities in FOV 1 at three times close to breaking: t
= 2.639 s, t = 2.652 s, and t = 2.669 s (top to bottom). For reference, the long-wave
speed is c0 ∼ 38 cm/s.

FIG. 4. Lagrangian accelerations at time t = 2.666 s. Fluid particles near the head
of the wave experience a reduction in the horizontal velocity, while fluid particles
near the toe of the wave experience horizontal acceleration in the direction of wave
propagation. For comparison, the gravitational acceleration is g = 981 cm/s2.

particles behind the wavefront. In fact, consulting Fig. 4 shows that
there is a fairly strong deceleration of particles behind the wavefront.
As will be explained later, this deceleration is due to a large excess
pressure just behind the wavefront due to capillary effects. The same
capillary effects also contribute to acceleration of fluid particles in
the free surface (cf. Fig. 5).

The onset of breaking may be defined as the first time the verti-
cal velocity component of a particle behind the wavefront is negative.
In Fig. 7, it can be seen that the vertical velocity component of par-
ticles in a larger and larger region starts to turn negative. This incip-
ient downward motion constitutes the beginning of the creation of
an internal circulation behind the wavefront.

In Fig. 5, particles in the free surface are being followed (man-
ually), and it can be seen that these particles are accelerating while
the free surface is decelerating. This feature seems to be common
in waves approaching breaking. For example, similar behavior was
found recently in deep-water waves which approach the breaking
point.30 It is also interesting to view these data in light of recent
work7 where a universal breaking criterion was put forward. This
criterion can be formulated in terms of the horizontal component of
the fluid particle velocity at the crest u and the velocity of the crest
itself c, and it states that a wavetrain is liable to feature wave break-
ing if the ratio B = u/c exceeds the threshold 0.85–0.86, which is in
contrast to the usual convective criterion (see Ref. 12 and references
therein) which places the critical value at about 1. In the present case,
as the wave enters the slope, it forms a steep front so that there is no
well defined wave crest. Nevertheless, using the data shown in Fig. 5,
we may compare the front velocity to the horizontal component of
the particle velocity. A representative result is shown in Table II.
Note that the value B ∼ 0.87 is achieved about 0.003 s before the
wave starts to break (cf. Fig. 7).

Finally, let us explain the role of capillarity in the prebreak-
ing development of the wave. The horizontal momentum balance
is written in terms of the horizontal component of the velocity field
u and the stress vector σx as

ρ
Du
Dt
= ∇ ⋅ σx,

where D
Dt represents the material (Lagrangian) derivative and ρ is

the fluid density. Given that the fluid velocity near the wavefront is
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FIG. 5. Comparison between front velocity and fluid particle velocities. The blue curves in the right panel show the velocity of the free surface at a number of fixed vertical
locations which are indicated as straight lines in the left panel. The ordering of the blue curves in the right panel by height corresponds to the same ordering as that in the left
panel. In particular, the highest vertical location features the highest front velocity. The free surface in the left panel is indicated at a time step of 0.005 s, from t = 2.611 s to
t = 2.676 s. As the front steepens, the front velocity decreases slightly over time. The red curves show the horizontal component of the velocities of fluid particles inside the
free surface. The red curves in the left panel show the approximate position of fluid particles and are ordered from the top to the bottom. The ordering is indicated by arabic
numerals in the right panel. The horizontal particle velocities increase over time.

similar to the velocity of the wave itself, we do not expect boundary
layer effects to be dominant at the free surface so that the momentum
balance reduces to

Du
Dt
= −px

ρ
,

where p is the fluid pressure. Now from Fig. 4 which shows the
Lagrangian acceleration in the x direction, we see that Du

Dt is negative
in the upper part of the wave. Thus, according to the above formula,
the pressure p increases in the direction of wave propagation in the
upper part of the wave. In contrast, in the lower part of the wave (red
part), the Lagrangian acceleration Du

Dt is positive so that the pressure
decreases in the direction of wave propagation.

These findings can be explained by looking at the free surface
condition with capillarity. Indeed, the balance of forces is written in
terms of the fluid pressure p, the atmospheric pressure pa, the free
surface excursion η, and the capillary parameter τ as

p − pa = −τ ∂2η/∂x2

[1 + (∂η/∂x)2]3/2
.

