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Abstract

Nonlinear wave evolutions involve a dynamical balance between linear dispersive spreading of the waves and nonlinear self-
interaction of the waves. In sub-critical settings, the dispersive spreading is stronger and therefore solutions are expected to exist
globally in time. We show that in the supercritical case, the nonlinear self-interaction of the waves is much stronger. This leads to
some sort of instability of the waves. The proofs are based on the construction of high frequency approximate solutions. Preliminary
numerical simulations that support these theoretical results are also reported.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we discuss some ill-posedness issues (mainly, established in [1,5]) for solutions of the supercritical
non-linear wave equation

∂2
t u − �u + f (u) = 0 , (1)

where u = u(t, x) : R1+d → R. We assume that the initial data

γ := ∂u|t=0 = (∇u, ∂tu)|t=0 (2)

is in the homogeneous Sobolev space Ḣs−1 endowed with the norm

‖γ‖2
Ḣs−1 :=

∫
Rd

|ξ|2(s−1)|γ̂(ξ)|2 dξ.

The nonlinear interaction f satisfies f (0) = 0 and it is supposed of the form f = ∂V/∂z̄ with a potential
V ∈ C∞(C;R). This assumption on f formally guarantees the conservation of the energy

E(u(t)) :=
∫
Rd

|∂u|2 dx +
∫
Rd

V (u) dx = E(u(0)). (3)
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First, we recall our definition of well-posedness of the Cauchy problem.

Definition. We say that the Cauchy problem (1) and (2) is locally well-posed in Ḣs(Rd) if for any bounded subset
B ⊂ Ḣs−1, there exists a time T = T (B) > 0 such that for every γ ∈B there exists a (distributional) solution u to (1);

∂u ∈ C([−T, T ]; Ḣs−1),

and such that the solution map γ 	→ ∂u is uniformly continuous from B to C([−T, T ]; Ḣs−1). Moreover, there is an
additional space X in which u lies, such that u is the unique solution to the Cauchy problem in C([−T, T ]; Ḣs) ∩ X.

Second, we define the notion of supercriticality.

Definition. Let s ∈ [0, d/2). The Cauchy problem (1) and (2) is said Ḣs-supercritical if

(Hs,d)
V (u)

|u|(4/(d−2s))+2 ↑ +∞ as u → +∞.

To better illustrate the above condition let’s first refer to the “model” case when the nonlinearity is given
by

f (u) = |u|2σu. (4)

In such a case, solutions to the nonlinear wave equation enjoy a scaling property. Indeed, if u solves (1) on
(−T ∗, T ∗) with initial data ∂u|t=0 ∈ Ḣs−1, then for any λ > 0, the function uλ : (−T ∗λ2, T ∗λ2) × Rd defined by
uλ(t, x) := λ−1/σu(λ−2t, λ−2x) also does. Moreover, the norm of the Sobolev space Ḣsc with sc = (d/2) − (1/σ) is
also invariant under the dilation u 	→ uλ. It turns out that this space is relevant in the theory of the initial value problem
(1) and (2). Obviously, when f is given by (4), the supercriticality condition (Hs,d) is equivalent to s < sc.

Finally, recall that in the power nonlinearity case, problem (1) and (2) is locally well-posed for s > sc with an
existence time interval depending only upon ‖γ‖Ḣs−1 , see [3]. It is also locally well-posed for s = sc with an existence
time interval depending upon the solution to the linear wave equation U0(t)γ , and is ill-posed for s < sc (see the
reference work of [2], and the thorough paper of [6] concerning the loss of regularity of Ḣs- supercritical waves).
Based on this complete trichotomy, it is natural to refer to Ḣsc as the critical regularity for (1). For more details, we
refer to Tao’s book [8] and the references therein. The case of Ḣ1-supercritical problems is of particular interest since
in such a case, in addition, solutions enjoy the conservation of the energy (3). Moreover in this case, the definition
of Ḣ1-supercritical problems (Hs,d) has to be extended when the space dimension d = 2. Indeed, energy-critical
nonlinearities seem to be of exponential type.1

(H1,2)

⎧⎪⎨
⎪⎩

(a)
log(V (u))

u2 increases to + ∞

(b) liminf
log(V (u))

u2 = 4π and E > 1.

