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Abstract In this paper, we consider the development of central discontinuous Galerkin
methods for solving the nonlinear shallow water equations over variable bottom topography
in one and two dimensions. A reliable numerical scheme for these equations should preserve
still-water stationary solutions andmaintain the non-negativity of thewater depth.Wepropose
a high-order technique which exactly balances the flux gradients and source terms in the still-
water stationary case by adding correction terms to the base scheme, meanwhile ensures the
non-negativity of the water depth by using special approximations to the bottom together
with a positivity-preserving limiter. Numerical tests are presented to illustrate the accuracy
and validity of the proposed schemes.

Keywords Central discontinuous Galerkin methods · High-order accuracy · Nonlinear
shallow water equations · Positivity-preserving property · Well-balanced schemes

B Liwei Xu
xul@cqu.edu.cn

Maojun Li
limj@cqu.edu.cn

Philippe Guyenne
guyenne@udel.edu

Fengyan Li
lif@rpi.edu

1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331,
People’s Republic of China

2 Institute of Computing and Data Sciences, Chongqing University, Chongqing 400044,
People’s Republic of China

3 Department of Mathematical Sciences, University of Delaware, Newark, DE 19716-2553, USA

4 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590,
USA

5 Present Address: School ofMathematical Sciences, University of Electronic Science and Technology
of China, Sichuan 611731, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0329-z&domain=pdf


J Sci Comput (2017) 71:994–1034 995

Mathematics Subject Classification 65M60 · 76M10

1 Introduction

The nonlinear shallow water equations (NSWEs) over a variable bottom are widely adopted
to model free-surface flows in rivers and coastal regions. This system is a hyperbolic con-
servation law with an additional source term due to the bottom topography, and thus is also
called a balance law. In the one-dimensional (1D) case, it takes the form

{
ht + (hu)x = 0,
(hu)t + (

hu2 + 1
2 gh

2
)
x = −ghbx ,

(1)

where h is the total water depth, u is the vertically averaged horizontal velocity in the x-
direction, g is the gravitational constant, and b is the bottom topography. The subscripts t
and x denote the partial derivatives with respect to time t and the coordinate x , respectively.
In the two-dimensional (2D) case, it reads

⎧⎪⎪⎨
⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t + (
hu2 + 1

2 gh
2
)
x + (huv)y = −ghbx ,

(hv)t + (huv)x + (
hv2 + 1

2 gh
2
)
y = −ghby,

(2)

where (u, v)� denotes the vertically averaged horizontal velocity vector in the x- and y-
directions, and the subscript y represents the partial derivative with respect to the coordinate
y.

These equations admit still-water stationary solutions forwhich the non-zerofluxgradients
are exactly balanced by the source terms. The still-water stationary solution to system (1)
reads

h + b = constant, hu = 0, (3)

and that to system (2) is given by

h + b = constant, hu = 0, hv = 0. (4)

However, standard numerical methods usually fail to preserve such solutions, and thus much
effort has been devoted to developing so-called well-balanced schemes for this purpose. In
the past few decades, a number of well-balanced schemes have been proposed. LeVeque [20]
developed a quasi-steady wave-propagation algorithm by introducing a Riemann problem in
the center of each grid cell whose flux difference exactly cancels the source term. Xing and
Shu [34–36] proposed well-balanced schemes based on WENO and discontinuous Galerkin
(DG) methods. Other well-balanced finite-difference and finite-volume methods for NSWEs
include [1,15,17,18,21,30,33,37,39,41] to name a few.

Another major difficulty in the simulation of shallow water waves has to do with the
appearance of dry areas where no water is present. Many applications involve rapidly moving
interfaces between wet and dry areas, such as wave run-up on beaches or man-made struc-
tures, dam break and flood. If no special care is taken, spurious oscillations may arise and the
numerical solution may produce unphysical phenomena such as negative water depth, possi-
bly leading to computation breakdown. Recently, a number of positivity-preserving schemes
forNSWEs have been developed tomaintain the non-negativity of thewater depth, such as the
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mesh adaptation technique [3], the slopemodification technique [11], the thin layer technique
[4] and the positivity-preserving limiter [38]. For related work, see also [2,5–7,12,16,19,26].

In this paper, we first apply high-order central discontinuous Galerkin (CDG) methods
to NSWEs, then we present a high-order well-balanced scheme and a high-order positivity-
preserving scheme based on CDG methods for NSWEs. The main ingredient to achieve the
well-balanced property is to modify the source term through a special decomposition similar
to that proposed in [36]. The resulting discretization has the features of being high-order
accurate for general solutions while exactly preserving the still-water stationary solution. To
ensure the positivity-preserving property, limiters are used by following the developments of
Xing et al. [38] and Cheng et al. [8]. Xing et al. [38] introduced a simple positivity-preserving
limiter in the context of DGmethods for NSWEs, while Cheng et al. [8] considered positivity-
preserving DG and CDG methods for ideal MHD equations. Such limiters allow for the
local conservation of physical variables while maintaining high-order accuracy. Finally, to
achieve the positivity-preserving and well-balanced properties simultaneously in our numer-
ical schemes, we use special approximations to the bottom topography in the well-balanced
scheme and apply the positivity-preserving limiter to the water depth.

The underlying CDG methods are a family of high-order numerical schemes defined
on overlapping meshes, which were originally introduced for hyperbolic conservation laws
[27,28]. Being a variant of DG methods, CDG methods evolve two copies of numerical
solution without using any numerical flux at element interfaces as in Godunov schemes,
and they provide new opportunities for designing accurate and stable schemes, such as for
Hamilton–Jacobi equations which are not in divergence form [22], ideal MHD equations
which involve a divergence-freemagnetic field [23,24], and fully nonlinearweakly dispersive
Green–Naghdi models which are not hyperbolic [25]. These methods prove again in the
present work that they are a good candidate to solve the NSWEs. It is clear that CDG
methods entail more storage space than DGmethods. On the other hand, quantitative Fourier
analysis and numerical tests in [28] show that CDG methods could be more accurate in
some cases. The study in [31] further implies that the time step allowed for linear stability
of CDG methods is typically larger than that of DG methods when the order of accuracy
is higher than one. It is also worthwhile to mention some recent effort in [10] to renovate
original CDG methods in order to reduce the computational cost. Note that Li et al. [25]
only discussed well-balanced CDG methods for Green–Naghdi models of 1D water waves,
without examining the positivity-preserving property and higher dimensions. The latter two
aspects along with the well-balanced property are investigated here in the context of NSWEs,
and a number of discriminating tests are carried out to assess the performance of the proposed
methods in this regard.

The remainder of the paper is organized as follows. In Sect. 2, we first introduce the
standard CDG methods to solve NSWEs. We then present the well-balanced CDG methods,
positivity-preserving CDG methods and the combined positivity-preserving well-balanced
CDGmethods. Although there are similarities between the 1D and 2D cases, we find it more
convenient to first describe the 1D schemes because technical calculations such as the proofs
of the well-balanced and positivity-preserving properties can be more clearly detailed in this
case. Along the way, we also contrast the proposed numerical methods with standard CDG
strategies to highlight their differences. These results are then generalized to the 2D problem.
Section 3 shows a wide range of numerical tests to illustrate the accuracy and reliability of
our methods. Both 1D and 2D tests are discussed. Finally, concluding remarks are given in
Sect. 4.
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2 Numerical Schemes

2.1 One-Dimensional Case

In this section, we develop the numerical methods for the solution of 1D NSWEs. For ease
of presentation, we rewrite (1) as

Ut + F(U)x = S(U; b), (5)

where U = (h, hu)�,

F(U) =
(
hu, hu2 + 1

2
gh2

)�

is the flux, and

S(U; b) =
(
0,−ghbx

)�

is the source term.
Let {x j } j be a partition of the computational domain Ω = [xmin, xmax]. With x j+ 1

2
=

1
2 (x j + x j+1), I j = (x j− 1

2
, x j+ 1

2
) and I j+ 1

2
= (x j , x j+1), we define two discrete function

spaces associated with the overlapping meshes, the primal mesh {I j } j and the dual mesh
{I j+ 1

2
} j , to approximate U,

VC
h = VC,k

h =
{
v : v|I j ∈

[
Pk (I j )

]2
,∀ j

}
,

VD
h = VD,k

h =
{
v : v|I

j+ 1
2

∈
[
Pk
(
I j+ 1

2

)]2
,∀ j

}
,

where Pk(I ) denotes the space of polynomials in I with degree of at most k, and [Pk(I )]2 =
{v = (v1, v2)

� : vi ∈ Pk(I ), i = 1, 2} is its vector version. The mesh is assumed to be
uniform, with Δx as the mesh size.

For simplicity, we present the numerical schemes in the case of the forward Euler method
as time discretization. Higher-order time discretizations will be discussed afterwards. The
proposedmethods evolve two copies of numerical solution, which are assumed to be available
at t = tn , denoted by Un,�

h = (hn,�
h , (hu)

n,�
h )� ∈ V�

h , and we want to find the solutions at
t = tn+1 = tn + Δtn . Hereinafter, the symbol � denotes the copy C or D. For convenience,
we only present the procedure to update Un+1,C

h as the one for Un+1,D
h is similar. Regarding

the bottom topography function b, we project it into Pk(I j ) on I j (resp. Pk(I j+ 1
2
) on I j+ 1

2
)

in the L2 sense, and obtain an approximation bCh (resp. bDh ) throughout the domain Ω . A
different strategy is used in Sect. 2.1.4 to approximate b.