This formula clearly shows that near the head of the wave, where the
free surface is convex, the fluid pressure is above atmospheric (i.e.,
the gauge pressure p − pa is positive), while near the bottom of the
wave, the fluid pressure is below atmospheric since the free surface
is concave.

Thus, as indicated in Fig. 6, there is an acceleration of fluid par-
ticles on the free surface, while particles behind the leading front of

TABLE II. Breaking onset parameter B = u/c as a function of time t.

t (s) 2.656 2.661 2.666 2.671 2.676

B 0.75 0.77 0.78 0.84 0.87

the wave are decelerated. Moreover, together, these pressure condi-
tions also lead to acceleration of fluid particles near the middle of the
leading front in the negative y-direction. After carefully analyzing
the data using HSPIV method, it was indeed found that the internal
velocity field under the head of the wave develops negative vertical
velocity components (see Fig. 7).

IV. COMPARISON WITH THE BOUSSINESQ MODEL
As there are no closed-form solutions of solitary waves propa-

gating and breaking on a slope, the experimental data will be com-
pared to simulations done with a Boussinesq model. There are some
theoretical works providing nearly closed-form solutions for stand-
ing waves on a slope (see Refs. 10, 13, and 50), but in the present
situation, numerical simulation is the only reasonable choice.

FIG. 6. This schematic explains the acceleration experienced by various fluid parti-
cles. Due to the curvature of the free surface, there is an excess pressure near the
head of the wave and a pressure deficit near the toe of the wave. These pressure
differentials cause fluid particles to be accelerated in different directions.
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FIG. 7. Vertical velocity behind a wavefront in a solitary wave shoaling on a 1:20
slope. Incipient breaking stage at t = 2.679 s.

A. Model description
The Boussinesq Ocean and Surf Zone (BOSZ) model is a phase-

resolving Boussinesq-type model for the computation of nearshore
waves, wave-driven currents, infragravity oscillations, and ship wake
waves (see, for example, Refs. 16, 32, 46, and 47). The governing
equations are based on a conserved variable formulation of Ref. 41.
The numerical solution handles the nonlinear shallow water part
of the governing equations with a finite-volume scheme based on
a total-variation diminishing (TVD) reconstruction method of up to
5th order and a Riemann solver. This combination ensures robust
and accurate computation of fast flows over irregular terrain includ-
ing moving boundaries (wet/dry cell interfaces). The frequency dis-
persion terms are based on a central-difference scheme of second
order. Time integration is carried out with an adaptive Runge-
Kutta time-stepping scheme, allowing up to 4th order accuracy.
For most computations, such as this test case, a 2nd order time
integration is sufficient; however, some problems with more dis-
persive waves require at least a 3rd order integration scheme. Due
to the presence of space-time derivatives of the evolution vari-
ables in the momentum equations, systems of equations have to
be solved to extract the flow speed at the end of each time step.
The two systems are directionally independent of each other with

data-dependencies arising only in the x- or the y-directions, respec-
tively. The bottom friction is accounted for through the widely
used Manning-Strickler formula based on a roughness coefficient,
which represents the surface property of the experimental layout.
Here, we choose n = 0.012s/m1/3 to match the smooth laboratory
slope.

The input waves are generated at the left boundary in various
forms. For the present case, the solitary wave was generated in two
ways: (a) with an analytical solution at the boundary and (b) by
feeding a time series from the wave gauge through the boundary.
The flow velocity at the boundary is set by long wave theory in the
form u = η

√
g/h0. As shown in Fig. 8, both methods have led to

near-perfect replication of the input wave conditions.

B. Reduction of dispersion based on the free-surface
Froude number

As the flow depth becomes very shallow on the slope, wave
breaking has to be incorporated locally into the Boussinesq model.
As Boussinesq models do not have an inherent wave-breaking mech-
anism, a numerical criterion needs to be used in order to maintain
stability. The strategy used here is based on the free surface Froude-
number Fr, which can be determined from the free surface flow
velocities. The governing equations allow for calculation of the flow
velocity at any position in the water column based on the horizon-
tal velocities and under the assumption of a predescribed quadratic
velocity profile used in the derivation of the Boussinesq system.