The goal of this paper is to present some extensions of the results in [2,6] to Ḣs-supercritical problems with more
general nonlinearities given by (Hs,d). Similar results are also proved for the energy-supercritical problems in two
space dimension. The last section is devoted to numerical simulations that show the change of dynamics through the
different regimes. We refer to [1,5] for analogous results for nonlinear Schrödinger equations.

2. Ill posedness of Ḣs supercritical waves

The main result in this case is given in [1].

1 In fact, the critical nonlinearity is of exponential type as shown in [4,5].
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Theorem 2.1. Let 1 < s < ssob.2One can find a sequence of times 0 < tn � 1 and a sequence of initial data (u0,n, 0)
with bounded energy, and limn→∞‖u0,n‖Hs = 0, so that the solution to (1) with initial data u0,n satisfies:

lim
n→∞‖un(tn, ·)‖Hs → ∞.

In particular, for any t > 0, the solution map (u0, u1) → u(t) fails to be continuous at the initial data (0,0) in the
Hs-topology.

Remark. Since the total energy of the solutions constructed in the above Theorem is bounded (with respect to n),
the above result also applies to finite energy weak solutions to (1)(which are known to exist). This extends the result
established in [2] where the energy is unbounded.

Sketch of the proof. For the sake of simplicity, we shall give only the proof when d = 3 and f (u) = u7. Following
the same steps, the proof extends to the other cases.

Let Φ denote the (real valued), smooth and periodic solution to the ordinary differential equation

Φ′′ + Φ7 = 0, Φ(0) = 1, Φ′(0) = 0. (5)

Let v1,n(x) = 0 and v0,n = κnn
s/3ϕ(nx1, n

βx′) where ϕ is a non-negative smooth function supported in the unit
ball, β = β(s) := (4/3)s − (1/2) and κn = log−δ(n) with δ > 0 to be fixed later. Observe that thanks to the anisotropic
scaling in the initial data and the choice β, we have for s < ssob

‖un,0‖Hs(R3) + ‖un,0‖L8(R3)∼κn.

On the other hand, note that

vn(t, x) = κnn
s/3ϕ(nx1, n

βx′)Φ(t|κnn
s/3ϕ(nx1, n

βx′)|3) (6)

solves ∂2
t vn + v7

n = 0 with initial data (v0,n, v1,n).
A straightforward but tedious computation shows that for all t /= 0 and all integer σ ≥ 0, we have

‖vn(t)‖Hσ ∼κn(κ3
ntn

s)
σ
nσ−s, as n → +∞.

In particular, for all t such that κn(κ3
ntn

s)
s � 1 we have ‖vn(t, ·)‖Hs � 1.

The next step is to show that vn is a suitable Ansatz to approximate un for times much larger than κ
−1/s
n κ−3

n n−s. Set

En(f ) := [ns−1E
1/2
0 (f ) + ns−3E

1/2
0 (∂2

x1
f ) + ns−2β−1E

1/2
0 (∂2

x′f )]. (7)

Thanks to Poincaré inequality, one has ‖f‖Hs ≤ CEn(f ).

Lemma 2.2. Let tn = n−slog1/8(n). Then the solution un of (1) with the initial data (v0,n, v1,n) exists for 0 ≤ t ≤ tn
and there exists ε > 0 such that for t ∈ [0, tn],

‖un(t) − vn(t, ·)‖Hs ≤ CEn(un(t) − vn(t)) ≤ Cn−ε.

The proof of the above lemma is based on the standard energy estimate on wn := un − vn together with an anisotropic
Gagliardo–Nirenberg inequality3 to get

d

dt
En(w) ≤ C n2s−1log1/2(n)(En(w) + E7

n(w)) + Cnlog2(n). (8)

Assuming that En(w) � 1, leads to

En(w) ≤ n2−2slog3/2(n)eC tn2s−1log1/2(n).

