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Abstract
In this paper, we study the motion of the free surface of a body of fluid over
a variable bottom, in a long wave asymptotic regime. We focus on the two-
dimensional case, assuming that the bottom of the fluid region can be described
by a stationary random process β(x, ω) whose variations take place on short
length scales and which are decorrelated on the length scale of the long waves.
This is a question of homogenization theory in the scaling regime for the
Boussinesq and Korteweg–de Vries equations.

The analysis is performed from the point of view of perturbation theory for
Hamiltonian partial differential equations (PDEs) with a small parameter, in the
context of which we perform a careful analysis of the distributional convergence
of stationary mixing random processes. We show in particular that the problem
does not fully homogenize, and that the random effects are as important as
dispersive and nonlinear phenomena in the scaling regime that is studied. Our
principal result is the derivation of effective equations for surface water waves
in the long wave small amplitude regime, and a consistency analysis of these
equations, which are not necessarily Hamiltonian PDEs. In this analysis we
compute the effects of random modulation of solutions, and give an explicit
expression for the scattered component of the solution due to waves interacting
with the random bottom. We show that the resulting influence of the random
topography is expressed in terms of a canonical process, which is equivalent to
a white noise through Donsker’s invariance principle, with one free parameter
being the variance of the random process.
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1. Introduction

The problem of surface water waves over an uneven bottom is a classical problem of fluid
mechanics, and it is relevant to coastal engineering and ocean wave dynamics. In this paper,
we investigate how the presence of bottom topography affects the equations describing the
limit of solutions in the long wave regime. We assume that the bottom is modelled by a
stationary random process which is mixing, whose variations and whose correlation length
manifest themselves on length scales that are short compared with the scale of the surface
waves. In a previous work [8], we addressed the long wave limit of surface waves in two and
three dimensions over a bottom which has periodic variations over short scales, in which we
showed that the problem fully homogenizes. That is to say, the free surface motion can be
described by a partial differential equation (PDE) with constant effective coefficients, where
the dependence over short scales is manifested by coefficients which are ensemble averages.
This has also been the object of a recent study by Garnier et al [14] using different methods.
In contrast, in this work, we show that random, realization dependent effects are retained in
the description of the solution. The latter papers and the present one are reappraisals and
extensions of an earlier work by Rosales and Papanicolaou [26].

Our approach uses a formulation in terms of perturbation theory for Hamiltonian PDEs,
coupled with a detailed analysis of stationary ergodic processes which have mixing properties
and which are considered as tempered distributions. As a first result we give an appropriate
form of the Boussinesq equations. Secondly, following a series of changes of variables, we
derive a system of coupled Korteweg–de Vries (KdV)-like equations for the two components
of the solution; these describe a wave propagating predominantly to the right, and a ‘small’
scattered wave propagating to the left. We then extract a limiting system of two effective
equations through a consistency analysis. Specifically, we solve the effective system, which
is composed of an equation similar to the KdV for the wave propagating to the right with a
random component to its velocity and a scattered wave propagating to the left. We give explicit
formulae for the dominant contributions and the first corrections to this solution, quantifying
the effects of the random modulation of position and amplitude. We also calculate that the
scattered waves are given by a superposition of white noise processes. From these expressions,
we compute a posteriori all the terms that have been neglected in the effective system, and prove
that they are indeed of higher order. This evaluation relies on scale separation lemmas, which
in turn follow from Donsker’s invariance principle. In particular we identify the canonical
limiting distributions which contribute to the random asymptotic behaviour of solutions, we
quantify both random phase and random amplitude variations of solutions, and in addition,
we extend the long wave analysis over random topography to general stationary mixing
processes.

The asymptotic system of equations that results from this analysis consists of a KdV
equation with an additional linear term, and a transport equation for the scattered component
driven by an inhomogeneous forcing term. The additional nonzero linear term, which either
stabilizes or destabilizes solutions depending upon the sign of its coefficient, in turn depends on
the statistics of the bottom variations. The presence of this term is the consequence of a subtle
calculation, and to our knowledge, it has not been previously observed. In case these statistics
are spatially reversible, the relevant coefficient vanishes and the equation reduces to the usual
KdV. There has been a lot of interest in wave motion in basins with nonconstant bathymetry,
due to its hydrodynamic importance. The earlier work of Howe (1971) [18] and the paper of
Rosales and Papanicolaou (1983) [26] give an asymptotic analysis of nonlinear water waves
equations with rapidly varying topography. Recent references to the theory of linear waves in
this general setting include the papers of Nachbin and Sølna (2003) [23] and Fouque et al [13]
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for the viewpoint of linear transport theory in a random medium. The nonlinear shallow water
equations as well as a Boussineq system and other dispersive models are addressed in Muñoz
Grajales and Nachbin [22] and Garnier and Nachbin [16]. Further recent contributions which
take into account the combined effect of randomness and nonlinearity include the series of
papers by Mei and Hancock (2003) [20] and Grataloup and Mei (2003) [17] on the modulational
scaling regime, and its extensions to the three-dimensional case in Pihl (2002) [25]. This work
focuses on the temporal behaviour of ensemble averages of solutions, giving the result that they
satisfy a nonlinear Schrödinger equation with an additional dissipative term. The analogue
of this picture in the long wave scaling regime appears in Mei and Li (2004) [21], where the
bottom is assumed random but varies on the same spatial scale as the surface waves. In [15],
Garnier et al address the problem of solitary waves over a random topography modelled by a
reduced Boussinesq system, for which they derive an effective dissipative KdV equation for the
principal part of the solution. Wave propagation occurs in a random characteristic coordinates,
similar to [26] and this work, although we remark that the scaling assumptions on the bottom
variations are different.

There is a history of rigorous analysis of the initial value problem for the water wave
equations and their limiting equations in the long wave asymptotic regime. Most of this work
concerns the case of fluid domains with a flat bottom. The papers that address the KdV limit
include Kano and Nishida (1986) [19], Craig (1985) [6], Schneider and Wayne (2000) [27],
Wright (2005) [29] and Bona et al (2005) [4]. A recent paper which addresses specifically the
Boussinesq scaling limit of the problem on a rigorous basis, and categorizes the well-posed
possible limits is Bona et al (2002) [3]. There has been several papers giving a rigorous
analysis of the initial value problem of water waves over a variable bottom, including Yosihara
(1983) [30] on the two-dimensional problem and Alvarez-Samaniego and Lannes (2008) [1]
on the two- and three-dimensional problems, and a recent paper by Chazel (2007) [5]. The
paper [1] considers the issue of convergence in various scaling regimes governed by long wave
models. These results are in the context of a deterministic problem, with a small amplitude
bottom perturbation, varying spatially on the same scale as the waves in the surface. As far as
we know, there are currently no rigorous analytic results for the Euler equations in the limit
of the KdV or Boussinesq scaling regimes, in which the bottom variations occur on a short
length scale, and are averaged under the nonlinear evolution of water waves.

Our principal results address two-dimensional settings, although the overall setup of the
equations, and much of the analysis could go through for dimension n = 3. Furthermore, our
results are not in the class of fully rigorous analysis because of the lack of an appropriate long
time existence theorem and a priori estimate for initial value problem for Euler’s equations in
the scaling we consider. Such results are long term goals of our project on water waves with
random bathymetry.

The paper is organized as follows. Section 2 describes the problem of water waves in
its Hamiltonian form, the Dirichlet–Neumann operator in the presence of a variable bottom
and the spatial scaling regime appropriate for the long wave problem. Section 3 presents the
setting of stationary ergodic and mixing processes in which we work, and gives the relevant
scale separation lemmas. This is the key of the paper. It furthermore gives an analysis of
the natural regularization of characteristic coordinates that are applied to the KdV scaling
limit. The Boussinesq regime is presented in section 4, while the more detailed KdV regime
is taken up in section 5. The main issue of this analysis is that the scattering of waves by the
bottom variations is strong and it must be shown that the standard KdV ansatz of unidirectional
propagation remains valid despite this. The consistency analysis of the resulting asymptotic
system of equation is the most detailed part of this paper. Finally, section 6 presents some
remarks on the process of ensemble averaging.
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2. Hamiltonian formulation

This section gives the derivation of the basic equations of motion of dynamic free surfaces in
the long wave scaling regime. The approach that we take is by a reformulation of the evolution
equations as a Hamiltonian system of PDEs, following the classical idea of Zakharov [9, 31].
The long wavelength scaling is introduced as a transformation of canonical variables, in
addition to which we introduce the roughness scaling of the bottom topography. The result is a
Hamiltonian which depends upon the small parameter ε, which is analysed in the Boussinesq
regime in section 4, and in the KdV scaling regime with scattering in section 5.

2.1. Hamilton equations

The time-dependent fluid domain consists of the region S(β, η) = {(x, y) ∈ Rn−1 × R :
−h + β(x) < y < η(x, t)}, in which the fluid velocity is represented by the gradient of a
velocity potential,

u = ∇�, �� = 0. (2.1)

The dependent variable η(x, t) denotes the surface elevation, and β(x) denotes the variation
of the bottom of the fluid domain from its mean value. The bottom variations are chosen from
a statistical ensemble (�, M, P), which is indicated by the notation β = β(x, ω). The details
of the ensemble and the associated probabilistic properties are described in section 3.1.

On the bottom boundary {y = −h+β(x)}, the velocity potential obeys Neumann boundary
conditions

∇� · N(β) = 0, (2.2)

where N(β) = (1 + |∂xβ|2)−1/2(∂xβ, −1) is the exterior unit normal.
The top boundary conditions are the usual kinematic and Bernoulli conditions imposed

on {(x, y) : y = η(x, t)}, namely,

∂tη = ∂y� − ∂xη · ∂x�, ∂t� = −gη − 1
2 |∇�|2. (2.3)

The asymptotic analysis in this paper is initiated from the point of view of the perturbation
theory of a Hamiltonian system with respect to a small parameter. For this purpose we describe
the water wave problem as a Hamiltonian system with infinitely many degrees of freedom.
In [31], Zakharov poses the equations of evolution (2.1)–(2.3) in the form of a Hamiltonian
system in the canonical variables (η(x), ξ(x)) where one defines ξ(x) = �(x, η(x)), the
boundary values of the velocity potential on the free surface. The evolution equations take the
classical form

∂t

(
η

ξ

)
=

(
0 I

−I 0

) (
δηH

δξH

)
= J δH (2.4)

with the Hamiltonian functional given by the expression of the total energy

H =
∫ ∫ η(x)

−h+β(x)

1

2
|∇�(x, y)|2 dy dx +

∫
g

2
η2(x) dx

=
∫

1

2
ξ(x)G(β, η)ξ(x) dx +

∫
g

2
η2(x) dx. (2.5)

The Dirichlet–Neumann operator G(β, η) is the singular integral operator with which one
expresses the normal derivative of the velocity potential on the free surface. It is a function of
the boundary values ξ(x) and of the domain itself, as parametrized by β(x) and η(x), which
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define, respectively, the lower and the upper boundaries of the fluid domain S(β, η). That is,
let �(x, y) satisfy the boundary value problem

�� = 0 in S(β, η),

∇� · N(β) = 0 on the bottom boundary {y = −h + β(x)},
�(x, η(x)) = ξ(x) on the free surface {y = η(x)}.

(2.6)

The Dirichlet–Neumann operator is expressed as follows:

G(β, η)ξ(x) = ∇�(x, η(x)) · N(η)(1 + |∂xη|2)1/2, (2.7)

where N(η) is the exterior unit normal on the free surface. It is clearly a linear operator in ξ

and it is self-adjoint with this normalization. However it is nonlinear with explicitly nonlocal
behaviour in β(x) and η(x). The form of this operator, and its description in terms of β and η

are given in the next section.