2.1.1 Standard CDG Methods

To get Un+1,C
h = (hn+1,C

h , (hu)
n+1,C
h )�, we apply to (5) the CDG methods of Liu et al. [27]

for space discretization and the forward Euler method for time discretization. That is, we
look for Un+1,C

h ∈ VC,k
h such that for any V ∈ VC,k

h |I j with any j ,
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∫
I j
Un+1,C
h · Vdx =

∫
I j

(
θnU

n,D
h + (1 − θn)U

n,C
h

)
· Vdx

+Δtn

∫
I j
F
(
Un,D
h

)
· Vxdx

−Δtn

[
F
(
Un,D
h

(
x j+ 1

2

))
· V

(
x−
j+ 1

2

)

− F
(
Un,D
h

(
x j− 1

2

))
· V

(
x+
j− 1

2

)]

+Δtn

∫
I j
S
(
Un,D
h ; bDh

)
· Vdx . (6)

Here θn = Δtn/τn ∈ [0, 1] with τn being the maximal time step allowed by the CFL
restriction at tn [27], and w(x±) = limε→0+ w(x ± ε) for any scalar or vector function w. In
general, the numerical scheme (6) does not maintain the still-water stationary solution and
may produce solutions with spurious oscillations when they are in or close to a stationary
state, such as small perturbations of the still-water surface.

2.1.2 Well-Balanced CDG Methods

To achieve the well-balanced property, we add terms to the right-hand side of (6) in the
following way∫

I j
Un+1,C
h · Vdx =

∫
I j

(
θnU

n,D
h + (1 − θn)U

n,C
h

)
· Vdx + Ũ

(
bCh , bDh ,V

)

+Δtn

∫
I j
F
(
Un,D
h

)
· Vxdx

−Δtn

[
F
(
Un,D
h

(
x j+ 1

2

))
· V

(
x−
j+ 1

2

)

− F
(
Un,D
h

(
x j− 1

2

))
· V

(
x+
j− 1

2

)]

+Δtn

[∫
I j
S
(
Un,D
h ; bDh

)
· Vdx + S̃

(
Un,D
h ; bDh

)
· V (x j )

]
, (7)

where the newly added terms are given by

Ũ
(
bCh , bDh ,V

)
= θn

∫
I j

(
bDh − bCh , 0

)� · Vdx, (8)

S̃
(
Un,D
h ; bDh

)
=
(
0,

g

2

((
bDh

(
x+
j

))2 −
(
bDh

(
x−
j

))2)

− γ
n,D
j g

(
bDh

(
x+
j

)
− bDh

(
x−
j

)))�
, (9)

and

γ
n,D
j = 1

2

(
hn,D
h

(
x j+ 1

2

)
+ bDh

(
x j+ 1

2

)
+ hn,D

h

(
x j− 1

2

)
+ bDh

(
x j− 1

2

))
.

To construct a well-balanced scheme, the crucial property of γ
n,D
j is that in the case of the

still-water stationary solution, γ
n,D
j should be a constant with respect to both j and n. In
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particular, it should be equal to the constant water surface in (3). Alternatively, we can take

γ
n,D
j = 1

|I j |
∫
I j

(
hn,D
h + bDh

)
dx .

Note that the modification by adding the terms Ũ and S̃ is of order O(Δxk+1) when the
bottom topography function b is sufficiently smooth, and hence it will not affect the (formal)
spatial accuracy of standard CDG schemes in (6).

Inclusion of the term S̃ is motivated by the following decomposition

S
(
Un,D
h ; bDh

)
=
(
0,

g

2

(
bDh

)2 − γ
n,D
j gbDh

)�

x

−
(
0, g

(
hn,D
h + bDh − γ

n,D
j

) (
bDh

)
x

)�
. (10)

With this, the terms related to the source in (7) become∫
I j
S
(
Un,D
h ; bDh

)
· Vdx + S̃

(
Un,D
h ; bDh

)
· V (x j )

=
(
0,

g

2

(
bDh

(
x j+ 1

2

))2 − γ
n,D
j gbDh

(
x j+ 1

2

))�
· V

(
x−
j+ 1

2

)

−
(
0,

g

2

(
bDh

(
x j− 1

2

))2 − γ
n,D
j gbDh

(
x j− 1

2

))�
· V

(
x+
j− 1

2

)

−
∫
I j

(
0,

g

2

(
bDh

)2 − γ
n,D
j gbDh

)�
· Vxdx

−
∫
I j

(
0, g

(
hn,D
h + bDh − γ

n,D
j

) (
bDh

)
x

)� · Vdx, (11)

which is obtained by applying integration by parts to the term containing
(
0,

g

2

(
bDh

)2 − γ
n,D
j gbDh

)�

x
,

in (10). Given that bDh is discontinuous at x j , integration by parts is indeed applied to two
half-elements, [x j− 1

2
, x j ] and [x j , x j+ 1

2
] separately. The newly added term S̃ contributes to

the cancellation of some terms. Equation (11) is used to update Un+1,C
h in (7). We have the

following theorem on the well-balanced property of the proposed scheme.

Theorem 1 The numerical scheme defined in (7), and its counterpart forUn+1,D
h , to solve the

1D NSWEs is well-balanced in the sense that it preserves the still-water stationary solution
(3).

Proof We start with the still-water solution h + b = C0, hu = 0 at t = 0, where C0 is a
constant. In the initialization step, it is easy to ensure

Un,C
h +

(
bCh , 0

)� = Un,D
h +

(
bDh , 0

)� = (C0, 0)
�, (12)

for n = 0. By induction, assuming condition (12) is true for n ≥ 0, we want to establish that
the numerical solution computed from (7) and its counterpart for Un+1,D

h satisfy

Un+1,C
h +

(
bCh , 0

)� = Un+1,D
h +

(
bDh , 0

)� = (C0, 0)
�.
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By virtue of (12), the first two terms on the right-hand side of (7) become∫
I j

(
θnU

n,D
h + (1 − θn)U

n,C
h

)
· Vdx + Ũ

(
bCh , bDh ,V

)

=
∫
I j

(
C0 − bCh , 0

)� · Vdx, (13)

and the flux term is

F
(
Un,D
h

)
=
(
0,

g

2

(
C0 − bDh

)2)� =
(
0,

g

2
C2
0 + g

2

(
bDh

)2 − gC0b
D
h

)�
. (14)

With this, all the terms in (7) related to the flux take the form∫
I j
F
(
Un,D
h

)
· Vxdx

−F
(
Un,D
h

(
x j+ 1

2

))
· V

(
x−
j+ 1

2

)
+ F

(
Un,D
h

(
x j− 1

2

))
· V

(
x+
j− 1

2

)

=
∫
I j

(
0,

g

2

(
bDh

)2 − gC0b
D
h

)�
· Vxdx

−
(
0,

g

2

(
bDh

(
x j+ 1

2

))2 − gC0b
D
h

(
x j+ 1

2

))�
· V

(
x−
j+ 1

2

)

+
(
0,

g

2

(
bDh

(
x j− 1

2

))2 − gC0b
D
h

(
x j− 1

2

))�
· V

(
x+
j− 1

2

)
. (15)

Now we can combine (7), (11), (13), (15) and use the fact that γ n,D
j = C0 (∀ j, n) to get

∫
I j
Un+1,C
h · Vdx =

∫
I j

(
C0 − bCh , 0

)� · Vdx . (16)

By further taking V = Un+1,C
h − (

C0 − bCh , 0
)� ∈ VC,k

h , we obtain Un+1,C
h =(

C0 − bCh , 0
)�

. Similarly, we can establish Un+1,D
h = (

C0 − bDh , 0
)�

. This completes the
proof. ��

2.1.3 Positivity-Preserving CDG Methods

In this section, we propose a positivity-preserving CDG method for the 1D NSWEs, with
which the cell averages of the computed water depth are non-negative at any discrete time
t = tn .

Recall that for the exact solution U = (h, hu)�, when h is zero at some (x, t), hu
will vanish simultaneously. This however may not hold for numerical solutions. To pre-
pare for our positivity-preserving strategy at t = tn , we pre-process the numerical solutions
Un,C
h = (hn,C

h , (hu)
n,C
h )� and Un,D

h = (hn,D
h , (hu)

n,D
h )�, and modify them into Ũn,C

h =
(hn,C

h , ˜(hu)
n,C
h )� and Ũn,D

h = (hn,D
h , ˜(hu)

n,D
h )�, where ˜(hu)

n,C
h satisfies

min
˜(hu)

n,C
h |I j ∈Pk(I j)

‖˜(hu)
n,C
h − (hu)

n,C
h ‖L2(I j),

subject to ˜(hu)
n,C
h

(
x j
) = 0, (17)
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if hn,C
h (x j ) = 0, and ˜(hu)

n,C
h |I j = (hu)

n,C
h |I j if hn,C

h (x j ) 
= 0,∀ j , while ˜(hu)
n,D
h satisfies

min
˜(hu)

n,D
h |I

j− 1
2

∈Pk

(
I
j− 1

2

) ‖˜(hu)
n,D
h − (hu)

n,D
h ‖

L2

(
I
j− 1

2

),

subject to ˜(hu)
n,D
h

(
x j− 1

2

)
= 0, (18)

if hn,D
h (x j− 1

2
) = 0, and ˜(hu)

n,D
h |I

j− 1
2

= (hu)
n,D
h |I

j− 1
2
if hn,D

h (x j− 1
2
) 
= 0,∀ j .