2 s < ssob := σd/2(σ + 1).
3 see [1] for the precise statement and more details.
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For every γ > 0 there exists Cγ such that for t ∈ [0, tn],

C t n2slog1/2(n) ≤ C log3/4(n) ≤ γ log n + Cγ.

Since s > 1, by taking γ > 0 small enough, we deduce that there exists ε > 0 such that for t ∈ [0, tn], we have

En(w) ≤ C n−ε. (9)

Finally the usual bootstrap argument allows to drop the assumption En(w) ≤ 1. This completes the proof of Lemma
2.2, and therefore Theorem 2.1 follows.

3. Energy-supercritical equations in dimension 3 or higher

In this section, we assume that d ≥ 3 and the nonlinearity is energy-supercritical:

(H1,d)
V (u)

u(4/(d−2))+2 ↑ +∞ as u → +∞, d ≥ 3.

Then we have

Theorem 3.1. A sequence (ϕk) in Ḣ1 and a sequence (tk) satisfying

‖∇ϕk‖L2
x

→ 0, sup
k

E(ϕk) < ∞, tk → 0,

exist and such that any weak solution uk of (1) with initial data (ϕk, 0) satisfies

liminf k→+∞‖∂tuk(tk)‖L2
x
� 1.

Sketch of the proof. The proof follows almost the same strategy as for the previous result. The main difference here
is that we will be more specific in our choice of the initial data, and therefore one can get more quantitative information
on the solutions to the corresponding ODE.

Define a sequence of continuous functions ϕk, supported in the unit ball such that ϕk(x) = k(d−2)/2 if |x| ≤ ε/k,
and ϕk(x) = εd−2k(d−2)/2/(kd−2 − εd−2)(|x|2−d − 1) if ε/k ≤ |x| ≤ 1.

An easy computation (using assumption (H1,d)) yields ‖∇ϕk‖2
L2 � (εd−2kd−2)/(kd−2 − εd−2), and

∫
Rd

V (ϕk(x)) dx � V (k(d−2)/2)
( ε

k

)d
(

1 + 1 − (ε/k)d

(1 − (ε/k)d−2)
2d/(d−2)

)
,

respectively. The choice ε = εk
def= k(V (k(d−2)/2))

−1/d
together with the fact that k(V (k(d−2)/2))

−1/d → 0, guarantees
that ‖∇ϕk‖L2 → 0 and supk E(ϕk) < ∞.

Next, we consider the solution to the ordinary differential equation

Φ′′(t) + V ′(Φ(t)) = 0, (Φ, Φ′)(0) = (k
d−2

2 , 0). (10)

It is well known that the period Tk of Φk is given by

Tk = 2
√

2
∫ k(d−2)/2

0

dτ√
V (k(d−2)/2) − V (τ)

= 2
√

2
k(d−2)/2√
V (k(d−2)/2)

∫ 1

0

(
1 − V (τk(N−2)/2)

V (k(N−2)/2)

)−1/2

dτ.

Using the supercriticality assumption (H1,d), we obtain Tk � k(d−2)/2(V (k(V−2)/2))
−1/2

. It follows that Tk � εk/k.
Recall that by finite speed of propagation, any weak solution uk of (1) with data (ϕk, 0) satis-

fies uk(t, x) = Φk(t) if 0 < t < εk/k and |x| < (εk/k) − t. Now let tk such that Φk(tk) = k(1−d)/2, i.e. tk =
1/

√
2
∫ k(d/2)−1

k1−(d/2) (V (k(d−2)/2) − V (τ))
−1/2

dτ. It is clear that tk � εk/k and, for |x| < (εk/k) − tk,

|∂tuk(tk, x)| =
√

2
√

V (k(d−2)/2) − V (Φk(tk)) �
√

V (k(d−2)/2).
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Hence,

‖∂tuk(tk)‖2
L2 � V (k(d−2)/2)

(εk

k
− tk

)d =
(εk

k

)d

V (k(d−2)/2)

(
1 − tk

k

εk

)d

,

and the conclusion follows.

Remark. In a recent paper [9], Tao has proved that a logarithmically supercritical quintic wave equation (in three
space dimensions) is well-posed in H1+ε for all ε > 0. The above result shows that ε = 0 is not allowed.