2.2. Description of G(β, η)

This formulation is valid for any number of space dimensions, however in this paper, we focus
on the case n = 2. In the undisturbed case in which the bottom is flat, the solution is formally
given by a Fourier multiplier operator in the x-variable. Using the notation that ∂x = iD;

�(x, y) =
∫ ∫

eik(x−x ′) cosh(k(y + h))

cosh(kh)
ξ(x ′) dx ′ dk = cosh((y + h)D)

cosh(hD)
ξ(x). (2.8)

When the bottom topography is nontrivial, as represented by {y = −h+β(x)}, expression (2.8)
is modified by adding a second term in order that the solution satisfies the bottom boundary
conditions

�(x, y) = cosh((y + h)D)

cosh(hD)
ξ(x) + sinh(yD)(L(β)ξ)(x). (2.9)

The first term in (2.9) satisfies the homogeneous Neumann condition at y = −h while the
second term satisfies the homogeneous Dirichlet condition at y = 0. The operator L(β) in
the second term acts on the boundary data ξ(x) given on the free surface. In [8] we analysed
L(β) in a nonperturbative case, where |β|C1 ∼ O(1). Here we are restricted to a perturbative
regime, where we describe the expansion of the operator G(β, η) for small but arbitrary C1

perturbations η(x) of the surface, and small C1 bottom variations β(x).
At order O(1) and O(η), one gets G(0) = D tanh(hD) + DL(β) and G(1) = DηD −

G(0)ηG(0). At higher order, one finds the same recursion formula for G(l) as for the case of a
flat bottom [9] except that the role of the operator G0 = D tanh(hD) is now replaced by G(0).

Since we allow bottom perturbations to be of order O(ε), we will use a recursion formula
given in [8] for L(β) in powers of β.

L(β) = L1(β) + L2(β) + · · · (2.10)

with the first terms being

L1(β) = −sech(hD)β sech(hD)D, (2.11)

L2(β) = sech(hD)βD sinh(hD)L1

= −sech(hD)βD tanh(hD)βD sech(hD). (2.12)

General formulae are presented in [8] together with a Taylor expansion of the Dirichlet–
Neumann operator G(β, η) in powers of both β and η. In the analysis of this paper, we will
need only the terms up to second order in β.
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The Hamiltonian is thus expanded in powers of η and β in the form

H(η, ξ ; β) = 1

2

∫
(ξD tanh(hD)ξ + gη2) dx

− 1

2

∫
ξDsech(hD)βDsech(hD)ξ dx

+
1

2

∫
ξ(DηD − D tanh(hD)ηD tanh(hD))ξ dx

− 1

2

∫
ξ(Dsech(hD)βD tanh(hD)βDsech(hD))ξ dx

+ O(|β|3
C1‖∂xξ‖2

H 1) + O(|η|C1 |β|C1‖∂xξ‖2
H 1) + O(|η|2C1‖∂xξ‖2

H 1). (2.13)

By integration by parts,

H(η, ξ ; β) = 1

2

∫
(ξD tanh(hD)ξ + gη2) dx − 1

2

∫
β|Dsech(hD)ξ |2 dx

+
1

2

∫
ξ(DηD − D tanh(hD)ηD tanh(hD))ξ dx

− 1

2

∫
(Dsech(hD)ξ)βD tanh(hD)βDsech(hD)ξ dx

+ O(|β|3
C1‖∂xξ‖2

H 1) + O(|η|C1 |β|C1‖∂xξ‖2
H 1) + O(|η|2C1‖∂xξ‖2

H 1), (2.14)

which is the starting point for our asymptotic expansion.

2.3. Spatial scaling and the scaled Hamiltonian

The subject of this paper is the case where the bottom varies on a short length scale, while
the solutions up to principal order vary on a longer scale. We take β = β(x; ω) to be a C1

stationary process of zero mean value that satisfies properties of ergodicity and mixing; these
properties are described more precisely in section 3.

We rewrite the Hamiltonian (2.14) in terms of the canonical variables (η, u = ∂xξ), giving
the result

H(η, u; β) = 1

2

∫
uD−1 tanh(hD)u + gη2 dx − 1

2

∫
β(x)(sech(hD)u)2 dx

+
1

2

∫
u(η − tanh(hD)η tanh(hD))u dx

− 1

2

∫
sech(hD)u(βD tanh(hD)βsech(hD)u) dx + R(η, u, β), (2.15)

where the remainder R(η, u, β) = O(|β|3
C1‖u‖2

H 1) + O(|η|C1 |β|C1‖u‖2
H 1) + O(|η|2

C1‖u‖2
H 1).

The change of variables (η, ξ) �→ (η, u) invokes a change of symplectic form, as described
in [7]. Namely, given a transformation in general, w �→ v = f (w), Hamilton’s equations

∂tw = JδwH(w)

are transformed into

∂tv = J1δvH1(v),

where H1(v) = H(f −1(v)) and

J1 = ∂wf J (∂wf )T,
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for ∂wf the Jacobian of the transformation f . In our case w = (η, ξ)T and v = (η, u)T,
therefore

J =
(

0 I

−I 0

)
, J1 =

(
0 −∂x

−∂x 0

)
. (2.16)

The basic long wave scaling for the problem of surface water waves maintains a balance
between linear dispersive and nonlinear effects in the dynamics of surface evolution. The
scaling regime that anticipates this balance is given by the transformation

εx = X, u(x) = ε2ũε(X), η(x) = ε2η̃ε(X). (2.17)

This scaling transformation results in a further modified symplectic structure J2 = ε−3J1. The
regime in which we incorporate the effects of bottom variations is specified by the scaling

β(x; ω) = εβ̃(X/ε; ω), (2.18)

where β̃(x; ω) ∈ C1 for a.e. realizations ω ∈ �.
We assume that the remainder term R(η̃ε, ũε, εβ̃) is of size o(ε5), which is of higher

order in ε than the quantities which we will retain in the Hamiltonian. This is a natural
assumption given the formal scaling order of these terms of the Hamiltonian, but it is not
at present a rigorous result as it depends upon quite subtle cancellations in the asymptotics
of expansions of Fourier multiplier operators in multiple scale regimes. Nonetheless it is a
reasonable assumption, and it is in fact under further study in the bigger context of our research
programme. Furthermore, we assume that‖η̃ε‖H 1 and‖ũε‖H 1 are uniformly bounded in ε → 0.
This would be the case if the solution components were asymptotically of the functional form
fε(X) = f0(X) + εf1(X, X/ε). We do not however pose this as an ansatz; instead we derive
the functional form of our solution, which will similar but not identical to this. A posteriori
the solutions we construct in section 5 will satisfy this uniform boundedness property.

In order to derive the scaled Hamiltonian, we need to examine the asymptotic expansion
of the Dirichlet–Neumann operator G(β, η) in a multiple scale regime. Recall that a pseudo-
differential operator acting on a multiple scale function f (x, X), where we take (x, X) ∈ R2d

and then set X = εx, has an asymptotic expansion (see [10] for details). In the simple case of
a Fourier multiplier, let m(D) be an operator acting on a function f , defined by

(m(D)f )(x) = 1

(2π)d

∫
eik·(x−x ′)m(k)f (x ′) dx ′ dk. (2.19)

When m(D) acts on a multiple scale function f (x, X) with X = εx, then Dx +εDX substitutes
for D, giving

m(D)f (x, X) = 1

(2π)d

∫
eik·(x−x ′)

( J∑
α:|α|=0

m(α)(k)

α!
ε|α|Dα

X

)
f (x ′, X) dx ′ dk

+
1

(2π)d

∫
eik·(x−x ′)R(J )

ε f (x ′, X) dx ′ dk

= m(Dx)f + εm′(Dx)DXf + · · · . (2.20)

There are rigorous estimates on the remainder term R(J)
ε f under natural hypotheses on the

target function f .

Lemma 2.1. Let m(k) be a Fourier multiplier which is a classical symbol of order r and (for
convenience) consider J � r . For fixed f (X) ∈ HJ (Rd), then

∥∥(
m(εDX) −

J∑
α:|α|=0

εα

α!
m(α)(0)Dα

X

)
f

∥∥
L2 := ‖R(J)

ε f ‖L2 � o(εJ )‖DJ
Xf ‖L2 .
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Lemma 2.2. Again let m(k) be a classical symbol of order r , and take J � r . Assume that
m(k) satisfies the condition that∑

α:|α|=J+1

∫
|∂α

k m(k)| dk < +∞ (2.21)

(this is automatically satisfied if J � r + d). Fix f (X) ∈ HJ (Rd), and suppose that
β(x) ∈ CJ . Then

∥∥(
m(εDX)(βf ) −

J∑
α:|α|=0

εα

α!
(m(α)(Dx)β)Dα

X

)
f

∥∥
L2 := ‖R(J)

ε (β)f ‖L2

� oε(1)(εJ |β|C0‖DJ
Xf ‖L2 + |β|CJ ‖f ‖L2). (2.22)

The standard Fourier multipliers associated with the Dirichlet–Neumann operator in fluid
domains such as ours will naturally satisfy the extra condition (2.21). The proof of these two
scale separation lemmas is given in section 7.

Applying the scaling transformation (2.17) to the Hamiltonian and using asymptotic
expansions for the various Fourier multipliers, we get

H(η̃ε, ũε; β̃, ε) = ε3

2

∫
(hũ2

ε + gη̃2
ε ) dX − ε4

2

∫
β̃(X/ε)(sech(εhDX)ũε)

2 dX

+
ε5

2

∫
ũε

(
η̃ε − h3

3
D2

X

)
ũε dX − ε5

2

∫
(sech(εhDX)ũε)

×[β̃(X/ε)(Dx + εDX) tanh(h(Dx + εDX))β̃(X/ε)sech(εhDX)ũε] dX

+ o(ε5). (2.23)

To simplify notation, we now drop the tildes over the variables β, η, ξ and their subscript,
although these quantities continue to be functions of the parameter ε. Expanding the operator
sech(εhDX) in the second term in (2.23) gives∫

β(X/ε)(sech(εhDX)u)2 dX =
∫

β(X/ε)

((
1 − 1

2
ε2h2D2

X

)
u

)2

dX + O(ε4).

The last term of (2.23) is calculated in the same manner; expanding (Dx + εDX) tanh(h(Dx +
εDX)) we get

(Dx + εDX) tanh(h(Dx + εDX))β(x)f (X) = (Dx tanh(hDx)β)(X/ε)f (X) + O(ε).

In the end we obtain,∫
sech(εhDX)u[β(X/ε)(Dx + εDX) tanh(h(Dx + εDX))β(X/ε)sech(εhDX)u] dX

=
∫

sech(εhDX)u[β(X/ε)Dx tanh(hDx)β(X/ε)]sech(εhDX)u dX + O(ε)

=
∫

[β(x)Dx tanh(hDx)β(x)]u2 dX + O(ε).

Assembling these terms, we arrive at the Hamiltonian which is the focal point of our further
analysis;

H(η, u; β, ε) = ε3

2

∫ [
(h − εβ(X/ε) − ε2β(X/ε)Dx tanh(hDx)β(X/ε))u2 + gη2

+ ε2

(
ηu2 − h3

3
uD2

Xu

)]
dX + o(ε5). (2.24)
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3. Homogenization and scale separation

The purpose of this section is to understand the asymptotic behaviour of integrals of the form∫ +∞

−∞
γ

(
X

ε

)
f (X) dX := Zε(γ, f ), (3.1)

where f (X) comes from expressions which involve the physical variables which depend only
upon large spatial scales, and where γ (x) = γ (x; ω) is a stationary ergodic process taken from
the statistical ensemble � from which our realizations of the bottom are sampled. Principle
examples of such integral expressions in the Hamiltonian for water waves are∫ +∞

−∞
β

(
X

ε
; ω

)
|u(X)|2 dX (3.2)

as well as ∫ +∞

−∞
(βDx tanh(hDx)β)

(
X

ε

)
|u(X)|2 dX (3.3)

for u ∈ H 1. In our previous work [8], expressions of this form are analysed under the
hypothesis that β was a periodic function of x. In this paper, we are concerned with the case
in which the bottom variations β(x, ω) are decorrelated over large spatial scales, which is
quantified with a mixing condition on �.