The proof of the upcoming Theorem 2 requires that h and hu be consistent at point x j on
the primal mesh (resp. x j− 1

2
on the dual mesh), namely if h = 0, then hu = 0. Therefore,

in Eq. (17) (resp. Eq. (18)), we only need to check point x j for the solution on the primal
mesh (resp. x j− 1

2
for the solution on the dual mesh). The consistency of h and hu at other

quadrature points affects neither the proof nor the positivity-preserving property.
After the pre-processing step at t = tn , the solutions at the next time t = tn+1 are updated

as follows using CDG methods,∫
I j
Un+1,C
h · Vdx =

∫
I j

(
θnŨ

n,D
h + (1 − θn) Ũ

n,C
h

)
· Vdx

+Δtn

∫
I j
F
(
Ũn,D
h

)
· Vxdx

−Δtn

[
F
(
Ũn,D
h

(
x j+ 1

2

))
· V

(
x−
j+ 1

2

)

− F
(
Ũn,D
h

(
x j− 1

2

))
· V

(
x+
j− 1

2

)]

+Δtn

∫
I j
S
(
Ũn,D
h ; bDh

)
· Vdx . (19)

Again we only present the numerical scheme with the forward Euler method for temporal
integration, with higher-order time discretizations to be discussed later (see Sect. 2.3).

Next, we consider the equation satisfied by the cell average of the CDG solution hCh , and
take V = ( 1

Δx , 0)� in (19),

h̄n+1,C
j = (1 − θn) h̄

n,C
j + θn

Δx

∫
I j
hn,D
h dx

−Δtn
Δx

[
˜(hu)

n,D
h

(
x j+ 1

2

)
− ˜(hu)

n,D
h

(
x j− 1

2

)]
. (20)

Here h̄n,C
j is the cell average of hCh over I j at time tn .

In order to provide a sufficient condition that ensures h̄n+1,C
j ≥ 0,∀ j , let L̂1,x

j =
{̂x1,βj , β = 1, 2, . . . , N̂ } and L̂2,x

j = {̂x2,βj , β = 1, 2, . . . , N̂ } be the Legendre Gauss–
Lobatto quadrature points on [x j− 1

2
, x j ] and [x j , x j+ 1

2
] respectively. The corresponding

quadrature rule is exact for the integration of polynomials of degree up to 2N̂ − 3. We
choose N̂ such that 2N̂ −3 ≥ k. Let {ω̂β, β = 1, 2, . . . , N̂ } be the corresponding quadrature
weights for the reference interval [− 1

2 ,
1
2 ]. Note that

∑N̂
β=1 ω̂β = 1 with ω̂1 = ω̂N̂ , and

x j− 1
2

= x̂1,1j = x̂2,N̂j−1, x j = x̂1,N̂j = x̂2,1j , ∀ j .
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For any given j , we define

un,D
h

(
x j− 1

2

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˜(hu)
n,D
h

(
x
j− 1

2

)

hn,D
h

(
x
j− 1

2

) if hn,D
h

(
x j− 1

2

)
> 0,

0 if hn,D
h

(
x j− 1

2

)
= 0.

(21)

Theorem 2 For any given n ≥ 0, we assume h̄n,C
j ≥ 0 and h̄n,D

j ≥ 0,∀ j . Consider the

numerical scheme in (20) and its counterpart for h̄n+1,D
j , if hCh (x, tn) ≥ 0, hD

h (x, tn) ≥
0,∀x ∈ L̂l,x

j ,∀ j and l = {1, 2}, then h̄n+1,C
j ≥ 0 and h̄n+1,D

j− 1
2

≥ 0,∀ j , under the CFL

condition

λxax ≤ 1

2
θnω̂1, (22)

where λx = Δtn/Δx and ax = max(‖un,C
h ‖∞, ‖un,D

h ‖∞).

Proof Using the Legendre Gauss–Lobatto quadrature rule, one has

1

Δx

∫
I j
hn,D
h dx = 1

2

⎛
⎝ N̂∑

β=1

ω̂βh
n,D
1,β +

N̂∑
β=1

ω̂βh
n,D
2,β

⎞
⎠ , (23)

where hn,D
l,β = hn,D

h (̂xl,βj ). Now, substituting (23) into (20) yields

h̄n+1,C
j = (1 − θn) h̄

n,C
j + θn

2

⎛
⎝ N̂∑

β=1

ω̂βh
n,D
1,β +

N̂∑
β=1

ω̂βh
n,D
2,β

⎞
⎠

−λx

[
˜(hu)

n,D
h

(
x j+ 1

2

)
− ˜(hu)

n,D
h

(
x j− 1

2

)]
,

= (1 − θn) h̄
n,C
j + θn

2

⎛
⎝ N̂∑

β=2

ω̂βh
n,D
1,β +

N̂−1∑
β=1

ω̂βh
n,D
2,β

⎞
⎠+ H j , (24)

with

H j =
(
1

2
θnω̂1h

n,D
j− 1

2
+ λx˜(hu)

n,D
j− 1

2

)
+
(
1

2
θnω̂N̂ h

n,D
j+ 1

2
− λx˜(hu)

n,D
j+ 1

2

)
,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hn,D
j− 1

2

(
1
2θnω̂1 + λxu

n,D
j− 1

2

)
+ hn,D

j+ 1
2

(
1
2θnω̂1 − λxu

n,D
j+ 1

2

)
if hn,D

j± 1
2

> 0,

hn,D
j+ 1

2

(
1
2θnω̂1 − λxu

n,D
j+ 1

2

)
if hn,D

j− 1
2

= 0, hn,D
j+ 1

2
> 0,

hn,D
j− 1

2

(
1
2θnω̂1 + λxu

n,D
j− 1

2

)
if hn,D

j− 1
2

> 0, hn,D
j+ 1

2
= 0,

0 if hn,D
j± 1

2
= 0.

Here we have used ω̂1 = ω̂N̂ , h
n,D
1,1 = hn,D

j− 1
2
, hn,D

2,N̂
= hn,D

j+ 1
2
and ˜(hu)

n,D
j± 1

2
= ˜(hu)

n,D
h (x j± 1

2
).
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A fewobservations canbemade. Firstly, theCFLcondition (22) impliesH j ≥ 0. Secondly,
h̄n+1,C
j is a linear combination of h̄n,C

j , hn,D
1,β (β = 2, 3, . . . , N̂ ), hn,D

2,β (β = 1, 2, . . . , N̂ −1)
andH j , which are all non-negative and the corresponding coefficients are also non-negative,
therefore h̄n+1,C

j ≥ 0, ∀ j . Similarly, one can show h̄n+1,D
j− 1

2
≥ 0,∀ j . ��

Next, under the assumption h̄n,C
j ≥ 0 and h̄n,D

j ≥ 0,∀ j , we will give a positivity-

preserving limiter which modifies the CDG solution polynomials hCh and hD
h at time tn into

h̃Ch and h̃D
h such that they satisfy the sufficient condition in Theorem 2, while maintaining

accuracy and local conservation. In fact, this limiter is almost the same as the one in [8,38]
as long as it is applied to hCh and hD

h separately.
Let K denote an element from the primal mesh or the dual mesh. Let L̂ K represent the

set of relevant quadrature points in K , namely L̂ K = L̂1,x
j ∪ L̂2,x

j when K = I j , and

L̂ K = L̂2,x
j−1 ∪ L̂1,x

j if K = I j− 1
2
. Following [8,38], the positivity-preserving limiter is

given as follows: on each mesh element K , we modify the water depth hn,�
h into h̃n,�

h =
αK (hn,�

h − h̄n,�
h ) + h̄n,�

h with

αK = min
x∈L̂ K

{
1,

∣∣∣∣∣
h̄n,�
h

h̄n,�
h − hn,�

h (x)

∣∣∣∣∣
}

.

It can be seen that the total number of quadrature points involved in the positivity-preserving
limiter for CDG methods is twice (or 2d with d being the spatial dimension) that of standard
DG methods.

Remark 1 In actual implementation, at time t = tn , the positivity-preserving limiter is first
applied to obtain h̃n,�

h and then, using this newly limited water height, we further pre-process

the momentum and get ˜(hu)
n,�

h as described at the beginning of this subsection.

2.1.4 Positivity-Preserving Well-Balanced CDG Methods

In this section, we will propose a CDGmethod which is simultaneously positivity-preserving
and well-balanced for the 1D NSWEs. This is achieved by proposing a positivity-preserving
limiter for the well-balanced CDG method in (7) such that the cell averages of the computed
water depth on each mesh are non-negative at any discrete time tn .

To this end, we consider the equation satisfied by the cell average of the well-balanced

CDG solution hCh , and by taking V = ( 1
Δx , 0)� in (7) and replacing (hu)

n,D
h with ˜(hu)

n,D
h

as defined in Sect. 2.1.3, we obtain

h̄n+1,C
j = (1 − θn) h̄

n,C
j + θn

Δx

∫
I j
hn,D
h dx

−λx

[
˜(hu)

n,D
h

(
x j+ 1

2

)
− ˜(hu)

n,D
h

(
x j− 1

2

)]

+θn

(
1

Δx

∫
I j
bDh dx − b̄Cj

)
. (25)
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Theorem 3 For any given n ≥ 0, we assume h̄n,C
j ≥ 0 and h̄n,D

j ≥ 0,∀ j . Consider the

numerical scheme in (25) and its counterpart for h̄n+1,D
j , if

b̄Cj = 1

Δx

∫
I j
bDh dx, b̄D

j+ 1
2

= 1

Δx

∫
I
j+ 1

2

bCh dx, ∀ j, (26)

and hCh (x, tn) ≥ 0, hD
h (x, tn) ≥ 0,∀x ∈ L̂l,x

j ,∀ j with l = {1, 2}, then h̄n+1,C
j ≥ 0 and

h̄n+1,D
j− 1

2
≥ 0,∀ j , under the CFL condition (22).