We know that for Fr > 1, the flow becomes supercritical and
bores can develop. Therefore, if the free surface Froude-number
exceeds 1.0, the dispersion terms are locally and momentarily set to
zero, i.e., the solution reduces to the hyperbolic nonlinear shallow-
water equations in the cells around the wave breaking front. The
local Froude number at the free surface is determined by

Frloc =
√

u2
y=η/
√
g(h0 + η),

where the velocity at the free surface is given by the quadratic pro-
file, which arises from the Taylor series expansion of the horizontal
velocity which is usually employed in Boussinesq type models.41

Since the model code checks for the Fr-number criterion at each
time step, the solution at the wavefront can dynamically switch

FIG. 8. Comparison between the numer-
ical solution from BOSZ and the exper-
imental data for the free surface eleva-
tion at the two wave gauges (−150 cm
and 0 cm, respectively; see Fig. 1 for the
layout).
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between the full Boussinesq-type solution and the hydrostatic non-
linear shallow-water equations. Similar methods for the detection
and treatment of wave breaking were tested in Refs. 4, 5, 9, and
27 and compared to data from Refs. 21, 50, and 55. In particular,
this is in contrast to the typical wave steepening observed in hyper-
bolic models.44 One may also use the quadratic ansatz used in many
Boussinesq models to reconstruct the velocity profile at any point
in the fluid column (see Ref. 11, for example), though better results
would be expected using higher-order reconstructions (see Ref. 54)
or full Euler or Navier-Stokes equations.26,8

C. Comparison
Considering the results over the small PIV window, the BOSZ

model computes the shape of the collapsing bore reasonably well.
Particular snapshots show very good agreement (see Fig. 9). The
wave steepness depends mostly on the grid spacing. Δx = 0.50 cm
shows good agreement, whereas Δx = 0.75 cm and Δx = 0.25 cm
lead to a slightly gentler and steeper bore front. In more detail, note

that within FOV1 shown in Fig. 9, the BOSZ code essentially solves
a shallow-water system due to the breaking criterion switching off
the dispersive parts. While the numerical solver does not feature
molecular viscosity, it features numerical dissipation, and it appears
that with a grid size of Δx = 0.75 cm, there is just the right amount
of dissipation to slow the hyperbolic steepening so that very good
agreement with the experimental data is obtained (see the leftmost
curve in the lower panel of Fig. 9). On the other hand, the numer-
ical model does not incorporate capillarity, which is the reason for
the poor agreement with the experimental data in the rightmost
curve in the lower panel of Fig. 9. With decreasing grid size, Δx
= 0.5 cm and Δx = 0.25 cm, the numerical dissipation weakens and
more pronounced hyperbolic steepening is observed in the numer-
ical solutions. This choice yields a simulation which is closer to the
hyperbolic nature of the equations to be solved, but the comparison
with the experimental data is not as good (see the leftmost curves in
upper and middle panels of Fig. 9). However, this choice leads to a
better comparison with the capillary region further up the slope as
can be seen in the rightmost curves in the upper and middle panels

FIG. 9. Comparison of the free surface envelope from
experimental data with the numerical computation from the
BOSZ code. Upper panel: Δx = 0.25 cm; middle panel: Δx
= 0.50 cm; lower panel: Δx = 0.75 cm. The blue curves
represent solutions from BOSZ, and the red curves show
the free surface derived from video images of experimental
data. The code is able to give overall correct answers for
the wave transformation and runup. Details in the structure
of the wavefront and wave toe differ from the data, probably
due to the lack of capillarity in the governing equations of
BOSZ.
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FIG. 10. Reconstruction of the velocity
field from the numerical solution of the
BOSZ model with grid size Δx = 0.5 cm.

of Fig. 9. The velocity field can be reconstructed using the quadratic
ansatz inherent in the Boussinesq model. An example is shown in
Fig. 10. As can be seen in this Fig. 10, the intricate features of the
velocity field due to capillarity at the bore front are not captured by
the Boussinesq model. This is to be expected as capillarity is not part
of the Boussinesq model since it is generally a long-wave model.