3.1. Stationary ergodic processes and mixing

We take our statistical ensemble of random bottom variations of the fluid domain to be
modelled by a stationary ergodic process which will possess some properties of mixing.
Mathematically, given a probability space (�, M, P) equipped with a group of P-measure
preserving translations {τy : y ∈ R}, and a function G : � → R, then a stationary process γ

is given by γ (x; ω) := G(τxω). The notation for the probability of a set A ∈ M is P(A), and
integrals of functions F over this probability space are denoted by∫

�

F dP = E(F ). (3.4)

We further require that the measure be ergodic with respect to {τy}y∈R, meaning that for any
bounded measurable function F : � → R, then for P-almost every realization ω,

lim
L→∞

1

L

∫ L

0
F(τyω) dy = E(F ). (3.5)

For our purposes, we would like to take � := C(R) the space of bounded continuous
functions, for which the one-parameter group of translations is just that, (τyγ )(·) = γ (· + y),
for y ∈ R. However it turns out that our sample space C(R) must be enlarged to a subset
of the space of tempered distributions S ′, as the process of taking limits invokes Donsker’s
invariance principle, and the support of our limiting measures is on distributions corresponding
to one (or several) derivatives of Brownian motion. The modelling of a random bottom
will require properties of asymptotic independence of typical realizations with respect to
the probability measure (M, P), specifically that the translations {τy}y∈R exhibit a mixing
property with respect to it. There are several notions of mixing in the literature [12]. For
simplicity, we adopt the notion of uniform strong mixing (called α-mixing), although weaker
conditions would also work in our setting. The stationary process defines a natural filtration
on the probability space given by the σ -algebras Mu

v = σ(γ (y; ω) : v � y � u). The notion
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of α-mixing is that there is a bounded function α(y) for which α(y) → 0 as y → ∞ such that
for any two sets A ∈ M∞

0 and B ∈ M0
−∞ then

|P(A ∩ τy(B)) − P(A)P(B)| < α(y). (3.6)

Note that mixing implies the process is ergodic. So that Donsker’s invariance principle will
extend to this mixing process [24], we require that α(y) = O(1/y log(y)) for y �→ +∞
as well as ∫ ∞

0
α(y) dy < +∞. (3.7)

The integral (3.3) involves a nonlocal expression in the bottom variations β(x), implying that
the random processes we are led to analyse will never be perfectly decorrelated under any
finite translation. Indeed, the spatial decay of the kernel of the operator D tanh(hD) implies
a lower bound on α(y) of the form

α(y) > e−2hy,

even for statistics of the actual realizations of the bottom variations β(x; ω) which are fully
decorrelated under sufficiently large finite translations |y| > R.

For the zero mean process γ , define the covariance function ργ to be

ργ (y) := E(γ (0; ω)γ (y; ω)) = E(γ (0; ω)τyγ (0; ω)), (3.8)

which is an even function of y ( [11, p 123] or [2, p 178]). The variance σ 2
γ is given by the

expression

σ 2
γ := 2

∫ ∞

0
ργ (y) dy.

The integral exists because of the hypothesis of mixing of the underlying process. The variance
can take on any value in [0, +∞), and we are principally concerned with the situation in which
σγ > 0. To this end we note the following fact.

Lemma 3.1. When the process β(x; ω) = ∂xγ (x; ω), for γ (x) ∈ C1, a zero mean, stationary
process with the above mixing properties, then

σβ = 0.

Proof. By definition,

σ 2
β = 2

∫ +∞

0
E(β(0)β(y)) dy = 2

∫ +∞

0
E(β(x)β(x + y)) dy

= 2
∫ +∞

0
E(∂xγ (x)∂xγ (x + y)) dy = 2

∫ +∞

0
E(∂xγ (x)∂yγ (x + y)) dy

= 2
∫ +∞

0
∂yE(∂xγ (x)γ (x + y)) dy. (3.9)

Therefore by integrating,

σ 2
β = −2E(∂xγ (x)γ (x)) + 2E(∂xγ (x)γ (x + y))|y=+∞ = −E(∂xγ

2(x)),

because the process is mixing. Using the hypothesis of ergodicity,

E(∂xγ
2(x)) = lim

T →∞
1

T

∫ T

0
∂xγ

2(x) dx = lim
T →∞

1

T
(γ 2(x))

∣∣∣∣
T

x=0

= 0. (3.10)

Thus the most interesting processes are those which are not derived from derivatives of another
stationary process; this fact will be reflected in our analysis of the asymptotics of the integrals
(3.1) in the next section. �
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3.2. Scale separation

The asymptotic analysis of Hamiltonians or PDEs which involve random coefficients needs
to establish a clear criterion with which to characterize terms by their order parameter. In our
present analysis, we view each term as a tempered distribution in space and time, namely, in
S ′(R2). We consider a terma(X, t; ε) to be of orderO(εr) if for any Schwartz class test function
ϕ(X, t) the limit limε→0 ε−r

∫
a(X, t; ε)ϕ(X, t) dX dt exists. In this context, the terms of a

PDE with random coefficients represent random ensembles of tempered distributions, say
{a(X, t; ω, ε) : ω ∈ �} ⊆ S ′(R2), which we state to be of order O(εr) if for any test function
ϕ(X, t) ∈ S(R2) the probability measures dPε of ε−r

∫
a(X, t; ε, ω)ϕ(X, t) dX dt converges

weakly to some dP0. In this section we discuss the behaviour of such terms in the form∫
γ

(
X

ε
, t; ω

)
v(X, t)ϕ(X, t) dX dt,∫

γ1

(
X

ε
, t; ω

)
γ2

(
X + ct

ε
, t; ω

)
v(X, t)ϕ(X, t) dX dt,

(3.11)

where γ is a stationary mixing process, v is a solution to one of the several differential equations
under discussion and ϕ plays the role of a test function.

Lemma 3.2. For γ (x; ω) a stationary ergodic process and for f (X) ∈ L1(R), then for P-a.e.
realization ω, ∫ +∞

−∞
f (X)γ

(
X

ε
; ω

)
dX = E(γ )

∫ +∞

−∞
f (X) dX + o(1). (3.12)

Proof. For a Schwartz class function f we have∫ +∞

−∞
f (X)γ

(
X

ε
; ω

)
dX = ε

∫ +∞

−∞
f (X)

d

dX

( ∫ X
ε

0
γ (s; ω) ds

)
dX

= −
∫ +∞

−∞
Xf ′(X)

ε

X

∫ X
ε

0
γ (s; ω) ds dX. (3.13)

As ε → 0, combining Birkhoff ergodic theorem

ε

X

∫ X
ε

0
γ (s; ω) ds → E(γ ) (3.14)

with the dominated convergence theorem leads to∫ +∞

−∞
f (X)γ

(
X

ε
; ω

)
dX → −E(γ )

∫ +∞

−∞
Xf ′(X) dX (3.15)

and finally (3.12). In fact it suffices that f ∈ L1(R) for the result to hold. �
The immediate application of the lemma is to the integrals (3.2) and (3.3), at least to the

order implied by lemma 3.2 for their mean values. Under the assumption that ξ(X) ∈ H 1(R),
the first of these vanishes up to order o(1) as E(β) = 0, at least for P-a.e. realization ω.
What is clear is that the fluctuations of (3.2) will play an important role in the derivation of the
appropriate Hamiltonian equations of motion. The second integral (3.3) is less straightforward,
as the mixing condition (3.7) is in competition with the integral operators represented by the
Fourier multiplier operators of the expression. We have that∫

(β(x)Dx tanh(hDx)β(x))|x= X
ε
u(X)2 dX

→ E(βDx tanh(hDx)β)

∫
u(X)2 dX. (3.16)
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There are two things to discuss with this statement. The first is that whenever γ (x, ω) ∈ C1

is stationary with regard to some probability space (�, M, P), then an order zero Fourier
multiplier operator applied to γ (x) is also stationary. Indeed, translation is respected

m(Dx)γ (x, τyω) = 1

2π

∫
eik(x−x ′)m(k)γ (x ′, τyω) dx ′ dk (3.17)

= 1

2π

∫
eik(x−x ′)m(k)γ (x ′ − y, ω) dx ′ dk

= 1

2π

∫
eik((x−y)−x ′)m(k)γ (x ′, ω) dx ′ dk

= m(Dx)γ (x − y, ω). (3.18)

Furthermore, continuous functions of γ ∈ C1, such as g(γ ) = (γm(Dx)γ )(0) are measurable.
By the ergodic theorem, for any bounded measurable F

lim
L→∞

1

L

∫ L

0
F(τxg(γ )) dx = E(F (g)),

and therefore the process τxg(γ ) is ergodic. Secondly, the expectation values of quadratic
functions of γ may be computed from the covariance function ργ of the stationary process.
For example,

E(γm(Dx)γ ) = lim
y→0

E(γ (x)m(Dx)γ (x − y))

= lim
y→0

E(m(−Dy)γ (x)γ (x − y)) = lim
y→0

m(−Dy)ργ (y)

= m(−Dy)ργ (0). (3.19)

Using these two facts, (3.16) is verified as the principal contribution from integral (3.3).
At the next level of approximation, we are drawn to study the variations of random

processes about their averages. The mathematical result which governs this is Donsker’s
invariance principle in a version which is appropriate for mixing processes, in the form of a
functional central limit theorem. That is, if a family of processes has a limit in law, then any
continuous functional converges in law to its values at the limiting process. The following
lemmas are particular instances of this result, given in terms which are explicitly used in our
analysis.

Lemma 3.3 ([2]). Suppose that β(x; ω) is a stationary ergodic process which is mixing, with
a rate α(y) which satisfies condition (3.7). Assume that E(β) = 0 and that σβ �= 0. Define

Yε(β)(X) =
√

ε

σβ

∫ X
ε

0
β(y) dy. (3.20)

As ε tends to zero, we have, in the sense of convergence in law that

Yε(β)(X) ⇀ B(X), (3.21)

where Bω(X) = B(X) is a normalized Brownian motion.

In particular, let f (X) ∈ S be a Schwartz class function, then

1

σβ

Zε(β, f ) :=
∫ +∞

−∞

1

σβ

√
ε
β

(
X

ε

)
f (X) dX

=
∫ +∞

−∞
Y ′

ε(β)(X)f (X) dX =
∫ +∞

−∞
−∂Xf (X)B(X) dX + o(1). (3.22)



Water waves over random topography 2155

This is to say that under the mild condition of mixing given in (3.7), the integrals in question
converge to a canonical stationary process, for which only two parameters are distinguished,
the mean value E(β) and the variance σ 2

β . This canonical process is given by white noise,∫ +∞

−∞
β

(
X

ε

)
f (X) dX =

∫ +∞

−∞
(E(β) +

√
εσβ∂XB(X))f (X) dX + o(

√
ε), (3.23)

where the equality is in the sense of convergence in law. The function f (X) in the integrand
must be sufficiently smooth for the latter quantities to have a mathematical sense. In fact we
consider the operation of multiplication by β(X/ε) to be in the distributional sense, which
has for a limit the distribution

√
εσβ∂XB(X) ∈ S ′. This is given a precise statement in the

following lemma.

Lemma 3.4. As a distribution, multiplication by β(X/ε) has a canonical limit in S ′. Indeed,
for f ∈ S,

β

(
X

ε

)
f (X) = E(β)f (X) +

√
εσβ∂XB(X)f (X) + o(

√
ε). (3.24)

Proof. Test the quantity above with a Schwartz class function ϕ(X);∫
β

(
X

ε

)
f (X)ϕ(X) dX

= E(β)

∫
(f (X)ϕ(X)) dX − √

εσβ

∫
B(X)∂X(f ϕ) dX + o(

√
ε)

=
∫

(E(β) +
√

εσβ∂XB(X))f (X)ϕ(X) dX + o(
√

ε). (3.25)

This is to say that for each f , the random variable Zε(β, f ) given in (3.22) is
asymptotically normally distributed. Given two functions f, g ∈ S, the covariance function
E(Zε(β, f )Zε(β, g)) can be computed in the limit as ε → 0. Indeed

E(Zε(β, f )Zε(β, g)) = 1

ε

∫ ∫
ρβ

(
X − X′

ε

)
f (X)g(X′) dX dX′

=
∫ ∫

ρβ(x ′)f (X)g(X − εx ′) dX dx ′

=
∫ ∫

ρβ(x ′)f (X)

(
g(X)−εx ′∂Xg(X)+

ε2

2
x ′2∂2

Xg(X) + · · ·
)

dX dx ′.