Proof Using the relations in (26), Eq. (25) becomes

h̄n+1,C
j = (1 − θn) h̄

n,C
j + θn

Δx

∫
I j
hn,D
h dx

−λx

[
˜(hu)

n,D
h

(
x j+ 1

2

)
− ˜(hu)

n,D
h

(
x j− 1

2

)]
, (27)

which is identical to (20), thus we get h̄n+1,C
j ≥ 0 and h̄n+1,D

j− 1
2

≥ 0,∀ j following the proof

of Theorem 2. ��
To enforce the sufficient condition in Theorem 3, we first obtain new approximations to

the bottom topography b(x), still denoted as bCh and bDh , by solving the following constrained
minimization problem

min
bCh ∈VC

h , bDh ∈V D
h

‖bCh − b‖L2 + ‖bDh − b‖L2 ,

subject to b̄Cj = 1
Δx

∫
I j
bDh dx, b̄D

j+ 1
2

= 1
Δx

∫
I
j+ 1

2

bCh dx, (28)

where VC
h = {v : v|I j ∈ Pk(I j ),∀ j} and V D

h = {v : v|I
j+ 1

2
∈ Pk(I j+ 1

2
),∀ j}. We then

employ a positivity-preserving limiter which is the same as the one described in Sect. 2.1.3.
The constrained minimization problem (28) is solved using the Lagrange multiplier method.
Even though there is no rigorous proof, our numerical tests (see Sect. 3.1.1) suggest that
both bCh and bDh are still high-order approximations to b(x) when it is smooth. If we need to
maintain the well-balanced and positivity-preserving properties simultaneously, we compute
(h+b)Ch and (h+b)Dh by standard L2 projection at the initial time, and set hCh = (h+b)Ch −bCh
and hD

h = (h+b)Dh −bDh . With this, (12) is satisfied. Meanwhile, the bottom approximations
bCh and bDh are computed as in (28).

2.2 Two-Dimensional Case

We now extend the CDG methods proposed in Sect. 2.1 to the 2D NSWEs. The governing
equations (2) can be written compactly as

Ut + F(U)x + G(U)y = S(U; b), (29)

where U = (h, hu, hv)�,

F(U) =
(
hu, hu2 + 1

2
gh2, huv

)�
, G(U) =

(
hv, huv, hv2 + 1

2
gh2

)�

are the fluxes, and

S(U; b) =
(
0,−ghbx ,−ghby

)�

is the source term.
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Let T C
h = {Ci j ,∀i, j} and T D

h = {Di j ,∀i, j} define two overlappingmeshes for the com-
putational domainΩ = [xmin, xmax]×[ymin, ymax], withCi j = [xi− 1

2
, xi+ 1

2
]×[y j− 1

2
, y j+ 1

2
],

Di j = [xi−1, xi ] × [y j−1, y j ], xi+ 1
2

= 1
2 (xi + xi+1) and y j+ 1

2
= 1

2 (y j + y j+1), where {xi }i
and {y j } j are partitions of [xmin, xmax] and [ymin, ymax] respectively. Associated with each
mesh, we define the following discrete spaces

WC
h = WC,k

h =
{
v : v|Ci j ∈

[
Pk (Ci j

)]3
,∀i, j

}
,

WD
h = WD,k

h =
{
v : v|Di j ∈

[
Pk (Di j

)]3
,∀i, j

}
.

As in the 1D discussion, we only present the numerical schemes with the forward Euler
method for time discretization. Higher-order time discretizations will be discussed in
Sect. 2.3. The proposedmethods evolve two copies of numerical solution, which are assumed
to be available at t = tn , denoted by Un,�

h = (hn,�
h , (hu)

n,�
h , (hv)

n,�
h )� ∈ W�

h , and we want

to find the solutions at t = tn+1 = tn + Δtn . Only the procedure to update Un+1,C
h will be

described. Except in Sect. 2.2.4, we project the bottom topography function b into Pk(Ci j )

on Ci j (resp. Pk(Di j ) on Di j ) in the L2 sense, and obtain an approximation bCh (resp. bDh )
throughout the computational domain.

2.2.1 Standard CDG Methods

Here again, to highlight the proposed improvements, we first apply to (29) the standard CDG
methods of Liu et al. [27] for space discretization and the forward Euler method for time
discretization. That is, we look for Un+1,C

h = (hn+1,C
h , (hu)

n+1,C
h , (hv)

n+1,C
h )� ∈ WC,k

h

such that for any V ∈ WC,k
h |Ci j with any i and j ,

∫
Ci j

Un+1,C
h · Vdxdy =

∫
Ci j

(
θnU

n,D
h + (1 − θn)U

n,C
h

)
· Vdxdy

+Δtn

∫
Ci j

[
F
(
Un,D
h

)
· Vx + G

(
Un,D
h

)
· Vy

]
dxdy

−Δtn

∫ y
j+ 1

2

y
j− 1

2

[
F
(
Un,D
h

(
xi+ 1

2
, y
))

· V
(
x−
i+ 1

2
, y

)

− F
(
Un,D
h

(
xi− 1

2
, y
))

· V
(
x+
i− 1

2
, y

)]
dy

−Δtn

∫ x
i+ 1

2

x
i− 1

2

[
G
(
Un,D
h

(
x, y j+ 1

2

))
· V

(
x, y−

j+ 1
2

)

− G
(
Un,D
h

(
x, y j− 1

2

))
· V

(
x, y+

j− 1
2

)]
dx

+Δtn

∫
Ci j

S
(
Un,D
h ; bDh

)
· Vdxdy. (30)

This numerical scheme does not usually maintain the still-water stationary solution (4).
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2.2.2 Well-Balanced CDG Methods

As in (7), the well-balanced property is accounted for by adding terms to scheme (30),∫
Ci j

Un+1,C
h · Vdxdy = right-hand side of (30) + Ũ

(
bCh , bDh ,V

)

+Δtn

∫ y
j+ 1

2

y
j− 1

2

[̃
S1
(
Un,D
h ; bDh

(
x+
i , y

))− S̃1
(
Un,D
h ; bDh

(
x−
i , y

))] · V (xi , y) dy

+Δtn

∫ x
i+ 1

2

x
i− 1

2

[̃
S2
(
Un,D
h ; bDh

(
x, y+

j

))
−S̃2

(
Un,D
h ; bDh

(
x, y−

j

))]
· V (x, y j ) dx,

(31)

where the correction terms are given by

Ũ
(
bCh , bDh ,V

)
= θn

∫
Ci j

(
bDh − bDh , 0, 0

)� · Vdxdy, (32)

S̃1
(
Un,D
h ; bDh

)
=
(
0,

g

2

(
bDh

)2 − gγ n,D
i j bDh , 0

)�
, (33)

S̃2
(
Un,D
h ; bDh

)
=
(
0, 0,

g

2

(
bDh

)2 − gγ n,D
i j bDh

)�
, (34)

and γ
n,D
i j is a special constant which represents the average value of the water surface η

n,D
h =

hn,D
h + bDh over the element Ci j . More specifically, we take

γ
n,D
i j = 1

4

[
η
n,D
h

(
xi+ 1

2
, y j+ 1

2

)
+ η

n,D
h

(
xi− 1

2
, y j+ 1

2

)

+ η
n,D
h

(
xi+ 1

2
, y j− 1

2

)
+ η

n,D
h

(
xi− 1

2
, y j− 1

2

)]
.

With the following decomposition of the source term

S
(
Un,D
h ; bDh

)
=
(
0,−g

(
η
n,D
h − bDh

) (
bDh

)
x
,−g

(
η
n,D
h − bDh

) (
bDh

)
y

)�

=
(
0,

g

2

(
bDh

)2 − gγ n,D
i j bDh , 0

)�

x
+
(
0, 0,

g

2

(
bDh

)2 − gγ n,D
i j bDh

)�

y

−
(
0, g

(
η
n,D
h − γ

n,D
i j

) (
bDh

)
x
, g
(
η
n,D
h − γ

n,D
i j

) (
bDh

)
y

)�
, (35)

scheme (32) is rewritten as∫
Ci j

Un+1,C
h · Vdxdy

=
∫
Ci j

(
θnU

n,D
h + (1 − θn)U

n,C
h

)
· Vdxdy + Ũ

(
bCh , bDh ,V

)

+Δtn

∫
Ci j

[
F
(
Un,D
h

)
· Vx + G

(
Un,D
h

)
· Vy

]
dxdy

−Δtn

∫ y
j+ 1

2

y
j− 1

2

[
F
(
Un,D
h

(
xi+ 1

2
, y
))

· V
(
x−
i+ 1

2
, y

)
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−F
(
Un,D
h

(
xi− 1

2
, y
))

· V
(
x+
i− 1

2
, y

)]
dy

−Δtn

∫ x
i+ 1

2

x
i− 1

2

[
G
(
Un,D
h

(
x, y j+ 1

2

))
· V

(
x, y−

j+ 1
2

)