4. Energy-supercritical nonlinear equations in 2D

First we start with the first type of supercritical nonlinearity given by (H1,2)(a), i.e. (log(V (u))/u2) increases to
infinity as u → +∞. Examples of such nonlinearities include equations of the type

∂2
t u − �u + u2m−1 eλu2m = 0, for any m ≥ 2 and λ > 0.

We have the same result as in higher dimension.

Theorem 4.1. There exist a sequence (ϕk) in Ḣ1 and a sequence (tk) satisfying

||∇ϕk||L2
x

→ 0, sup
k

E(ϕk) < ∞, tk → 0,

and such that any weak solution uk of (1) with initial data (ϕk, 0) satisfies

liminf k→+∞ ||∂tuk(tk)||L2
x
� 1.

Sketch of the proof. The proof goes along the same lines as the previous proof. We omit the details here.
Define a sequence of continuous functions supported in the unit ball ϕk which is the constant

√
k if |x| ≤ εk e−k/2

and, (−2
√

k/ log(V (
√

k))) log |x| if εk e−k/2 ≤ |x| ≤ 1. The scale εk is chosen εk = ek/2 (V (
√

k))
−1/2

. Observe that
by assumption (H1,2)(a), we have εk → 0 and

||∇ϕk||2L2 � −1

log εk

.

Moreover, using the following lemma, one obtains the uniform bound on the potential term and therefore a bound
on the energy.

Lemma 4.2. Let 0 < a < 1, then∫ 1

a

r e4a2log2r dr ≤ 2.

Next, let Φk solve the ODE (10) with initial data (
√

k, 0). Then the following lemma

Lemma 4.3. For any A > 1, we have∫ A

0

du√
eA2 − eu2

≤ 2e2 A

A2 − 1
e−A2/2, (11)

together with the supercriticality assumption, imply that the period Tk of Φk satisfies Tk � εk e−k/2. Choosing tk
such that Φk(tk) = (1/

√
k), and arguing exactly in the same manner as in the previous case we finish the proof. We

refer to [5] for all the details and proofs.
The second result concerns the case (H2)(b).
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Theorem 4.4. There exists a sequence of positive real numbers (tk) tending to zero and two sequences (Uk) and (Vk)
of solutions of the nonlinear Klein–Gordon equation

� u + ue4πu2 = 0 (12)

satisfying the following:

||(Uk − Vk)(t = 0, ·)||2
H1 + ||∂t(Uk − Vk)(t = 0, ·)||2

L2 = ◦(1) as k → +∞.

For any ν > 0,

0 < E(Uk, 0) − 1 ≤ e3ν2 and 0 < E(Vk, 0) − 1 ≤ ν2,

and

liminf k→∞||∂t(Uk − Vk)(tk, ·)||2L2 ≥ π

4
(e2 + e3−8π)ν2.

Remark. This result shows that the solution map (for supercritical problems) is not uniformly continuous. This result
is weaker than the first two results. One cannot expect showing the discontinuity of the solution map at the zero initial
data, simply because the zero data is not supercritical.

5. Numerical methods

We solve the Klein–Gordon equation in 1 + d = 1 + 2 dimensions using the fourth-order symplectic “Position
Extended Forest-Ruth Like (PEFRL)” algorithm of Omelyan et al. [7]. This is accomplished in the following way.
First, the equation is recast into the Hamiltonian form

∂tu = δvH = v ∂tv = −δuH = f (u), (13)

where H(u, v) = (1/2)E(u, v) is the Hamiltonian of the system, and

f (u) = �u − u3eu4
or f (u) = �u − ue4πu2

. (14)

Because of the “position-velocity” formulation of (13) and the fact that the RHS of the equation for ∂tv (i.e. f (u))
is a function of u alone, Eq. (13) is well suited to integration by the PEFRL scheme which has been successfully used
in molecular dynamics simulations.

The PEFRL algorithm has the advantage of being both high-order and explicit. Omelyan et al. [7] showed that this
algorithm is much more accurate than the standard fourth-order Forest-Ruth algorithm (although they have the same
truncation error), and that it performs very well for long-time simulations. Although the latter aspect is not of central
importance in this study, we found it natural to use a symplectic integrator, motivated by the fact that the Klein–Gordon
equation is a Hamiltonian system and that energy conservation is an important issue here.