Noting that the term at order ε vanishes because ρβ is an even function, we have

E(Zε(β, f )Zε(β, g)) =
∫

ρβ(x ′) dx ′
∫

f (X)g(X) dX

−ε2

2

∫
x ′2ρβ(x ′) dx ′

∫
∂Xf (X)∂Xg(X) dX + · · · . (3.26)

In the limit as ε → 0, this quantity converges to

E(Z0(f )Z0(g)) = σ 2
β

∫
f (X)g(X) dX, (3.27)
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where Z0(f ) = σβ

∫
f (X)∂XB(X) dX. This expression is consistent with the covariance of

the white noise process being given by σ 2
β δ(X − X′). �

In the case of a process β(x) for which σβ = 0, the limit process for Yε(X) is of a different
character. In particular, consider a stationary mixing process which is the derivative of another
stationary process. Indeed let γ (x) ∈ Cr+1(R), and set β(x) = ∂r

xγ (x). Automatically
E(β) = 0 and σβ = 0. In this situation we have a different asymptotic result for the behaviour
of integrals such as in (3.1).

Lemma 3.5. Suppose that γ (x) ∈ Cr+1(R) is a stationary ergodic process which satisfies the
mixing condition (3.7), and set β(x) = ∂r

xγ (x). Then the process β(X/ε) is asymptotic in the
sense of distributions to higher derivatives of Brownian motion. That is, for ϕ(X) ∈ S we have∫

β

(
X

ε

)
ϕ(X) dX = εr+1/2σγ

∫
∂r+1
X B(X)ϕ(X) dX + o(εr+1/2). (3.28)

Proof. Using ϕ(X) as a test function,∫
β

(
X

ε

)
ϕ(X) dX =

∫
∂r
xγ

(
X

ε

)
ϕ(X) dx

= (−1)rεr

∫
γ

(
X

ε

)
∂r
Xϕ(X) dX

= (−1)r+1εr+1/2σγ

∫
Yε(γ )(X)∂r+1

X ϕ(X) dX

= εr+1/2σγ

∫
∂r+1
X B(X)ϕ(X) dX + o(εr+1/2). �

There are further technical results that we will use repeatedly in the analysis of the
equations in the KdV asymptotic regime, having to do with limits in the sense of tempered
distributions of products of scaled processes. In this context, consider γ = (γ1, γ2) a vector
of stationary processes which satisfy the mixing conditions (3.6) and (3.7). Consider their
product γ1(X/ε)γ2((X + ct)/ε) for some nonzero constant c as a tempered distribution in the
limit ε → 0. Define the covariance matrix of the vector process by

C(γ ) =
(

σ 2
1 ρ12

ρ12 σ 2
2

)
,

where

σ 2
j = 2

∫ ∞

0
E(γj (0)γj (y)) dy, ρ12 = ρ21 =

∫ ∞

−∞
E(γ1(0)γ2(y)) dy. (3.29)

Lemma 3.6. If the vector process γ = (γ1, γ2) is stationary and satisfies the mixing conditions
(3.6) and (3.7), then the process

Yε(γ ) = √
ε

( ∫ X
ε

0
γ1(y) dy,

∫ X
ε

0
γ2(y) dy

)
(3.30)

converges to the two-dimensional Brownian motion B(X) = (B1(X), B2(X)) with covariance
matrix C(γ ).
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This result is analogous to lemma 3.3 in the vector process case. From it, we derive the
next useful result on products of two mixing processes.

Lemma 3.7. Suppose that (β1(x), β2(x)) is a C1(R) vector stationary ergodic process which
satisfies the mixing condition (3.6) and (3.7), and let c be a nonzero constant. The new process
formed by the product ε−1β1(X/ε)β2((X + ct)/ε) converges in the sense of distributions on
space–time to products of derivatives of a pair of Brownian motions with covariance matrix
C(β). More precisely, for a test function ϕ(X, t) ∈ S then∫

β1

(
X

ε

)
β2

(
X + ct

ε

)
ϕ(X, t) dX dt

= ε

∫
∂XB1(X)∂XB2(X + ct)ϕ(X, t) dX dt + o(ε), (3.31)

where the covariance matrix of (B1(X), B2(X)) is given by C(β). In case βj = ∂
rj

x γj for
indices j = 1, 2, with γj ∈ Crj +1(R) (so that σβj

= 0 if rj �= 0) the new process satisfies∫
β1

(
X

ε

)
β2

(
X + ct

ε

)
ϕ(X, t) dX dt

= εr1+r2+1
∫

∂
r1+1
X B1(X)∂

r2+1
X B2(X + ct)ϕ(X, t) dX dt + o(εr1+r2+1), (3.32)

where (B1(X), B2(X)) are C(γ )-correlated.

Proof. Start with the case in which both σβj
are nonzero, and write∫

β1

(
X

ε

)
β2

(
X + ct

ε

)
ϕ(X, t) dX dt =

∫
β1

(
X

ε

)
β2

(
X′

ε

)
ϕ

(
X,

X′ − X

c

)
dX dX′

c

= ε2
∫

∂X

( ∫ X
ε

0
β1(τ ) dτ

)
∂X′

( ∫ X′
ε

0
β2(τ

′) dτ ′
)

ϕ

(
X,

X′ − X

c

)
dX dX′

c

= ε

∫ (√
ε

∫ X
ε

0
β1(τ ) dτ

)(√
ε

∫ X′
ε

0
β2(τ

′) dτ ′
)

∂X∂X′ϕ

(
X,

X′ − X

c

)
dX dX′

c
.

The latter expression is a continuous function of the processes Yε(β) = (Yε(β1), Yε(β2)) of
equation (3.20), which itself converges in law to two-dimensional Brownian motion with
covariance matrix C(β) as described by Donsker’s invariance principle. Therefore the
asymptotic expression for (3.31) is given by

ε

∫
∂XB1(X)∂XB2(X + ct)ϕ(X, t) dX dt, (3.33)

where B1(X) and B2(X) are two copies of Brownian motions with the correlation matrix C(β).
The general case reduces to the above particular case through integrations by parts. Indeed∫

β1

(
X

ε

)
β2

(
X + ct

ε

)
ϕ(X, t) dX dt

= εr1+r2

∫
∂

r1
X γ1

(
X

ε

)
∂

r2
X γ2

(
X + ct

ε

)
ϕ(X, t) dX dt

= (−1)r1+r2
εr1+r2

cr2

∫
γ1

(
X

ε

)
γ2

(
X + ct

ε

)
∂

r1
X ∂r2

t ϕ(X, t) dX dt, (3.34)

which reduces the problem to the previous case. �
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There is another integral that needs to be evaluated in our further analysis. It has the form∫
X,t

∫ X+
√

ght

X

β

(
X

ε

)
β

(
θ

ε

)
ϕ(θ, X, t) dθ dX dt. (3.35)

The next lemma shows that such integrals have probability measures whose weak limits
converge with order at least O(ε).

Lemma 3.8. Suppose that (β1(x), β2(x)) is a C1(R) stationary ergodic vector-valued process
which satisfy the mixing conditions (3.6) and (3.7). For test functions ϕ(θ, X, t) ∈ S,∫

dX dt

∫ X+
√

ght

X

[
β1

(
X

ε

)
β2

(
θ

ε

)
+ β2

(
X

ε

)
β1

(
θ

ε

)]
ϕ(θ, X, t) dθ = O(ε). (3.36)

Proof. The integral is written as the sum of two terms, each one of the form∫
dXdt

∫ X+
√

ght

X

βi

(
X

ε

)
βj

(
θ

ε

)
ϕ(θ,X,t)dθ

=ε

∫
dXdt

∫ X+
√

ght

X

∂X

(√
ε

∫ X
ε

0
βi(s)ds

)
∂θ

(√
ε

∫ θ
ε

0
βj (s)ds

)
ϕ(θ,X,t)dθ

=ε

∫
dXdt

∫ X+
√

ght

X

(√
ε

∫ X
ε

0
βi(s)ds

)(√
ε

∫ θ
ε

0
βj (s)ds

)
∂Xθϕ(θ,X,t)dθ

+ε

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)[(√
ε

∫ X+
√

ght

ε

0
βj (s)ds

)
∂θϕ(X+

√
ght,X,t)

−
(√

ε

∫ X
ε

0
βj (s)ds

)
∂θϕ(X,X,t)

]

−ε

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)[(√
ε

∫ X+
√

ght

ε

0
βj (s)ds

)
∂Xϕ(X+

√
ght,X,t)

−
(√

ε

∫ X
ε

0
βj (s)ds

)
∂Xϕ(X,X,t)

]

−ε

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)[
1√
ε
βj

(
X+

√
ght

ε

)
ϕ(X+

√
ght,X,t)

− 1√
ε
βj

(
X

ε

)
ϕ(X,X,t)

]
(3.37)

with i, j ∈ {1, 2} and i �= j . All of the terms have distributional limits which are at least
O(ε). Simple cases which illustrate the estimate are

I : =ε

∫
dXdt

[(√
ε

∫ X
ε

0
β1(s)ds

)
1√
ε
β2

(
X

ε

)
+

(√
ε

∫ X
ε

0
β2(s)ds

)
1√
ε
β1

(
X

ε

)]
ϕ(X,X,t)

= ε

2

∫
dXdt∂X

(√
ε

∫ X
ε

0
β1(s)ds

√
ε

∫ X
ε

0
β2(s)ds

)
ϕ(X,X,t)

=−ε

2

∫
dXdt

(√
ε

∫ X
ε

0
β1(s)ds

√
ε

∫ X
ε

0
β2(s)ds

)
∂Xϕ(X,X,t). (3.38)
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II : =ε

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)
1√
ε
βj

(
X+

√
ght

ε
v

)
ϕ(X+

√
ght,X,t)

=−ε

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)
1√
gh

∂t

(√
ε

∫ X+
√

ght

ε

0
βj (s)ds

)
ϕ(X+

√
ght,X,t)

=− ε√
gh

∫
dXdt

(√
ε

∫ X
ε

0
βi(s)ds

)(√
ε

∫ X+
√

ght

ε

0
βj (s)ds

)
∂tϕ(X+

√
ght,X,t).

The integrals in terms I and II are continuous functionals (on path space) evaluated on a family
of processes whose limit is Brownian motion. Hence these terms are indeed of order O(ε).
The other remaining terms are estimated likewise. �

3.3. Random characteristic coordinates

Our method to derive the long wave limit gives rise to a version of the KdV equation which
has coefficients which are realization dependent. That is, the approximation process does not
fully homogenize, and there are persistent, realization dependent effects that are as important
as the classical effects of dispersion and of nonlinear interactions. The principal manifestation
of this is the random overall wavespeed, expressed in the limit as ε → 0 as

c0(X, ω) =
√

gh

(
1 − ε3/2σβ

2h
∂XB(X) − ε2aKdV

)
. (3.39)

The constant aKdV is an adjustment to the characteristic velocity that is to be determined by an
asymptotic analysis. The normally expected procedure is to solve the characteristic equations
with this given wavespeed;

dX

dt
= c0(X, ω), X(0) = Y, (3.40)

to obtain characteristic coordinates (Y, t) describing a net translational motion about which
the more subtle nonlinear dispersive evolution takes place. In the context of a random bottom
environment, however, the characteristic velocity field c0(X, ω) in (3.39) has a component
which is white noise, and when the flow of the characteristic vector field (3.40) is required,
(3.39) is too singular to be able to make sense of a solution.

Our derivation of the KdV equation is nonetheless performed in characteristic coordinates.
To do this, our alternative strategy is to use a natural regularization of the characteristic
wavespeed given in (3.39) as an approximation, and to consider the characteristic coordinates
indicated by (3.40) to be the limit as ε → 0 of a sequence of more regular flows. The
regularized characteristic vector field that we use is

dX

dt
= cε(X, ω) :=

√
gh

(
1 − ε

2h
β

(
X

ε

)
− ε2aKdV

)
,

X(0) = Y.