−G
(
Un,D
h

(
x, y j− 1

2

))
· V

(
x, y+

j− 1
2

)]
dx

−Δtn

∫
Ci j

(
0, g

(
η
n,D
h − γ

n,D
i j

) (
bDh

)
x
, g
(
η
n,D
h − γ

n,D
i j

) (
bDh

)
y

)�
· Vdxdy

−Δtn

∫
Ci j

(
0,

g

2

(
bDh

)2 − gγ n,D
i j

)
bDh , 0

)�
· Vxdxdy

−Δtn

∫
Ci j

(
0, 0,

g

2

(
bDh

)2 − gγ n,D
i j

)
bDh

)�
· Vydxdy

+Δtn

∫ y
j+ 1

2

y
j− 1

2

(
0,

g

2

(
bDh

(
xi+ 1

2
, y
))2 − gγ n,D

i j

)
bDh

(
xi+ 1

2
, y
)

, 0

⎞
⎠

�
· V

(
x−
i+ 1

2
, y

)
dy

−Δtn

∫ y
j+ 1

2

y
j− 1

2

(
0,

g

2

(
bDh

(
xi− 1

2
, y
))2 − gγ n,D

i j

)
bDh

(
xi− 1

2
, y
)

, 0

⎞
⎠

�
· V

(
x+
i− 1

2
, y

)
dy

+Δtn

∫ x
i+ 1

2

x
i− 1

2

(
0, 0,

g

2

(
bDh

(
x, y j+ 1

2

))2 − gγ n,D
i j

)
bDh

(
x, y j+ 1

2

)⎞⎠
�

· V
(
x, y−

j+ 1
2

)
dx

−Δtn

∫ x
i+ 1

2

x
i− 1

2

(
0, 0,

g

2

(
bDh

(
x, y j− 1

2

))2 − gγ n,D
i j

)
bDh

(
x, y j− 1

2

)⎞⎠
�

· V(x, y+
j− 1

2
)dx .

(36)

Theorem 4 The numerical scheme defined in (36), and its counterpart for Un+1,D
h , to solve

the 2DNSWEs iswell-balanced in the sense that it preserves the still-water stationary solution
(4).

Proof The proof is a direct 2D generalization of that for Theorem 1 and thus is omitted here.
��

2.2.3 Positivity-Preserving CDG Methods

We now extend the positivity-preserving CDG methods introduced in Sect. 2.1.3 for the 1D
NSWEs to the 2D NSWEs.

Firstly, let L̂1,x
i = {̂x1,βi , β = 1, 2, . . . , N̂ } and L̂2,x

i = {̂x2,βi , β = 1, 2, . . . , N̂ } be the
Legendre Gauss–Lobatto quadrature points on [xi− 1

2
, xi ] and [xi , xi+ 1

2
] respectively, while

L̂1,y
j = {ŷ1,βj , β = 1, 2, . . . , N̂ } and L̂2,y

j = {ŷ2,βj , β = 1, 2, . . . , N̂ } represent the Legendre
Gauss–Lobatto quadrature points on [y j− 1

2
, y j ] and [y j , y j+ 1

2
] respectively, ∀i, j . The cor-

responding quadrature weights on the reference element [− 1
2 ,

1
2 ] are {ω̂β, β = 1, 2, . . . , N̂ },

and N̂ is chosen such that 2N̂ − 3 ≥ k. In addition, let L1,x
i = {x1,αi , α = 1, 2, . . . , N }

and L2,x
i = {x2,αi , α = 1, 2, . . . , N } denote the Gaussian quadrature points on [xi− 1

2
, xi ]
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and [xi , xi+ 1
2
] respectively, while L1,y

j = {y1,αj , α = 1, 2, . . . , N } and L2,y
j = {y2,αj , α =

1, 2, . . . , N } represent the Gaussian quadrature points on [y j− 1
2
, y j ] and [y j , y j+ 1

2
] respec-

tively. The corresponding quadrature weights {ωα, α = 1, 2, . . . , N } are distributed on the
interval [− 1

2 ,
1
2 ] and N is chosen such that the Gaussian quadrature is exact for the integration

of univariate polynomials of degree 2k+1. Then denote Ll,m
i, j = (Ll,x

i ⊗ L̂m,y
j )∪(L̂l,x

i ⊗Lm,y
j )

with l,m = {1, 2}.
Similar to the 1D case, we define ˜(hu)

n,C
h , ˜(hv)

n,C
h , ˜(hu)

n,D
h and ˜(hv)

n,D
h by

min
˜(hu)

n,C
h |Ci j ∈Pk (Ci j )

‖˜(hu)
n,C
h − (hu)

n,C
h ‖L2(Ci j )

,

subject to ˜(hu)
n,C
h (x, y) = 0,∀(x, y) ∈ QC , (37)

min
˜(hv)

n,C
h |Ci j ∈Pk (Ci j )

‖˜(hv)
n,C
h − (hv)

n,C
h ‖L2(Ci j )

,

subject to ˜(hv)
n,C
h (x, y) = 0,∀(x, y) ∈ QC , (38)

min
˜(hu)

n,D
h |Di j ∈Pk (Di j )

‖˜(hu)
n,D
h − (hu)

n,D
h ‖L2(Di j )

,

subject to ˜(hu)
n,D
h (x, y) = 0,∀(x, y) ∈ QD, (39)

min
˜(hv)

n,D
h |Di j ∈Pk (Di j )

‖˜(hv)
n,D
h − (hv)

n,D
h ‖L2(Di j )

,

subject to ˜(hv)
n,D
h (x, y) = 0,∀(x, y) ∈ QD, (40)

with QC = {(xi , y) : hn,C
h (xi , y) = 0, y ∈ L1,y

j ∪ L2,y
j } ∪ {(x, y j ) : hn,C

h (x, y j ) =
0, x ∈ L1,x

i ∪ L2,x
i } and QD = {(xi− 1

2
, y) : hn,C

h (xi− 1
2
, y) = 0, y ∈ L2,y

j−1 ∪ L1,y
j } ∪

{(x, y j− 1
2
) : hn,C

h (x, yi− 1
2
) = 0, x ∈ L2,x

i−1 ∪ L1,x
i } for any given i, j . If QC is an empty set,

then ˜(hu)
n,C
h = (hu)

n,C
h and ˜(hv)

n,C
h = (hv)

n,C
h . If QD is empty, then ˜(hu)

n,D
h = (hu)

n,D
h

and ˜(hv)
n,D
h = (hv)

n,D
h .

We modify the CDG scheme (30) by replacing Un,C
h and Un,D

h with Ũn,C
h =

(hn,C
h , ˜(hu)

n,C
h , ˜(hv)

n,C
h )� and Ũn,D

h = (hn,D
h , ˜(hu)

n,D
h , ˜(hv)

n,D
h )� respectively, and by tak-

ing the test function V = ( 1
ΔxΔy , 0, 0)

�. This leads to the equation satisfied by the cell

average of hCh ,

h̄n+1,C
i j = (1 − θn) h̄

n,C
i j + θn

ΔxΔy

∫
Ci j

hn,D
h dxdy

− Δtn
ΔxΔy

∫ y
j+ 1

2

y
j− 1

2

[
˜(hu)

n,D
h

(
xi+ 1

2
, y
)

− ˜(hu)
n,D
h

(
xi− 1

2
, y
)]

dy

− Δtn
ΔxΔy

∫ x
i+ 1

2

x
i− 1

2

[
˜(hv)

n,D
h

(
x, y j+ 1

2

)
− ˜(hv)

n,D
h

(
x, y j− 1

2

)]
dx, (41)

where h̄n,C
i j denotes the cell average of the CDG solution hCh over Ci j at time tn .

123



J Sci Comput (2017) 71:994–1034 1009

If the integrals along mesh interfaces in (41) are evaluated by applying the Gaussian
quadrature rule described above to each half of the interval (see also Section 3.2 in [8]), then
we have the following theorem.

Theorem 5 For any given n ≥ 0, we assume h̄n,C
i j ≥ 0 and h̄n,D

i j ≥ 0,∀i, j . Con-
sider the numerical scheme in (41) and its counterpart for h̄n+1,D

i j , if hCh (x, y, tn) ≥ 0

and hD
h (x, y, tn) ≥ 0,∀(x, y) ∈ Ll,m

i, j ,∀i, j with l,m = {1, 2}, then h̄n+1,C
i j ≥ 0 and

h̄n+1,D
i j ≥ 0,∀i, j , under the CFL condition

λxax + λyay ≤ 1

2
θnω̂1, (42)

where λx and ax are the same as in Theorem 2, while λy = Δtn/Δy and ay =
max(‖vn,C

h ‖∞, ‖vn,D
h ‖∞).

Proof The proof is a direct 2D generalization of that for Theorem 2 and thus is omitted here.
��

Next, we will give positivity-preserving limiters which modify the CDG solution poly-
nomials hCh and hD

h into h̃Ch and h̃D
h such that they satisfy the sufficient condition given in

Theorem 5. In fact, these limiters are the same as in Sect. 2.1.3 for the 1D case, as long
as the notations K and L̂ K are re-defined as follows: on the primal mesh, K denotes a
mesh element Ci j and L̂ K represents the set of relevant quadrature points in K , namely
L̂ K = ∪2

l,m=1L
l,m
i, j . On the dual mesh, K denotes a mesh element Di j and L̂ K represents the

set of relevant quadrature points in K , namely L̂ K = L1,1
i, j ∪ L1,2

i, j−1 ∪ L2,1
i−1, j ∪ L2,2

i−1, j−1. In
actual implementation, the comments of Remark 1 in Sect. 2.1.3 are incorporated.