Spatial derivatives and nonlinear terms in f (u) are computed using a Fourier pseudospectral method with the fast
Fourier transform, thus assuming periodic boundary conditions in the x-direction. More precisely, spatial differentiation
is performed in Fourier space while nonlinear products are evaluated in physical space. The Fourier pseudospectral
method in space combined with the PEFRL algorithm in time makes the overall numerical solution very efficient and
accurate.

6. Numerical results

We performed computations, typically with domain size Lx = Ly = 5 and resolution Nx = Ny = 256 points in the
two horizontal directions (denoted by x and y here). Because we are interested in wave dynamics over very short times,
the time step was chosen in the range �t = 10−3– 10−5 in order to properly resolve short-scale variations. In all of
our experiments, the initial condition was chosen to be

u0(x, y) = A e−30((x−Lx/2)2+(y−Ly/2)2), v0(x, y) = 0, (15)
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Fig. 1. Norm ||∂tu||L2
x

vs. time for (a) A = 0.1 (E = 0.0314), (b) A = 0.5 (E = 0.7862), (c) A = 1 (E = 3.1588) and (d) A = 2 (E = 7808.7309).

i.e. a localized (symmetric) profile located in the center of the domain. We checked that energy is well conserved in
all the cases we considered, and that convergence is achieved with respect to the numerical parameters.

The goal of this section is to test numerically the results of Theorems 4.1 and 4.4. In the case f (u) = �u − u3eu4

(Theorem 4.1), Fig. 1 shows the time evolution of norm ||v||L2
x

= ||∂tu||L2
x

for A = 0.1, 0.5, 1, 2 (corresponding to

Fig. 2. Energy of difference of solutions E(U − V ) vs. time between (a) E = 0.0319 and E = 0.7229, (b) E = 0.2339 and E = 0.9340, (c)
E = 1.0991 and E = 1.7948 and (d) E = 13.9715 and E = 14.6969.
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E = 0.0314, 0.7862, 3.1588, 7808.7309 respectively). We see that for A ≥ 1 this quantity increases from 0 to reach
values higher than 1 over a very short time interval, which agrees well with Theorem 4.1. For lower amplitudes
(A = 0.1, 0.5), ||v||L2

x
still increases but then stabilizes around a value less than 1 (the order of magnitude of this value

is nonetheless fairly close to 1). This may be explained by the fact that, for low amplitudes, ||v||L2
x

is smaller and
increases more slowly, and thus numerical diffusion (even small) in our experiments can play against it.

In the case f (u) = �u − ue4πu2
(Theorem 4.4), we were unable to confirm to the full extent the result of Theorem

4.4. We observed numerically that two close solutions U and V with individual energies E > 1 can yield a norm
||∂t(U − V )||2

L2 which does not satisfy the estimate of Theorem 4.4 for supercritical waves. The reasons for this are
still unknown to us and work in this direction is in progress. Still, in an attempt to characterize the change of dynamics
between sub and supercritical solutions (i.e. between E < 1 and E > 1), we plot in Fig. 2 the time evolution of energy
E(U − V ) between two relatively close solutions U and V within the same regime. Cases (a) and (b) correspond to
subcritical solutions (E < 1) while cases (c) and (d) correspond to supercritical solutions (E > 1). In these four cases,
the two solutions differ by the same amount of energy �E∼0.7, which was chosen not too small otherwise the time
scale of the dynamics would be prohibitively too small to be examined numerically (see Theorem 4.4).

We see in Fig. 2(a) and (b) that E(U − V ) increases only by a few percent (2% and 8% respectively) on the interval
t ∈ [0, 0.1], while it varies much faster by 222% and 69937% in Fig. 2(c) and (d) respectively. These numerical results
clearly support the idea that the regime E > 1 is highly nonlinear and differs in substance from that for E < 1. Further
investigation is needed in order to better characterize the sub/supercritical transition and this is envisioned for a future
work.
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