We remark that as long as β(x, ω) ∈ C1(R) for P-a.e. realization ω, the characteristic vector
field cε(X, ω) is C1, and for a given realization ω it is uniformly so in ε. Therefore the
flows X(t) = �ε

t (Y, ω) exist for all ε, and lie in a bounded subset of C1. The characteristics
X(t) are themselves C1, and they are ordered by their initial values; if Y1 < Y2 then for
all t , X1 = �ε

t (Y1, ω) < X2 = �ε
t (Y2, ω). As ε → 0 there will normally not be a C1

limit of the flows, but by standard compactness arguments there are limits �0
t (Y, ω) in any

Cα(R), 0 � α < 1 which converge uniformly on compact sets, and which preserve the ordered
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property of the characteristics. Each such limit X = �0
t (Y, ω) can be taken to be a well-defined

continuous and continuously invertible transformation.
To understand the asymptotic behaviour of the transformation to characteristic coordinates,

write

�ε
t (Y, ω) = X0(t) + εX1(t) + ε2X2(t) + · · · , (3.41)

where X0(0) = Y and Xj(0) = 0 for j � 1 provide the initial conditions for the flow.
Substituting this into the characteristic equation gives the result that

dX0(t)

dt
=

√
gh, X0(t) = Y + t

√
gh, (3.42)

dX1(t)

dt
= −1

2

√
g

h
β(X0(t)/ε, ω)

= −1

2

√
g

h
β((Y + t

√
gh)/ε, ω), (3.43)

thus, variations to the characteristics are given by

X1(t) = − ε

2h

∫ (Y+t
√

gh)/ε

Y/ε

β(s, ω) ds. (3.44)

The final term relevant to our considerations is
dX2(t)

dt
= −

√
ghaKdV, (3.45)

which integrates simply to X2(t) = −√
ghaKdVt . Studying the integral expressions for X1(t)

more closely, we find that

X1(t) = − ε

2h

( ∫ (Y+t
√

gh)/ε

0
β(s) ds −

∫ Y/ε

0
β(s) ds

)
, (3.46)

which converges in law to Brownian motion as ε → 0, according to our discussion in
section 3.2. Hence

X1(t) = −
√

εσβ

2h
(B(Y + t

√
gh) − B(Y )) + o(

√
ε). (3.47)

In particular, the term εX1(t) contributes at order ε3/2. Due to Brownian scaling and to the
property of independence of increments,

X1(t) = −
√

εσβ

2h
Bω(Y)(t

√
gh) = −√

ε

(
σβ

2h

4
√

gh

)
Bω(Y)(t). (3.48)

We note that the realizations ω(Y ) of Brownian motion depend on the different initial
positions Y , and in particular that for distinct initial points Y1 and Y2 the selection of realizations
Bω(Y1)(t) and Bω(Y2)(t) of Brownian motion are independent, as long as Y2 − Y1 >

√
ght .

Putting this information together, an expression for the characteristic flow is given by

X(t, Y ; ε, ω) = Y + t
√

gh − ε2

2h

∫ (Y+t
√

gh)/ε

Y/ε

β(s, ω) ds

−
√

ghaKdVε2t + · · · . (3.49)

As ε tends to 0, the characteristics tend to the limiting distribution of paths given by

X(t, Y ; ω) = Y + t
√

gh − ε3/2σβ

2h

4
√

ghBω(Y)(t) − ε2
√

ghaKdVt + · · · . (3.50)
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Inverting the expression gives a formula for Y in terms of X and t ;

Y (t, X; ε, ω) = �ε
−t (X; ω) = X − t

√
gh +

ε2

2h

∫ X/ε

(X−t
√

gh)/ε

β(s, ω) ds

+ ε2
√

ghaKdVt + · · · . (3.51)

As ε tends to 0,

Y (t, X; ω) = X − t
√

gh +
ε3/2σβ

2h

4
√

ghBω(X)(t) +
√

ghaKdVε2t + · · · .
The Jacobian of the flow has the following asymptotic expansion:

dX

dY
= 1 − ε

2h

[
β

(
Y +

√
ght

ε

)
− β

(
Y

ε

)]
= 1 + O(ε). (3.52)

In the limit as ε tends to zero, the Jacobian (3.52), when multiplying a test function, behaves
asymptotically as

dX

dY
∼ 1 − ε3/2σβ

2h

4
√

gh∂XBω(Y )(t). (3.53)

4. Boussinesq regime

We now return to expression (2.24) for the scaled Hamiltonian, in order to give a formal
derivation of the appropriate Boussinesq system in this regime. The Hamiltonian has the form

H1 = ε3

2

∫ (
hε(X)u2 + gη2 − ε2

(
h3

3
(∂Xu)2 − ηu2

))
dX. (4.1)

with

hε(X) = h − εβ

(
X

ε

)
− ε2β

(
X

ε

)
Dx tanh(hDx)β

(
X

ε

)
(4.2)

and the evolution equations are

∂t

(
η

u

)
= ε−3

(
0 −∂X

−∂X 0

) (
δηH1

δuH1

)
, (4.3)

leading to the Boussinesq system in the form

∂tη = −∂X((hε(X) + ε2η)u) − ε2 h3

3
∂3
Xu, (4.4)

∂tu = −g∂Xη − ε2u∂Xu. (4.5)

As ε → 0, the coefficient hε(X) tends to a distributional limit

h0(X) = h − ε3/2σβ∂XB(X) − ε2aβ, (4.6)

which is a function of the long length scale variables alone, and where

aβ = E(βDx tanh(hDx)β) = (Dy tanh(hDy)ρβ)(0). (4.7)

While the above form of Boussinesq system appears most naturally from a direct expansion
of the Hamiltonian of the problem of water waves, the resulting system of PDEs is not well
posed, and it is rarely used directly in modelling. In the present setting, the situation is further
aggravated by the fact that a coefficient in the above system has a singular limit, as it involves
derivatives of a Brownian motion. Several routes to resolving these issues are possible [15],
however we will not pursue this direction of inquiry in this paper, preferring to make a more
systematic study of the KdV scaling regime.
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5. The Korteweg–de Vries regime

In this section, we derive an asymptotic expression for the solution of the water wave problem
in the KdV scaling regime. This consists of a solution of a deterministic equation similar
to the KdV, plus corrections due to the variations of the bottom. We identify in the sense
of distributions the limiting asymptotic behaviour of these solutions in the form of canonical
processes. We also obtain expressions for the asymptotics of the scattering of these solutions.
We assume that σβ > 0, which implies that the resulting realization dependent fluctuations are
maximally significant in the limit.

In the case of the Boussinesq derivation, the limit of certain integrals in the water waves
Hamiltonian will give rise to singular coefficients in the resulting equations of motion. This
is even more true in the case of the KdV regime; indeed the transformation to characteristic
coordinates will give rise to a modified symplectic structure which involves a second derivative
of Brownian motion, something that is not acceptable on an analytic level. To get around this
difficulty, we regularize the linear wavespeed as described in section 3.3, a process which
consists of retaining certain terms with rapidly varying coefficients in the Hamiltonian, and
only taking the limit after the long wave equations are derived.

5.1. Successive changes of variables

We start again from expression (2.24) for the Hamiltonian. As in the derivation of the
Boussinesq system, we first change the variables (η, ξ) to (η, u = ∂Xξ), leading to a
transformed Hamiltonian Hε

1 defined by

Hε
1 = ε3

2

∫ (
hε(X)u2 + gη2 − ε2

(
h3

3
(∂Xu)2 − ηu2

))
dX (5.1)

and a modified symplectic structure

J1 = ε−3

(
0 −∂X

−∂X 0

)
.

The next change of variables is defined by the transformation

η = 4

√
hε

4g
(r + s), u = 4

√
g

4hε

(r − s). (5.2)

The new symplectic structure resulting from this transformation is

J2 = ε−3




−∂X

1

4

∂Xhε

hε

−1

4

∂Xhε

hε

∂X


 , (5.3)

whose off-diagonal terms quantify the scattering of solutions due to variations in the
topography. In this expression, we retain the regularized expression (4.2) for the corrected
depth.

Denoting kε(X) = 4
√

g/4hε(X), the Hamiltonian is written as

Hε
2 (r, s) = ε3

2

∫ (√
ghε(r

2 + s2) − ε2h3

3
(∂X(kεr − kεs))

2

+
ε2

2
kε(r

3 − r2s − rs2 + s3)

)
dX + o(ε5). (5.4)
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Hamilton’s equations for (r, s) take the form

∂t

(
r

s

)
= J2

(
δrH

ε
2

δsH
ε
2

)
, (5.5)

where δrH
ε
2 and δsH

ε
2 are computed as follows:

ε−3δrH
ε
2 =

√
ghεr + ε2 h3

3
kε∂

2
X(kεr − kεs) +

1

4
ε2kε(3r2 − 2rs − s2),

ε−3δsH
ε
2 =

√
ghεs − ε2 h3

3
kε∂

2
X(kεr − kεs) − 1

4
ε2kε(r

2 + 2rs − 3s2). (5.6)

We perform an additional change of scale of s relative to r defined by(
r

s1

)
=

(
1 0

0 ε−3/2

) (
r

s

)
, (5.7)

which puts forward r(X, t) as the main component of the solution which is anticipated to
be travelling principally to the right, with a relatively small scattered component s1(X, t)

propagating principally to the left. The transformation leads to a modified symplectic structure

J3 = 1

ε3




−∂X

1

4ε3/2

∂Xhε

hε

− 1

4ε3/2

∂Xhε

hε

1

ε3
∂X


 (5.8)

and a final Hamiltonian

Hε
3 (r, s1) = ε3

2

∫ (√
ghε(r

2 + ε3s2
1 ) − ε2h3

3
(∂X(kεr − ε3/2kεs1))

2

+
ε2

2
kε(r

3 − ε3/2r2s1 − ε3rs2
1 + ε9/2s3

1)

)
dX + o(ε5). (5.9)

The equations stemming from the Hamiltonian (5.9) and the above symplectic structure are

∂t r = −∂X

[√
ghεr +

ε2h3

3
kε∂

2
X(kεr − ε3/2kεs1) +

ε2

4
kε(3r2 − 2ε3/2rs1 − ε3s2

1 )

]

+
1

4

∂Xhε

hε

[
ε3/2

√
ghεs1 − ε2h3

3
kε∂

2
X(kεr − ε3/2kεs1)

+
ε2

4
kε(−r2 − 2ε3/2rs1 + 3ε3s2

1 )

]
, (5.10)

∂t s1 = ∂X

[√
ghεs1 − ε2h3

3
kε∂

2
X(kεε

−3/2r − kεs1) +
ε2

4
kε(−ε−3/2r2 − 2rs1 + 3ε3/2s2

1 )

]

−1

4

∂Xhε

hε

[
ε−3/2

√
ghεr +

ε1/2h3

3
kε∂

2
X(kεr − kεε

3/2s1)

+
ε1/2

4
kε(3r2 − 2ε3/2rs1 − ε3s2

1 )

]
. (5.11)

It is ambiguous at this point precisely which terms of the above system of PDEs play a role
in the asymptotic description of solutions in the limit as ε tends to zero. The transformation
(5.7) is not homogeneous in the perturbation parameter ε, and because of fluctuations there are



2164 A de Bouard et al

numerous cancellations that occur in the remaining terms, not all of them having an influence on
the asymptotic regime (see lemmas 3.2 and 3.5 for example). We will show in the subsequent
analysis of section 5.3 that the asymptotic behaviour of solutions of equations (5.10) and (5.11)
as ε → 0 is governed by the following coupled system of equations, with an appropriate choice
of the parameters aKdV and b.

∂t r = −∂X

[
cε(X)r + ε2

(
c1∂

2
Xr +

3

2
c2r

2

)]
+ ε2br, (5.12)

∂t s1 =
√

gh∂Xs1 +
1

4

√
g

h
ε−3/2∂xβ

(
X

ε

)
r, (5.13)

where the regularized velocity is cε(X) = √
gh(1−(ε/2h)β(X/ε)−ε2aKdV) and the constants

c1 and c2 are defined as

c1 = h3

3

√
g

4h
, c2 = 1

2
4

√
g

4h
.

There are two as yet unspecified parameters in this system of equations, namely, aKdV and
b. They will be determined by the consistency analysis of section 5.3 as fixed points of the
solution process and the asymptotic analysis. In the end we find that

aKdV = 1

2h
aβ +

1

4h2
E(β2) +

1

8
E((∂xβ)2), (5.14)

b = − 1

3 × 32

7

8

√
g

h
E((∂xβ)3). (5.15)

5.2. Solution procedure for the random KdV equations

In this section we describe a reduction procedure for the system of equations (5.12) and (5.13)
that expresses the solution component r(X, t) in terms of a solution q(Y, τ ) of a deterministic
equation similar to the KdV equation, under a random change of variables (Y �→ X(t, Y ))

and a scaling τ = ε2t to the KdV time. The scattered component s1(X, t) is an expression
involving integrations along characteristics. The solution depends upon the two parameters
aKdV and b. We retain the regularized form of the characteristic velocity cε(X), only taking
the limit as ε → 0 in expressions for the solution.