2.2.4 Positivity-Preserving Well-Balanced CDG Methods

Finally, we extend the combined positivity-preserving and well-balanced CDG method pro-
posed in Sect. 2.1.4 to the 2DNSWEs.We start with the well-balanced CDG scheme satisfied
by the cell average of the numerical solution hCh , which is obtained by taking the test function

V = ( 1
ΔxΔy , 0, 0)

�, and by replacingUn,C
h andUn,D

h with Ũn,C
h = (hn,C

h , ˜(hu)
n,C
h , ˜(hv)

n,C
h )�

and Ũn,D
h = (hn,D

h , ˜(hu)
n,D
h , ˜(hv)

n,D
h )� in scheme (36),

h̄n+1,C
i j = (1 − θn) h̄

n,C
i j + θn

ΔxΔy

∫
Ci j

hn,D
h dxdy

− Δtn
ΔxΔy

∫ y
j+ 1

2

y
j− 1

2

[
˜(hu)

n,D
h

(
xi+ 1

2
, y
)

− ˜(hu)
n,D
h

(
xi− 1

2
, y
)]

dy

− Δtn
ΔxΔy

∫ x
i+ 1

2

x
i− 1

2

[
˜(hv)

n,D
h

(
x, y j+ 1

2

)
− ˜(hv)

n,D
h

(
x, y j− 1

2

)]
dx

+θn

(
1

ΔxΔy

∫
Ci j

bDh · dxdy − b̄Ci j

)
, (43)

where b̄Ci j (resp. b̄
D
i j ) denotes the cell average of the bottom topography bCh (resp. bDh ) over

the element Ci j (resp. Di j ).
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Theorem 6 For any given n ≥ 0, we assume h̄n,C
i j ≥ 0 and h̄n,D

i j ≥ 0, ∀i, j . Consider the
numerical scheme in (43) and its counterpart for h̄n+1,D

i j , if

b̄Ci j = 1

ΔxΔy

∫
Ci j

bDh dxdy, b̄Di j = 1

ΔxΔy

∫
Di j

bCh dxdy, ∀i, j, (44)

and hCh (x, y, tn) ≥ 0, hD
h (x, y, tn) ≥ 0,∀(x, y) ∈ Ll,m

i, j ,∀i, j with l,m = {1, 2}, then
h̄n+1,C
i j ≥ 0 and h̄n+1,D

i j ≥ 0, ∀i, j , under the CFL condition

λxax + λyay ≤ 1

2
θnω̂1. (45)

Proof The proof is a direct consequence of Theorem 5 and condition (44). ��
To enforce the sufficient condition in Theorem 6, we also need to modify the approxima-

tions to the bottom topography and use a positivity-preserving limiter as in Sect. 2.1.4.

2.3 High-Order Time Discretizations and Nonlinear Limiters

To achieve better accuracy in time, strong stability preserving (SSP) high-order time dis-
cretizations will be used in the numerical simulations [14]. Such discretizations can be
written as a convex combination of the forward Euler method, and therefore the resulting
SSP schemes are also well-balanced and positivity-preserving.

WhenCDGmethods are applied to nonlinear problems, nonlinear limiters are often needed
to prevent numerical instabilities. In this work, we observed that nonlinear limiters are needed
when the solution develops sharp gradients. If so, we use the total variation bounded (TVB)
minmod slope limiter with parameter M = 1 and it is implemented in local characteristic
fields [9]. This limiter is applied to (h + b, hu)� and (h + b, hu, hv)� in the 1D and 2D
methods, respectively. It is used prior to application of the positivity-preserving limiter.

3 Numerical Examples

In this section, numerical experiments are presented to demonstrate the performance of the
proposed methods for solving the 1D and 2D NSWEs. All simulations were performed with
both P1 and P2 approximations. We only show P2 results, except for the accuracy tests with
varying mesh sizes, and all reported results are from numerical solutions on the primal mesh
{I j } j in 1D and {Ci j }i, j in 2D. In all simulations, we used a uniform mesh with constant
mesh sizes Δx and Δy in the x- and y-directions respectively. All errors reported here are
absolute errors in the L2 or L∞ sense.

A third-order TVD Runge–Kutta algorithm is employed for time discretization [9], with
the time step being adaptively determined by

Δtn = Ccfl
ax
Δx

(1D case) or Δtn = Ccfl
ax
Δx + ay

Δy

(2D case),

where Ccfl denotes the CFL number. We chose Ccfl = 0.3 in 1D and Ccfl = 0.5 in 2D for
both P1 and P2 approximations when the standard or well-balanced CDG methods were
used, otherwise Ccfl = 1/12 when the positivity-preserving CDG methods or combined
positivity-preserving well-balanced CDG methods were applied. We also set θn = 1, and
non-dimensionalize the equations in such a way that the gravitational constant g is unity.
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When h and hu (or hv) are both small but u = hu/h (or v = hv/h) is very large, this may
lead to prohibitively small time steps. To overcome this difficulty, we always set u = 0 (or
v = 0) if 0 ≤ h < ε0 where ε0 is a small positive constant. In our implementation, we choose
ε0 = 10−12 for example 3.1.7 (flat bottom) and ε0 = (Δx)k+1 for examples 3.1.8, 3.1.9 and
3.2.4 (variable bottom). Otherwise, the choice ε0 = 10−12 would produce a large velocity u
and thus the time step would become very small in the case of a variable bottom.

In addition to accuracy tests, we present various applications where the well-balanced and
positivity-preserving properties are examined separately. The standard and well-balanced
CDG schemes are comparable in terms of computational cost. It is observed that the CPU
time required by thewell-balanced scheme is only 2%more than that for the standard scheme.
Using the same CFL number (Ccfl = 1/12), we compared the computational cost between
CDG schemes with and without positivity-preserving limiter, and found that the positivity-
preserving CDG scheme is about 9% more costly than the standard scheme.

It is also pointed out that, although the presence of overlapping meshes in the positivity-
preserving CDG method implies a CFL number Ccfl = 1/12 which is smaller than the one
required by DG and standard CDG methods, in practice one can adopt a dynamical strategy
by starting with the usual CFL number and, if the computed water depth h happens to be
negative, the simulation returns to the previous discrete time and uses a smaller CFL number
(Ccfl = 1/12) for a few steps, after that the usual CFL number is re-activated. In this way,
the computational cost can be significantly reduced.

3.1 Examples for 1D NSWEs

3.1.1 Accuracy Tests for Bottom Approximation

As the first example, we test the high-order accuracy of the bottom approximation obtained
from the constrained minimization problem (28) by varying the mesh size. We choose the
following smooth function

b(x) = sin2(x),

for the bottom profile. The computational domain is [0, 2π]. We present L2 errors and orders
of accuracy for bCh and bDh in Table 1. We can observe that the results are (k + 1)st-order
accurate for Pk with k = {1, 2}. We further consider a discontinuous bottom,

b(x) =
{
1.0, 0.5 ≤ x ≤ 1.5,
0, otherwise.

Figure 1 shows the approximate solution bCh of (28) for varying mesh size. Although high-
order accuracy is not guaranteed in this case, we can see that the approximation converges
to the exact discontinuous profile as the mesh is refined.

3.1.2 Accuracy Tests for Well-Balanced CDG Solution

In this example, we test the high-order accuracy of thewell-balancedCDGmethod by varying
the mesh size. We choose the following smooth functions

h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)) (46)

for the initial conditions, and

b(x) = sin2(πx) (47)
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Table 1 L2 errors and orders of
accuracy for bCh and bDh as
obtained from (28)

Mesh bCh bDh

L2 error Order L2 error Order

P1

50 1.85E−03 – 1.87E−03 –

100 4.65E−04 1.99 4.67E−04 2.00

200 1.16E−04 2.00 1.16E−04 2.01

400 2.90E−05 2.00 2.91E−05 2.00

800 7.26E−06 2.00 7.27E−06 2.00

P2

50 5.83E−05 – 5.77E−05 –

100 7.30E−06 3.00 7.26E−06 2.99

200 9.13E−07 3.00 9.11E−07 2.99

400 1.14E−07 3.00 1.14E−07 3.00

800 1.42E−08 3.00 1.42E−08 3.00

Fig. 1 Zoomed-in bottom
approximation bCh as given by
(28) for varying mesh size. Black
solid line exact profile. Triangles
20 cells; circles 40 cells; squares
80 cells; dots 160 cells

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

0

0.2

0.4

0.6

0.8

1

for the bottom profile [35]. The computational domain is [0, 1] with periodic boundary
conditions. The final time is t = 0.2 at which the solution is still smooth (indeed it tends to
steepen in time). Since an exact solution is unknown for this problem, we first compute the
numerical solution on a very fine mesh with 8000 elements, and then use it as the reference
solution to evaluate errors and orders of accuracy for coarser resolutions. The standard CDG
method in (6) and its well-balanced version in (7) are used to simulate this problem. We
present L2 errors and orders of accuracy for h and hu in Table 2 by the standard CDG
method and in Table 3 by the well-balanced one. We can observe that both methods are
(k + 1)st-order accurate for Pk with k = {1, 2} and therefore the well-balanced treatment
does not affect the accuracy of the standard CDG method.