D. Wave runup
The measured maximum run-up height for 14 cm still water

depth and waveheight to water depth ratio being 0.08 is R
= 3.154 cm. With n = 0.012s/m1/3, the computed maximum runup
agrees exactly with the measured runup of 3.154 cm. The com-
puted maximum runup is the highest cell on the straight slope that
was wet at any time during the computation. This corresponds to a
minimum water depth of 0.001 cm.

V. CONCLUSION
In a certain sense, one may view collapsing breakers as a hybrid

between a plunging and a surging breaker. In a surging breaker, the
steep slope provides a strong force in the negative x-direction (i.e.,
in the direction opposed to the propagation of the wave). This force
is indeed strong enough to slow the wave, eventually arresting the
wave motion without breaking.

In a spilling breaker, the slope is comparatively gentler, the
force in the negative x-direction comparatively smaller, and the
waveheight comparatively larger. As a result, the fluid motion in the
lower half of the wave is inhibited while the force distributed through
the fluid from the sloping bottom is not strong enough to arrest the
fluid motion in the upper half of the wave. Thus, the upper half of
the wave overtakes the lower half, leading to the well known forma-
tion of a jet. As the leading part of the jet feels gravity and starts to
fall, a reconnection with the lower part of the wave is formed, and
wave breaking ensues.

The collapsing breaker appears to represent a balance where the
pressure forces provided by the slope are strong enough to slow the
fluid motion in the whole of the wave, but not strong enough to pre-
vent it from breaking. As a result, one may observe something which
resembles an “internal plunging breaker.” This observation is most
apparent when looking at camera footage from the PIV system, but
can also be observed in Fig. 7.

Since a delicate balance between the bottom slope and the wave-
height is required, collapsing breakers are not widely observed in the
field. Nevertheless, there are accounts of collapsing breakers in the
literature. For example, a photograph of a collapsing breaker is given
on page 56 in Ref. 45. The importance of capillarity is usually gauged
by looking at the Bond number ρgL2/τ, for a length scale L. For large
breakers such as the one shown in Ref. 45, the Bond number is large,
and capillarity is not expected to play a decisive role.

On the other hand, the distinctive features of a collapsing
breaker at the laboratory scale such as those discussed in the present
paper are provided by capillarity. As shown in Fig. 4, the Lagrangian
acceleration in the x direction is negative near the head of the wave
and positive in the lower part. Using the horizontal momentum bal-
ance, this finding can be explained by capillary effects on the fluid
pressure. In particular, capillarity contributes to excess pressure at
the leading edge of the wave and a pressure deficit at the wave toe.
Such pressure anomalies can sometimes be achieved in the presence
of strong shear (cf. Ref. 2), but in the present case, capillarity appears
to be the dominant effect.

The shape of the free surface of the collapsing breaker can be
reasonably well approximated with a Boussinesq model. The BOSZ
model used in this study was able to predict the main features of
the free surface profile. On the other hand, the omission of capil-
lary effects and the reliance of a quadratic velocity profile limit the
applicability of the Boussinesq model to simulate the internal flow
structure of the collapsing breaker at a laboratory scale.

From an operational point of view, capillarity has not been
shown to be a major factor in coastal dynamics or the develop-
ment of beach morphology, but it may be important in small-scale
wave breaking, for example, in small parasitic breakers riding on
the top of larger waves (see Ref. 40 and the references contained
therein) or in smaller breakers occurring in the uprush on the
beach.

The wave breaking in the experiment reported in here has
been shown to occur at values of the breaking onset parameter B as
defined in Ref. 7 which are close to the values indicated in Refs. 7 and
17. As the breaking criterion defined in these papers has been tested
in deep and intermediate depths, it will be interesting to conduct fur-
ther work exploring the relation between the breaking onset parame-
ter B and the details of the wave breaking process in a larger number
of cases in shallow water, and, in particular, in flows dominated by
capillarity.
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It should be noted that capillarity also comes to the fore in
breaking waves at small scales in various other settings. For example,
wave breaking in a two-phase flow in circular pipes has been studied
recently in Ref. 53. Another interesting further problem will be to
understand the generation of vorticity in the wave breaking process
and the ensuing eddy motion.
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