Substitute r = ∂XR into (5.12); the resulting equation for R is

∂tR = −cε(X)∂XR − ε2(c1∂
3
XR + 3

2c2(∂XR)2) + ε2bR. (5.16)

Transform to characteristic coordinates as in section 3.3,

dX

dt
= cε(X), X(0) = Y. (5.17)

We denote the flow by X = �ε
t (Y ), which is a regularized realization dependent change of

variables. Define Q(Y, τ) = R(X, t) so that Q satisfies

∂τQ = −c1∂
3
Y Q − 3

2c2(∂Y Q)2 + bQ. (5.18)

To solve the initial value problem, set q(Y, 0) = r(Y, 0) = r0(Y ), and solve the deterministic
equation

∂τ q = −c1∂
3
Y q − 3c2q∂Y q + bq (5.19)

forq(Y, τ ) = ∂Y Q(Y, τ). Ifb = 0, equation (5.19) is the classical KdV equation. Additionally,
for each realization β(x, ω) the regularized ordinary differential equation (ODE) (5.17)
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defining the flow has a solution given by X = X(t, Y ; ε, ω). With these two ingredients,
the solution r(X, t) of equation (5.12) is given by

r(X, t) = ∂XQ(Y (t, X; ε, ω), ε2t) = ∂Y Q(Y (t, X; ε, ω), ε2t)∂XY (t, X; ε, ω) (5.20)

where ∂Y X(t, Y ; ε, ω) is the Jacobian of the flow (5.17) as described in section 3.3, and
∂XY (t, X; ε, ω) is its inverse. This is an expression of the solution of the regularized equation.

Equation (5.13) describes the scattered component of the KdV system above, whose
solution is expressed by integration of a forcing term which is given in terms of r(X, t) along
left-moving characteristics. Explicitly,

s1(X, t) = s0
1 (X +

√
ght)

+
ε− 3

2

4

√
g

h

∫ t

0
∂xβ

(
X +

√
gh(t − t ′)
ε

)
r(X +

√
gh(t − t ′), t ′) dt ′

= s0
1 (X +

√
ght) +

ε− 3
2

4h

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ. (5.21)

The small parameter ε is still present in the regularization; to complete the description we
consider the limit of expressions (5.20) and (5.21) as ε tends to zero. The solution of (5.18)
is smooth, and admits a Taylor expansion in its arguments. The inverse Jacobian has an
asymptotic expression as well. Therefore, one writes

r(X, t) = ∂XQ(Y (X, t; ω), ε2t) = ∂Y Q(Y (X, t; ω), t)∂XY (X, t; ω)

= q(X −
√

ght, ε2t)

(
1 +

ε

2h

(
β

(
X

ε

)
− β

(
X − √

ght

ε

)))

+ ∂Xq(X −
√

ght, ε2t)
ε2

2h

∫ X
ε

(X−√
ght)/ε

β(t ′) dt ′ + · · ·

= q(X −
√

ght, ε2t)

+ ∂X

(
q(X −

√
ght, ε2t)

(
ε2

2h

∫ X
ε

(X−√
ght)/ε

β(t ′) dt ′
))

+ O(ε2). (5.22)

Proposition 5.1. In the limit as ε tends to zero, expression (5.22) for the solution of (5.12) is
asymptotic as a distribution to

r(X, t) ∼ q(X −
√

ght, ε2t)

+
ε3/2σβ

2h

4
√

gh∂X(q(X −
√

ght, ε2t)Bω(X)(t)) + o(ε3/2). (5.23)

The expression for (5.21) for the solution s1 is asymptotic as a distribution to

s1(X, t) ∼ s0
1 (X +

√
ght)

+
1

4hσβ

∫ X+
√

ght

X

B(θ)
d2

dθ2
q

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ

+
1

4hσβ

(∂XB(X +
√

ght)q(X +
√

ght, 0) − ∂XB(X)q(X −
√

ght, ε2t))

− 1

2hσβ

(B(X +
√

ght)∂Xq(X +
√

ght, 0) − B(X)∂Xq(X −
√

ght, ε2t)).

(5.24)
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Proof. The expression for the limit of r follows directly from the application of lemma 3.5. It
is an expression which exhibits both randomness in its amplitude, as well as in location as per
the random characteristic coordinates in which it is expressed. For the calculation of the limit
of s1, we substitute expression (5.22) in (5.21):

s1(X, t) = s0
1 (X +

√
ght)

+
ε− 3

2

4h

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
q

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ

+
ε1/2

8h2

∫ X+
√

ght

X

∂xβ

(
θ

ε

)[ ∫ θ
ε

2θ−X−√
ght

ε

β(s) ds

×∂Xq

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))]
dθ

+
ε− 1

2

8h2

∫ X+
√

ght

X

(
∂x

β2

2

(
θ

ε

)
− ∂xβ

(
θ

ε

)
β

(
2θ − X − √

ght

ε

))

×q

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ. (5.25)

Except for the first term s0
1 that remains unchanged, all the terms appearing in the limiting

expression (5.24) come from the first integral in the expression of s1, where we performed
several integrations by parts and use the fact that ∂tq(X, ε2t) is O(ε2). By more integration
by parts, using the fact that ∂x = ε∂X we can show that the third term (third and fourth
lines) in expression (5.25) is O(ε1/2). Let us turn to the last term (fifth and sixth lines) of
(5.25). For the term containing ∂xβ

2(θ/ε), integration by parts will produce an additional
ε and the term will eventually be of order O(ε1/2). To estimate the term containing the
product ∂xβ(θ/ε)β((2θ − X − √

ght)/ε), the integration by parts moves the derivative ∂x to
all other terms. The only contribution that will not produce an ε is when the derivative acts on
β((2θ − X − √

ght)/ε). For this term, we write

∂xβ

(
2θ − X − √

ght

ε

)
= − ε√

gh
∂tβ

(
2θ − X − √

ght

ε

)
. (5.26)

After some simple manipulations, this term is again O(ε1/2). �

5.3. Consistency of the resulting system of equations

In this subsection, we complete the cycle of a self-consistency analysis for equations (5.12)
and (5.13), out of which the two so-far undetermined constants aKdV and b are selected. It is
clear that not all terms in equations (5.10) and (5.11) are of equal importance in the limit as
ε → 0. Recall the criterion as presented in section 3, which states that a term a(X, t; ε, ω)

is of order O(εr) if for any space–time test function ϕ(X, t) ∈ S the measures Pε induced
by ε−r

∫
a(X, t; ε, ω)ϕ(X, t) dX dt converge weakly to a limit P0 as ε tends to zero. In the

present case, the analysis consists of (i) the derivation of an expression for the solutions of
(5.12) and (5.13) which are stated in (5.21) and (5.22), and depend upon the two parameters
aKdV and b; (ii) the examination of the terms in (5.10), including in particular those which do
not appear in (5.12) (respectively, all the terms in (5.11), in particular those that do not appear
in (5.13)). Using expressions (5.21) and (5.22) we then show that, except terms which appear
in (5.12) (respectively (5.13)), they are asymptotically of order o(ε2) (respectively, of order
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o(1)). Both the system (5.12) and (5.13) and the solution expressions (5.21) and (5.22) depend
upon parameters aKdV and b. (iii) The demonstration that these constants can be chosen so
that there is a fixed point of this analysis. Namely, the solution depending upon the constants
aKdV and b has asymptotic behaviour which satisfies equations (5.12) and (5.13) with the same
choice of constants.

Let us denote the terms in (5.10) by

Ir = −ε2∂X

(
h3

3
kε∂

2
X(kεr − ε3/2kεs1) +

1

4
kε(3r2 − 2ε3/2rs1 − ε3s2

1 )

)
,

IIr = 1

4

∂Xhε

hε

ε3/2
√

ghεs1,

IIIr = −1

4

∂Xhε

hε

ε2h3

3
kε∂

2
X(kεr − ε3/2kεs1),

IVr = 1

4

∂Xhε

hε

ε2

4
kε(−r2 − 2ε3/2rs1 + 3ε3s2

1 ).

Similarly, we denote the terms in (5.11) by

Is = ε2∂X

(
− h3

3
kε∂

2
X(ε−3/2kεr − kεs1) +

1

4
kε(−ε−3/2r2 − 2rs1 + 3ε3/2s2

1 )

)
,

IIs = −1

4

∂Xhε

hε

ε−3/2
√

ghεr,

IIIs = −1

4

∂Xhε

hε

ε1/2h3

3
kε∂

2
X(kεr − ε3/2kεs1),

IVs = −1

4

∂Xhε

hε

ε1/2

4
kε(3r2 − 2ε3/2rs1 − ε3s2

1 ). (5.27)

The purpose is to evaluate the asymptotic behaviour of each of these terms as ε → 0.
The lemmas below show that they are at most O(ε2) and their contributions reduce to
ε2(α1∂Xr + α2r) where α1, α2 are explicit constants related to statistical properties of the
random bottom.

Lemma 5.2. The term IIr has the asymptotic behaviour

IIr = 1

8h

√
g

h
ε2E(β2)∂Xr(X, t) + o(ε2). (5.28)

Lemma 5.3. The term IIs has the behaviour

IIs = ε−3/2

4

√
g

h
∂xβ

(
X

ε

)
r + o(1), (5.29)

and this expression has an asymptotic limit as ε → 0 which is

1

4

√
g

h
σβ∂2

XB(X, ω)q(X −
√

ght, τ ). (5.30)

Lemma 5.4.

IIIr = ε2

12 × 8

√
gh

(
8E((∂xβ)2)∂Xr − 7

8h
E((∂xβ)3)r

)
+ o(ε2), (5.31)

IIIs = ε−3/2IIIr = O(ε1/2). (5.32)
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Lemma 5.5. The remaining terms have the following asymptotic behaviour:

Ir = −ε2∂X

(
c1∂

2
Xr +

3

2
c2r

2

)
+

ε2

24

√
ghE((∂xβ)2)∂Xr, IVr = o(ε2), (5.33)

and

Is = o(1), IVs = o(1). (5.34)

Lemma 5.6. Finally the linear term −∂X(
√

ghεr) in equation (5.12) has the asymptotic
behaviour

− ∂X(
√

ghεr) = −
√

gh∂X

[(
1 − ε

2h
β

(
X

ε

)
− ε2

2h

(
aβ +

1

4h
E(β2)

))
r

]
+ o(ε2). (5.35)

The proofs of these lemmas are the content of section 5.4. Using these asymptotic results in
system (5.10) and (5.11), and retaining only the leading terms, it reduces to (5.12) and (5.13),
with possibly different parameter values. When the parameters are chosen appropriately,
the asymptotic behaviour of the equations matches that of the solutions and the consistency
procedure is closed.

Theorem 5.7. The result of the consistency analysis is that the free parameters in
equations (5.12) and (5.13) are

aKdV = 1

2h
aβ +

1

4h2
E(β2) +

1

8
E((∂xβ)2), (5.36)

b = − 1

3 × 32

7

8

√
g

h
E((∂xβ)3). (5.37)

The parameter aKdV represents an adjustment at O(ε2) to the overall wavespeed, while the
sign of b governs the stability of solutions. It is often the case that b vanishes due to properties
of the ensemble of bottom realizations.

Proposition 5.8. If the statistics of the ensemble (�, M, P) are reversible in x, then b = 0.

By reversible, we mean that the inversion x → −x preserves the probability measure P,
implying that E((∂xβ)3) = 0.

5.4. Proofs of the above lemmas

In the analysis of the numerous integrals that go in to this consistency result, it is convenient
to use the bracket notation as shorthand for integrations;

〈f, g〉 :=
∫ ∫

R2
f (X, t)g(X, t) dX dt.