3.1.3 Stationary Solution

In this test, we validate the well-balanced feature, i.e. the ability to preserve still-water steady
states, of the proposed well-balanced CDG method in cases of continuous (non-smooth),
discontinuous and smooth bottoms. The initial conditions (which correspond to a stationary
solution) are given by
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Table 2 L2 errors and orders of
accuracy for (h, hu) at t = 0.2 by
the standard CDG method

Mesh h hu

L2 error Order L2 error Order

P1

25 5.65E−03 – 1.38E−02 –

50 1.05E−03 2.41 2.58E−03 2.42

100 1.87E−04 2.49 4.47E−04 2.52

200 3.84E−05 2.29 8.88E−05 2.33

400 8.93E−06 2.10 2.03E−05 2.12

800 2.18E−06 2.03 4.96E−06 2.03

P2

25 2.85E−04 – 7.34E−04 –

50 2.70E−05 3.40 6.94E−05 3.40

100 3.23E−06 3.06 8.31E−06 3.06

200 4.02E−07 3.00 1.03E−06 3.00

400 5.02E−08 3.00 1.29E−07 3.00

800 6.24E−09 3.00 1.60E−08 3.00

Table 3 L2 errors and orders of
accuracy for (h, hu) at t = 0.2 by
the well-balanced CDG method

Mesh h hu

L2 error Order L2 error Order

P1

25 5.67E−03 – 1.39E−02 –

50 1.06E−03 2.41 2.59E−03 2.42

100 1.88E−04 2.49 4.51E−04 2.52

200 3.85E−05 2.29 8.98E−05 2.32

400 8.95E−06 2.10 2.06E−05 2.12

800 2.18E−06 2.03 5.02E−06 2.03

P2

25 2.86E−04 – 7.35E−04 –

50 2.71E−05 3.40 6.94E−05 3.40

100 3.24E−06 3.07 8.32E−06 3.06

200 4.03E−07 3.01 1.04E−06 3.00

400 5.03E−08 3.00 1.29E−07 3.00

800 6.25E−09 3.01 1.61E−08 3.01

hu = 0, h + b = 1. (48)

The continuous bottom profile is defined by

b(x) =

⎧⎪⎪⎨
⎪⎪⎩

4(x − 0.2), 0.2 ≤ x ≤ 0.4,
0.8, 0.4 ≤ x ≤ 0.6,
−4(x − 0.8), 0.6 ≤ x ≤ 0.8,
0, otherwise,
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x 10−3
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Fig. 2 Numerical results for the stationary solution (48) over a continuous bottomat t = 0.5.Circles numerical
solution; dashed line exact solution. Upper panel standard CDG method; lower panel well-balanced CDG
method

the discontinuous one is given by

b(x) =
{
0.5, 0.3 ≤ x ≤ 0.7,
0, otherwise,

while the smooth one is given by

b(x) = 0.5 sin(2πx), 0 ≤ x ≤ 1.

We choose [0, 1] as the computational domain, divided into 100 elements, and use outgoing
boundary conditions for the continuous and discontinuous bottoms and periodic boundary
condition for the smooth bottom.We compute the solution up to t = 0.5 by both the standard
andwell-balanced CDGmethods. The resultingwater level h+b and discharge hu are plotted
in Figs. 2, 3 and 4 for the continuous, discontinuous and smooth bottoms, respectively. We
see that the standard CDG method fails to maintain the stationary solution (48) regardless
of the bottom profile being continuous or discontinuous, smooth or non-smooth. We also
observe that the errors related to smooth bottom are smaller than the ones related to non-
smooth bottoms. Note however that after refining the mesh, we can observe the convergence
of the computed solution. For the well-balanced CDGmethod, we can see that the stationary
solution is well preserved, and this is also true on a coarser mesh (say, with 10 elements). To
further demonstrate that the well-balanced scheme indeed preserves the still-water stationary
solution exactly (i.e. up tomachine precision), we perform the computation in both single and
double precision. The corresponding L2 and L∞ errors on h + b and hu are listed in Table 4
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Fig. 3 Numerical results for the stationary solution (48) over a discontinuous bottom at t = 0.5. Circles
numerical solution; dashed line exact solution; solid line bottom profile. Upper panel standard CDG method,
lower panel well-balanced CDG method

for these topographies. Their values have orders of magnitude consistent with machine single
and double precision, thus verifying the well-balanced property.

3.1.4 Perturbation of a Stationary Solution

We consider small perturbations of a stationary solution over a hump [20,36], with the bottom
topography given by

b(x) =
{
0.25(cos(10π(x − 1.5)) + 1), 1.4 ≤ x ≤ 1.6,
0, otherwise.

The initial conditions are

(hu)(x, 0) = 0 and h(x, 0) =
{
1 − b(x) + ε, 1.1 ≤ x ≤ 1.2,
1 − b(x), otherwise,

where ε is a non-zero perturbation parameter. We examine two cases: ε = 0.2 (big pulse)
and ε = 0.001 (small pulse). Theoretically, for small ε, this disturbance should split into two
waves, one propagating to the left at the characteristic speed−√

gh and the other propagating
to the right at the characteristic speed

√
gh.

We set [0, 2] as the computational domain and use outgoing boundary conditions. We
simulate the problem up to t = 0.63 by both the standard and well-balanced CDG methods
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Fig. 4 Numerical results for the stationary solution (48) over a smooth bottom at t = 0.5. Circles numerical
solution; dashed line exact solution. Upper panel standard CDG method, lower panel well-balanced CDG
method

on two different meshes (with 200 and 2000 elements). At that moment, the downstream-
traveling water pulse has already passed the hump.

We present numerical results for the big and small pulses in Figs. 5 and 6, respectively. It
can be seen that when the standard CDGmethod is applied to simulate the small perturbation
pulse, the numerical solution exhibits spurious oscillations of large amplitude on coarse
meshes. To remove such oscillations, finermeshes need to be used and this has been confirmed
using additional numerical results with varying resolutions (not shown here). On the other
hand, the standard CDG method seems to perform well overall in the case of a big pulse,
with some oscillations of small amplitude on coarser meshes. For the well-balanced CDG
scheme, however, no spurious oscillations are discernible for either the small or big pulse,
even when a coarse mesh is used.

3.1.5 Dam Breaking Over a Rectangular Bottom

We investigate the dam-breaking problem over a rectangular bottom [33,35], with initial
conditions

(hu)(x, 0) = 0, h(x, 0) =
{
2 − b(x), x ≤ 75,
1.5 − b(x), otherwise,

and bottom topography

b(x) =
{
0.8, |x − 75| ≤ 75/4,
0, otherwise.
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Table 4 L2 and L∞ errors on
(h + b, hu) for the stationary
solution at t = 0.5 by the
well-balanced CDG method

Precision h + b hu

L2 error L∞ error L2 error L∞ error

Continuous bottom

Single 5.79 E−10 2.15 E−09 1.28 E−12 5.86E−12

Double 5.79 E−16 2.22 E−15 3.56 E−16 1.28E−15

Discontinuous bottom

Single 5.43 E−10 2.15 E−09 1.17 E−11 6.96 E−11

Double 3.07 E−16 1.11 E−15 6.38 E−17 3.62 E−16

Smooth bottom

Single 9.53 E−08 3.58 E−07 1.22 E−07 5.38 E−07

Double 3.22 E−16 8.88 E−16 1.31 E−17 6.32 E−16
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0.1
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Fig. 5 Numerical results for a stationary solution perturbed with a big pulse at t = 0.63. Dots 200 elements,
solid line 2000 elements. Upper panel standard CDG method, lower panel well-balanced CDG method
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Fig. 6 Numerical results for a stationary solution perturbed with a small pulse at t = 0.63.Dots 200 elements,
solid line 2000 elements. Upper panel standard CDG method, lower panel well-balanced CDG method

We show numerical results by the well-balanced CDG method with 200 elements at times
t = 15 and t = 60 in Figs. 7 and 8, respectively. A better resolved solution (by using 2000
elements) is also plotted for comparison. We can see that both solutions agree well with
each other and do not exhibit spurious oscillations. Numerical results by the standard CDG
method, however, display parasitic waves near jump points of the bottom topography (not
shown here).

3.1.6 Subcritical and Transcritical Steady Flows

This example examines the convergence to subcritical steady flow over a hump [13,35,36].
The computational domain together with the boundary and initial conditions are

⎧⎪⎪⎨
⎪⎪⎩

h(x, 0) = 2.0 − b(x), 0 ≤ x ≤ 25,
(hu)(x, 0) = 1.411, 0 ≤ x ≤ 25,
h(25, t) = 2.0, 0 ≤ t ≤ 626.5,
(hu)(0, t) = 1.411, 0 ≤ t ≤ 626.5,

123



J Sci Comput (2017) 71:994–1034 1019

0 50 100 150
0

0.5

1

1.5

2

x

h+
b,

 b

0 50 100 150
−0.05

0

0.05

0.1

0.15

0.2

0.25

x

hu
Fig. 7 Numerical results by the well-balanced CDGmethod for a dam-breaking problem at t = 15.Dots 200
elements; dashed line 2000 elements; solid line bottom profile
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Fig. 8 Numerical results by the well-balanced CDGmethod for a dam-breaking problem at t = 60.Dots 200
elements; dashed line 2000 elements; solid line bottom profile

and the bottom topography is given by

b(x) =
{
0.2 − 0.05(x − 10)2, 8 ≤ x ≤ 12,
0, otherwise.

(49)

Two different meshes are specified (with 200 and 1000 elements) and this problem is sim-
ulated up to t = 626.5 using the well-balanced CDG method. The surface level h + b and
discharge hu are illustrated in Fig. 9. The lower-resolution computation agrees overall well
with the converged (higher-resolution) computation. Spurious oscillations for the discharge
on the coarse mesh are found to develop near non-smooth points of the surface level. This is
consistent with previous observations [13,35,36] indicating that it is more difficult to accu-
rately capture the discharge than the surface level. Our results, however, are quite acceptable
and we checked that errors decrease as the mesh is refined.