Proof of lemma 5.2. We first rewrite IIr as

IIr =
√

g

2
ε3/2∂X(

√
hε)s1 =

√
g

2
ε3/2∂X(

√
hε − E(

√
hε))s1. (5.38)

For any test function ϕ(X, t), we compute 〈ϕ, IIr〉 by substituting expression (5.21) for s1.
This gives two terms, the first being

ε3/2
√

g

2
〈ϕ, ∂X(

√
hε − E(

√
hε))s

0
1 〉 = −

√
g

2
ε3/2〈(

√
hε − E(

√
hε)), ∂X(s0

1ϕ)〉. (5.39)

Since

E(
√

hε) =
√

h + O(ε2),
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and because√
hε − E(

√
hε) =

√
h

(
1 − ε

2h
β

(
X

ε

))
−

√
h + O(ε2) = − ε

2
√

h
β

(
X

ε

)
+ O(ε2), (5.40)

the first term in 〈ϕ, IIr〉 is of order o(ε2). The second term in the expression of 〈ϕ, IIr〉 is

A :=
√

g

8h

〈
ϕ, ∂X(

√
hε − E(

√
hε))

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉
. (5.41)

By integration by parts,

A = −
√

g

8h

〈
∂Xϕ, (

√
hε − E(

√
hε))

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉

−
√

g

8h

〈
ϕ,

(√
hε − E(

√
hε)

)
1√
gh

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
∂t r

(
θ, t +

X − θ√
gh

)
dθ

〉

−
√

g

8h

〈
ϕ,

(√
hε − E(

√
hε)

)[
∂xβ

(
X +

√
ght

ε

)
r0(X +

√
ght) − ∂xβ

(
X

ε

)
r(X, t)

]〉

= −
√

g

8h

〈(
∂X − 1√

gh
∂t

)
ϕ, (

√
hε − E(

√
hε))

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉

+
√

g

8h

〈
ϕ, (

√
hε − E(

√
hε))∂xβ

(
X

ε

)
r(X, t)

〉
≡ A1 + A2. (5.42)

Analyse the second term first,

A2 = − 1

32h

√
g

h
ε〈ϕ, ∂x(β

2)r〉. (5.43)

Replacing r by its expression (5.22),

A2 = − 1

64h2

√
g

h
ε

〈
ϕ, ∂x(β

2)

[
ε2∂Xq

∫ X
ε

X−√
ght

ε

β(t ′) dt ′

+ εq

(
β

(
X

ε

)
− β

(
X − √

ght

ε

))]〉
+ O(ε

5
2 ). (5.44)

By integration by parts, the first term of A2 is o(ε2). The second to the last term of A2 can be
rewritten as

− 1

64h2

√
g

h
ε2

〈
ϕ, ∂x

(
2

3
β3

)
q

〉
, (5.45)

which again by integration by parts contributes to o(ε2). The last term of A2 contributes only
to o(ε2) due to lemma 3.7. Now turn to A1.

A1 = − 1

16h

√
g

h
ε2

〈(
∂X − 1√

gh
∂t

)
ϕ, β

(
X

ε

) ∫ X+
√

ght

X

β

(
θ

ε

)
d

dθ
r

(
θ, t +

X − θ√
gh

)
dθ

〉

+
1

16h

√
g

h
ε2

〈(
∂X − 1√

gh
∂t

)
ϕ, β

(
X

ε

)[
β

(
X +

√
ght

ε

)
r0(X +

√
ght)

−β

(
X

ε

)
r(X, t)

]〉

+ o(ε2). (5.46)
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The first term in the second line of A1 is o(ε2) due to lemma 3.7. The last term of A1 is

− ε2

16h

√
g

h
E(β2)

〈(
∂X − 1√

gh
∂t

)
ϕ, q

〉
+ o(ε2)

= ε2

8h

√
g

h
E(β2) 〈ϕ, ∂Xq 〉 + o(ε2), (5.47)

leading to a contribution to IIr of

ε2

8h

√
g

h
E(β2)∂Xr(X, t) + o(ε2). (5.48)

We now turn to the first term of A1 which we denote A3, and write it as

A3 =− ε2

16h

√
g

h

〈(
∂X − 1√

gh
∂t

)
ϕ,

β

(
X

ε

) ∫ X+
√

ght

X

β

(
θ

ε

)(
∂X − 1√

gh
∂t

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉
. (5.49)

We express (∂X − (1/
√

gh)∂t )r in terms of q as(
∂X − 1√

gh
∂t

)
r(X, t) = 2∂Xq +

1

2h

(
∂xβ

(
X

ε

)
− 2∂xβ

(
X − √

ght

ε

))
q + O(ε). (5.50)

Substitution of the above in A3 gives rise to three terms, (i), (ii) and (iii) which have the form
(after we have dropped the constants):

(i) = ε2

〈(
∂X − 1√

gh
∂t

)
ϕ,

β

(
X

ε

) ∫ X+
√

ght

X

β

(
θ

ε

)
∂Xq

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ

〉

(ii) = ε2

〈(
∂X − 1√

gh
∂t

)
ϕ,

β

(
X

ε

) ∫ X+
√

ght

X

1

2
∂x

(
β2

(
θ

ε

))
q

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ

〉

(iii) = ε2

〈(
∂X − 1√

gh
∂t

)
ϕ,

β

(
X

ε

) ∫ X+
√

ght

X

β

(
θ

ε

)
∂xβ

(
2θ − X − √

ght

ε

)

× q

(
2θ − X −

√
ght, ε2

(
t +

X − θ√
gh

))
dθ

〉
.

The term (i) is of the form∫ ∫ ( ∫ X+
√

ght

X

β

(
X

ε

)
β

(
θ

ε

)
ψ(θ, X, t) dθ

)
dX dt. (5.51)

Applying lemma 3.8, we show that this term is O(ε3) , and thus does not contribute to the
limit of IIr . By integration by parts, the term (ii) is O(ε3). Finally, for term (iii), we write
∂xβ((2θ − X − √

ght)/ε) = −ε/
√

gh(d/dt)β((2θ − X − √
ght)/ε), leading to (iii) being

again of order O(ε3). �
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Proof of lemma 5.3. Using that hε = h − εβ(X
ε
) + O(ε2)

IIs = 1

4
∂xβ

(
X

ε

)√
g

h
ε−3/2

(
1 +

ε

2h
β

(
X

ε

))
r. (5.52)

Since r(X, t) = q(X − √
ght, ε2t) + O(ε), the second term of (5.52) is

ε−1/2

16h

√
g

h
∂xβ

2

(
X

ε

)
(q(X −

√
ght, ε2t) + O(ε)) = O(ε1/2), (5.53)

due to lemma 3.5. Compute the limit as ε → 0 of IIs . Substituting expression (5.22) for r , we
get, for any test function ϕ(x, t)〈
ϕ,

ε− 3
2

4

√
g

h
∂xβ

(
X

ε

)
r

〉
= ε− 3

2

4

√
g

h

〈
ϕ, ∂xβ

(
X

ε

)
q

〉

+
ε− 1

2

4

√
g

h

〈
ϕ, ∂xβ

(
X

ε

)
∂Xq

ε

2h

∫ X
ε

X−√
ght

ε

β(t ′) dt ′
〉

+
ε− 3

2

4

√
g

h

〈
ϕ, ∂xβ

(
X

ε

)
ε

2h
q

(
β

(
X

ε

)
− β

(
X − √

ght

ε

))〉
. (5.54)

The first term of the right-hand side of (5.54) tends to the first term of (5.30) by application of
lemma 3.5. The second term of (5.54) is rewritten, by integration by parts, as

− ε
1
2

8h

√
g

h

〈
∂X(ϕ∂Xq), β

(
X

ε

) ∫ X
ε

(X−√
ght)/ε

β(t ′) dt ′
〉
− ε

1
2

8h

√
g

h

〈
ϕ, β2

(
X

ε

)
∂Xq

〉

+
ε

1
2

8h

√
g

h

〈
ϕ, β

(
X

ε

)
β

(
X − √

ght

ε

)
∂Xq

〉
.

Clearly all terms are o(1). The third term of (5.54) is rewritten

ε− 1
2

16h

√
g

h

〈
ϕ, ∂xβ

2

(
X

ε

)
q

〉
− ε− 1

2

8h

√
g

h

〈
ϕ, β

(
X

ε

)
∂xβ

(
X − √

ght

ε

)
q

〉
, (5.55)

which is o(1) by application of lemmas 3.5 and 3.7. �

Proof of lemma 5.4. Noticing that − 1
4 (∂Xhε/hε)kε = ∂Xkε , we decompose IIIr as IIIr =

(ε2h3/3)(C − D) with

C = (∂Xkε)∂
2
X(kεr), (5.56)

D = (∂Xkε)∂
2
X(kεε

3/2s1). (5.57)

Evaluating them against a test function, we get

〈C, ϕ〉 = −〈∂X(ϕ∂Xkε), ∂X(kεr)〉
= − 1

2 〈(∂Xkε)
2∂Xϕ, r〉 + 1

2 〈(∂Xkε)
2ϕ, ∂Xr〉 − 〈kε∂

2
Xkεϕ, ∂Xr〉

− 〈 1
2∂X(k2

ε )∂Xϕ, ∂Xr〉. (5.58)

We now calculate each term separately. Using that r = q + O(ε), the first term of (5.58)
denoted 〈C1, ϕ〉 is

〈C1, ϕ〉 = d0

2
E((∂xβ)2)〈ϕ, ∂Xr〉, (5.59)
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where d0 = (1/(4h)2)c2
0 and c0 = (g/4h)1/4. To compute the second term C2 of (5.58), we

write ∂Xr in terms of q as

∂Xr = ∂Xq +
q

2h

(
∂xβ

(
X

ε

)
− ∂xβ

(
X − √

ght

ε

))
+ O(ε), (5.60)

and obtain

〈C2, ϕ〉 = d0

2
〈E((∂xβ)2)∂Xr +

1

2h
E((∂xβ)3)r, ϕ〉. (5.61)

The third term C3 of (5.58) is more delicate because it involves second derivatives of kε.
We have

kε∂
2
Xkε = c2

0

4h

(
1

ε
∂2
xβ

(
1 +

3ε

2h
β

)
+

5

4h
(∂xβ)2

)
+ O(ε). (5.62)

We substitute this and the expression of r in terms of q in (5.58), and we use the fact that terms
containing the process β or its derivatives at two different points X/ε and (X − √

ght)/ε will
not contribute because of lemma 3.7. We finally get

〈C3, ϕ〉 = 5d0〈E((∂xβ)2)∂Xr − 1

h
E((∂xβ)3)r, ϕ〉. (5.63)

As for the last term of (5.58) we get

〈C4, ϕ〉 = 2d0〈E((∂xβ)2)∂Xr, ϕ〉. (5.64)

We conclude that the term C of IIIr is

C = d0

(
8E((∂xβ)2)∂Xr − 3

4h
E((∂xβ)3)r

)
+ o(1). (5.65)

We now turn to term D of IIIr defined in (5.57). We proceed in the same way as for term C.

〈D, ϕ〉 = −ε3/2〈∂X(ϕ∂Xkε), ∂X(kεs1)〉
= −ε3/2( 1

2 〈(∂Xkε)
2∂Xϕ, s1〉 − 1

2 〈(∂Xkε)
2ϕ, ∂Xs1〉 + 〈kε∂

2
Xkεϕ, ∂Xs1〉

+ 〈 1
2∂X(k2

ε )∂Xϕ, ∂Xs1〉). (5.66)

Terms in the last expression are, respectively, denoted D1, D2, D3, D4. We express s1 in terms
of r by means of (5.21) and we need also to calculate ∂Xs1.

∂Xs1(X, t) = ∂Xs0
1 (X +

√
ght) +

ε− 3
2

4h

(
∂xβ

(
X +

√
ght

ε

)
r0(X +

√
ght) − ∂xβ

(
X

ε

)
r(X, t)

+
1√
gh

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
∂t r

(
θ, t +

X − θ√
gh

)
dθ

)
. (5.67)

All terms involving s0
1 will contribute to o(1). We have

〈D1, ϕ〉 = 1

2

〈
(∂Xkε)

2∂Xϕ,
1

4h

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉
+ o(1). (5.68)

Using the derivative in the factor ∂xβ in the integral and integrating by parts leads to the
appearance of an additional ε, making the expression o(1). For D2, we have

〈D2, ϕ〉 = 1

2

〈
(∂Xkε)

2ϕ, ∂X

1

4h

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉
+ o(1)

= − 1

8h
d0E((∂xβ)3)〈ϕ, r〉 + o(1). (5.69)
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For D3 we find

〈D3, ϕ〉 =
〈
kε∂

2
Xkεϕ, ∂X

1

4h

∫ X+
√

ght

X

∂xβ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ

〉
+ o(1)

= − 1

4h
d0E((∂xβ)3)〈ϕ, r〉 − d0E((∂xβ)2)〈∂Xr, ϕ〉 + o(1) (5.70)

and for D4

〈D4, ϕ〉 = d0E((∂xβ)2)〈∂Xr, ϕ〉, (5.71)

leading to the final expression for D in the form

D = d0
1

8h
E((∂xβ)3)r + o(1). (5.72)

Adding the expression for C and D, we have shown that (5.31) describes the asymptotic
behaviour of IIIr. �

Proof of lemma 5.5. Following the criterion of section 3, these terms are integrated against
test functions ϕ, and derivatives can be moved to ϕ by integration by parts. �

Proof of lemma 5.6. The regularized depth hε is defined as hε(X) = h − εβ(X/ε) − ε2aβ .
Thus the regularized linear wave speed is√

ghε =
√

gh

(
1 − ε

2h
β − ε2 aβ

2h
− ε2 β2

8h2

)
+ o(ε2). (5.73)

The term 〈ϕ, ∂X(β2r)〉 is calculated as

〈ϕ, ∂X(β2r)〉 = 〈ϕ, E(β2)∂Xr〉 − 〈∂Xϕ, (β2 − E(β2))r〉. (5.74)

Using that r = q + O(ε), we get that the second term in (5.74) is O(
√

ε). �

6. Remarks on the expectation of solutions

It is normal to calculate E(r(X, t, ω)) = p(X, t) as a basic prediction of the solution r(X, t, ω)

itself. We remark that r(X, t, ω) is a realization dependent function where the randomness
manifests itself on the same level as dispersive and nonlinear effects. In the paper [23] on
apparent diffusion, the authors present an analysis of the function p(X, t) in the case of the
linear water wave problem with bottom given by {y = −h+

√
εβ(X/ε)}. In the fully nonlinear

regime of the present paper, diffusion is weaker, and occurs only on time scales larger than
those of O(1) in KdV time τ , as the following calculation shows.

In the sense of weak limits of probability measures, as ε → 0,

r(X, t) = q(Y, τ ), (6.1)

where

Y = X −
√

ght +
ε3/2

2h
(gh)1/4σβB(t) + ε2aKdV

√
ght and τ = ε2t. (6.2)

Compute the expectation of the main component of the solution r:

E(r(X, t)) =
∫ ∞

−∞
q

(
X −

√
ght +

ε3/2

2h
σβ(gh)1/4u + ε2aKdV

√
ght, τ

)
dµB(t)(u)

= 1√
2πt

∫ ∞

−∞
q

(
X −

√
ght +

ε3/2

2h
σβ(gh)

1
4 u + ε2aKdV

√
ght, τ

)
e− u2

2t du. (6.3)
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Assuming that maxτ |q(., τ )|L1 < ∞, we have for fixed t,

max
X

E(r(X, t)) � max
X′

1√
2πt

∫ ∞

−∞

∣∣∣∣q
(

X′ +
ε3/2

2h
σβ(gh)

1
4 u, τ

)∣∣∣∣ du

� 2hε− 3
2√

2πt
(gh)−

1
4

∫ ∞

−∞
|q(v, τ )| dv. (6.4)

This time decay of order ε−3/2t−1/2 = (ετ )−1/2 shows that the diffusion coefficient is of order
O(ε), meaning that diffusion effects occur at an order higher that the one considered for the
derivation of the KdV equation. To observe diffusion created by random effect at the order
of the relevant terms for the KdV would require a scaling for the bottom variations of the
form −h +

√
εβ(x, ω), which is a ‘rougher’ bottom that the one considered in this paper.

This is the natural scaling that was considered in the linear analysis of [23]. However, such
a hypothesis also affects the nonlinear and dispersive nature of solutions and indeed it will
introduce additional terms in the nonlinear coupled system of equations for (r, s) that would
have to be taken into account. This is beyond the scope of this paper and is planned as the
focus of a subsequent study.

7. Proof of the scale separation lemmas

This short section is dedicated to the proofs of the two technical scale separation lemmas that
are stated in section 2.3.

Proof of lemma 2.1. Given the symbol m(k), its Taylor remainder about the wavenumber
k = 0 is denoted

r(J )(k) = m(k) −
J∑

α:|α|=0

1

α!
∂α
k m(0)kα. (7.1)

By Taylor’s theorem, there is a δ0 such that for all δ < δ0

|r(J )(k)| � oδ(1)|k|J (7.2)

for |k| � δ, where oδ(1) means that this is a constant which can be taken arbitrarily small for
sufficiently small δ. If |k| is not restricted to be small, we have in any case that

|r(J )(k)| � C|k|J . (7.3)

Decompose a function f = χ(D)f +(1−χ(D))f = f1 +f2 by a smooth cutoff function χ(k)

in Fourier variables such that χ(k) = 1 in the neighbourhood {k : |k| � δ/2} and χ(k) = 0 in
{k : |k| � δ}. Then by (7.2) and (7.3) and the usual Plancherel identity, we have estimates for
the Fourier multiplier operator that is given by the Taylor remainder, namely,

‖R(J)(D)f1‖L2 � oδ(1)‖DJ
x f1‖L2 ,

‖R(J)(D)f2‖L2 � C‖DJ
x f2‖L2 .

(7.4)

Now consider this estimate in rescaled variables X = εx, equivalently εK = k. Then

‖R(J)(εDX)f1‖L2 � oδ(1)εJ ‖DJ
Xf1‖L2 ,

‖R(J)(εDX)f2‖L2 � CεJ ‖DJ
Xf2‖L2 .

(7.5)

In the rescaled variables we are to act on a fixed function f ∈ HJ with this Fourier multiplier.
Given f there is a radius γ such that∫

{|K|>γ }
|f̂ (K)|2|K|2J dK < δ.
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Furthermore in the variables k = εK , the criterion for the estimate (7.2) to be valid becomes
that |K| < δ/ε. For sufficiently small ε we have γ < δ0/ε, therefore estimate (7.5) reads

‖R(J)(εDX)f1‖L2 � oδ(1)εJ ‖DJ
Xf1‖L2 ,

‖R(J)(εDX)f2‖L2 � CεJ ‖DJ
Xf2‖L2 � CεJ δ.

(7.6)

Since δ is arbitrarily small, this is the desired result of lemma 2.1. In fact this γ and therefore
the constants of estimate (7.6) can be chosen uniformly over compact sets of HJ . �

Proof of lemma 2.2. Consider the Fourier multiplier m(k) and its Taylor expansion, this time
about a general point k1 ∈ Rd . Setting k′ = k − k1 write the Taylor remainder as

r(J )(k, k′) = m(k) −
J∑

α:|α|=0

1

α!
∂α
k m(k1)k

′α. (7.7)

The remainder multiplier can be written explicitly as

r(J )(k, k′) =
∫ 1

0

∑
α:|α|=J

cατ |α|−1[∂α
k m(k − τk′) − ∂α

k m(k − k′)]k′α dτ,

from which one deduces that for all k, k′ ∈ Rd

|r(J )(k, k′)| � C|k′|J . (7.8)

Since J � r the constant C is uniform over k. Furthermore, from Taylor’s theorem there exists
δ0 > 0 such that for all δ < δ0 the remainder multiplier satisfies

|r(J )(k, k′)| � oδ(1)|k′|J , (7.9)

for all |k′| < δ and all k ∈ Rd . Again, because m(k) is a classical symbol this estimate holds
uniformly in k.

To analyse the norm of the operator R(J), we first localize the problem in physical
space using a smooth cutoff function χ1(x) which satisfies BR1(0) ⊆ {χ1(x) = 1} and
supp(χ1) ⊆ BR1+1(0). Set f = f1 + f2 := χ1f + (1 −χ1)f . For f fixed, for sufficiently large
R1 then ‖f2‖HJ < δ and we have

‖R(J)(β)f2‖L2 � C‖DJ
x (βf2)‖L2 � δC|β|CJ . (7.10)

Considering the function f2 under the scaling X = εx (note that we do not rescale β) this
contributes only O(δ(εJ |β|C0‖DJ

Xf2‖L2 +|β|CJ ‖f2‖L2)). Now localize in Fourier space, setting
f̂1 = f̂3+f̂4 := χ2(k)f̂1+(1−χ2(k))f̂1, choosing χ2(k) ∈ C∞ such that BR2(0) ⊆ {χ2(k) = 1}
and supp(χ2) ⊆ BR2+1(0). For sufficiently large R2 we have ‖f4‖HJ < δ, and again

‖R(J)(β)f4‖L2 � C‖DJ
x (βf4)‖L2 � δC|β|CJ . (7.11)

We can concentrate therefore on f3 = χ2(D)χ1(x)f (x), whose Fourier transform is smooth
and localized.

Express the remainder term R(J)(β)f3 in Fourier transform

( ̂R(J)(β)f3)(k) =
∫ [ ∫

e−i(k−k′)·x1r(J )(k, k′)β(x1) dx1

]
f̂3(k

′) dk′. (7.12)

Considering this as a linear operator acting on f3 which depends upon β, we will in fact
show that

|〈f3, R
(J )(β)∗R(J)(β)f3〉L2 | � C|β|2CJ ‖DJ f3‖2

L2 , (7.13)
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and if supp(f̂3) ⊆ Bδ(0),

|〈f3, R
(J )(β)∗R(J)(β)f3〉L2 | � oδ(1)‖DJ (βf3)‖2

L2 . (7.14)

Both of these estimates show that R(J)(β) is bounded from HJ to L2, and from the latter
estimate we deduce the result stated in the lemma after rescaling f3.

Expressing the kernel of the operator R(J)(β)∗R(J)(β) in Fourier transform gives

( ̂R(J)(β)∗R(J)(β))f̂3(k) =
∫ [ ∫ ∫ ∫

e−i(k−k1)·x1 e−i(k1−k′)·x2

× r(J )(k1, k)r(J )(k1, k
′)β̄(x1)β(x2) dx1 dx2 dk1

]
f̂3(k

′) dk′

=
∫

K(J)(k, k′)f̂3(k
′) dk′. (7.15)

The result of the lemma will follow from an estimate of the kernel K(J)(k, k′).

( ̂R(J)(β)∗R(J)(β))f̂3(k) =
∫ [ ∫ ∫ ∫

e−i(k−k1)·x1 e−i(k1−k′)·x2

× r(J )(k1, k)r(J )(k1, k
′)β̄(x1)β(x2) dx1 dx2 dk1

]
f̂3(k

′) dk′

=
∫ [ ∫ ∫ ∫

e−i(k−k1)·x1 e−i(k1−k′)·x2

× 〈x1 − x2〉−α1〈∂k1〉α1r(J )(k1, k)r(J )(k1, k
′)

× β̄(x1)β(x2) dx1 dx2 dk1

]
f̂3(k

′) dk′

=
∫ [ ∫ ∫ ∫

e−i(k−k1)·x1 e−i(k1−k′)·x2〈x2〉−α2〈∂k′ 〉α2

× 〈x1 − x2〉−α1〈∂k1〉α1r(J )(k1, k)r(J )(k1, k
′)

× β̄(x1)β(x2) dx1 dx2 dk1

]
f̂3(k

′) dk′. (7.16)

Use the fact that in the latter expression that we have localized f1 in the x-variables, so that
f̂3(k

′) is C∞ in k′. Take the indices α1 and α2 sufficiently large so that the resulting expression
is absolutely integrable in the variables (x1, x2). We further recognize that

|〈∂k1〉α1〈∂k′ 〉α3r(J )(k1, k)r(J )(k1, k
′)|

� C|k|J |k′|J

as per the estimate (7.8). We also use that f̂3(k) vanishes for |k| > R2 + 1. Finally we use
the property that this kernel is absolutely integrable in the k1-variables, following from the
hypothesis of lemma 2.2. In fact this is a property of many of the Fourier multipliers stemming
form the problem of water waves, and of Laplace’s equation in strip or slab-like domains,
namely, in the cases at hand

m1(k) = sech(hk), r = 0, J � 0

m2(k) = k tanh(hk), r = 1, J � 1
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are relevant. The kernel being absolutely integrable, this defines a Fourier multiplier for the
quadratic form which obeys

|K(J)(k, k′)| � C|k|J |k′|J , (7.17)

while when either |k| or |k′| � δ then

|K(J)(k, k′)| � oδ(1)|k|J |k′|J . (7.18)

The lemma follows from this estimate, and the rescaling of the spatial variable X = εx in the
functions fj , j = 2, 3, 4 using the same strategy for f3 as in the proof of lemma 2.1. �
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