Another similar test addresses the problem of transcritical steady flow with a shock, as
also investigated in [13,35,36]. The computational domain together with the boundary and
initial conditions are
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Fig. 9 Numerical results by the well-balanced CDG method for a subcritical steady flow at t = 626.5. Dots
200 elements; dashed line 1000 elements; solid line bottom profile
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Fig. 10 Numerical results by the well-balanced CDG method for a transcritical steady flow at t = 626.5.
Dots 200 elements; dashed line 1000 elements; solid line bottom profile

{
h(x, 0) = 0.33, (hu)(x, 0) = 0.0575, 0 ≤ x ≤ 25,
h(25, t) = 0.33, (hu)(0, t) = 0.0575, 0 ≤ t ≤ 626.5.

The bottom topography is the same as prescribed in (49).We again use 200 and 1000 elements,
and simulate this problem up to t = 626.5 by the well-balanced CDG method. The surface
level h + b and discharge hu are depicted in Fig. 10. Observations similar to those for the
subcritical steady flow can be made. Overall, the solution convergence is well illustrated and,
in particular, the abrupt depression followed by a shock downstream of the hump is well
captured by the numerical scheme.

3.1.7 Drying and Wetting Riemann Problems

In this example, we consider a Riemann problem where a dry area emerges during the
simulation. The initial conditions are given by

(h(x, 0), u(x, 0)) =
{

(h− = 0.5, u− = 0), if x < 0,
(h+ = 1, u+ = 4), if x > 0,

(50)
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Fig. 11 Numerical results at
t = 2, 4, 6 obtained from the
positivity-preserving
well-balanced CDG method for
the drying Riemann problem.
Solid line exact solution; squares
numerical solution at t = 2;
circles numerical solution at
t = 4; dots numerical solution at
t = 6
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and the bottom topography is b = 0. This problem has been examined in [4,38] and an exact
solution can be found in [3]. The initial conditions do not contain dry areas, but satisfy the
drying criterion (u− + 2

√
gh−) − (u+ − 2

√
gh+) < 0. Two expansion waves propagate

away from each other, and thus a dry area emerges when t > 0.
The computational domain [−20, 40] is divided into 1000 cells, with outgoing boundary

conditions. We ran this test using the standard and positivity-preserving CDG methods. For
the standard CDG method, negative water depth was generated during the computation and
this causes the numerical solution to shortly blow up. For the positivity-preserving CDG
method however, the water depth remains non-negative during the entire computation.

Numerical results at times t = 2, 4, 6 obtained from the positivity-preserving CDG
method are shown in Fig. 11. The exact solution is also plotted in this figure for comparison.
To check the non-negativity of the water depth, a zoom-in near the wet/dry front is presented
in Fig. 12. We can see that the numerical approximation matches the exact solution well,
and the positivity-preserving CDG scheme successfully maintains the non-negativity of the
water depth.

Similarly, we also tested our positivity-preserving CDG scheme in the context of the
dam-breaking problem over a flat dry bed. The initial conditions are given by

(h, u) =
{

(h− = 1, u− = 0), if x < 0,
(h+ = 0, u+ = 0), if x > 0,

(51)
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Fig. 12 Zoom-in of the water
depth for the drying Riemann
problem. Solid line exact
solution; squares numerical
solution at t = 2; circles
numerical solution at t = 4; dots
numerical solution at t = 6
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Fig. 13 Numerical results at
t = 4, 8, 12 obtained from the
positivity-preserving
well-balanced CDG method for
the dam-breaking problem over a
flat dry bed. Solid line exact
solution; squares numerical
solution at t = 4; circles
numerical solution at t = 8; dots
numerical solution at t = 12
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and further details (e.g. exact solution) can be found in [3,4,38]. This situation is opposite
to the previous one since a wet front now moves into a dry area. Here again, Figs. 13 and
14 indicate that the numerical results compare well with the exact solution and no negative
water depth is observed during the entire simulation. Standard CDGmethods would produce
negative values of the water depth and, combined with the nonlinear TVB minmod limiter in
local characteristic fields (which requires calculating the eigenvalues u ± √

gh), they would
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Fig. 14 Zoom-in of the water
depth for the dam-breaking
problem over a flat dry bed. Solid
line exact solution; squares
numerical solution at t = 4;
circles numerical solution at
t = 8; dots numerical solution at
t = 12
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lead to solution blow-up. If we instead replace h by max(h, 0), the numerical scheme yields
satisfactory results yet it is no longer mass-conservative.

3.1.8 Parabolic Bowl

We consider a plane surface oscillating in the parabolic bowl given by

b(x) = h0
( x
a

)2
,

with constants h0 and a to be specified below. The corresponding exact water surface for the
1D NSWEs reads

h(x, t) + b(x) = max

{
b, h0 − B2

4g
(cos(2ωt) + 1) − Bx

2a

√
8h0
g

cos(ωt)

}
, (52)

where ω = √
2gh0/a and B is a given constant [38].

The computational domain is [−2, 2] with outgoing boundary conditions, and is dis-
cretized with 200 elements. The exact solution (52) at t = 0 serves as the initial condition for
the water surface level, and the initial discharge hu is set to zero. We choose the constants to
be h0 = 0.1, a = 1.0 and B = 0.3. Figure 15 plots the water surface level and corresponding
discharge at t = 2T, 2T +T/6, 2T +T/5, 2T +T/4, 2T +T/3, 2T +T/2where T = 2π/ω

is the oscillation period. The positivity-preserving well-balanced CDG method is applied to
solving this problem. Comparison between the numerical and analytical results for h + b
shows excellent agreement. No spurious oscillations or negative values are discernible in the
numerical solution at any time.

3.1.9 Runup of Solitary Waves on a Slope

In this example, we investigate the runup of solitary waves on a mild slope of 1:19.85
following the experimental work of Synolakis [32]. The bottom slope is specified by

b(x) =
{−x tan β, x ≤ cot β,

−1, x > cot β,
(53)
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Fig. 15 Numerical results for a plane surface oscillating in a parabolic bowl at t = 2T (dots), 2T + T/6
(circles), 2T + T/5 (squares) in the top panel, and at t = 2T + T/4 (squares), 2T + T/3 (circles), 2T + T/2
(dots) in the lower panel. Dashed line exact water surface; solid line domain geometry

with β = 2.884◦ and the initial solitary wave is given by

h(x, t) + b(x) = (h2 − h1)sech2
(

x−Dt
2

√
3(h2−h1)

h2h21

)
, (54)

where h1 is a referencewater depth,h2 corresponds to the solitarywaveheight and D = √
gh2

is the wave speed.
We first examine the runup of a solitary wave of small amplitude a0 = h2 − h1 = 0.0185

with h1 = 1 and h2 = 1.0185 in (54). The wave crest is initially located at x = 38.5 and
travels to the left up the sloping beach. The computational domain is [−15, 85], divided into
1000 elements and with outgoing boundary conditions.

A sequence of wave profiles is presented in Fig. 16. To illustrate the performance of
the NSWEs and of the numerical method, we also plot experimental data from [32] for
comparison.We see that thewave profiles computed from theNSWEsmatch the experimental
data well during both runup and rundown phases.

Since the sloping bottom is a linear function of space, its approximation satisfies condition
(26) in the L2 sense, thus we did not observe negative values of the water depth during the
entire simulation. To further test the reliability of the new approximations to the bottom
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Fig. 16 Runup of a solitary wave with amplitude a0 = 0.0185 at t = 30, 40, 50, 60, 70 (from top to bottom).
Red circles experimental data [32], black dashed line shallowwater equations, black solid line bottomgeometry
(Color figure online)

obtained from (28), we investigate the runup of a solitary wave with larger amplitude a0 =
0.08 (h1 = 1 and h2 = 1.08) on a more complicated topography which is a perturbation to
the previous slope, as defined by

b(x) =
{−x tan β + sin(x)/(x + 31), x ≤ cot β,

−1, x > cot β.
(55)

The solitary wave is also initially located at x = 38.5 and again travels to the left. We
specify the same domain, discretization and boundary conditions as previously. We show a
sequence of computed wave profiles in Fig. 17, which confirms that the positivity-preserving
well-balanced CDG scheme is effective at maintaining the non-negativity of the water depth,
under general wave and topographical conditions.
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Fig. 17 Runup of a solitary wavewith amplitude a0 = 0.0185 at t = 20, 40, 60, 80, 100 (from top to bottom).
Dashed line computed water surface, solid line bottom geometry

3.2 Examples for 2D NSWEs

3.2.1 Accuracy Tests

The first test aims to verify the high-order accuracy of the 2D well-balanced CDG method.
We take the smooth functions

h(x, y, 0) = 10 + esin(2πx) cos(2πy),

hu(x, y, 0) = sin(cos(2πx)) sin(2πy),

hv(x, y, 0) = cos(2πx) cos(sin(2πy)),

as initial conditions, and the bottom profile is described by

b(x, y) = sin(2πx) + cos(2πy).
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Table 5 L2 errors and orders of accuracy for (h, hu, hv) at t = 0.1 by the standard CDG method

Mesh h hu hv

L2 error Order L2 error Order L2 error Order

P1

10 × 10 2.58E−02 – 4.88E−02 – 6.98E−02 –

20 × 20 6.92E−03 2.04 1.15E−02 2.08 1.81E−02 1.95

40 × 40 1.55E−03 2.02 2.70E−03 2.10 4.51E−03 2.01

80 × 80 3.87E−04 2.01 6.53E−04 2.05 1.11E−03 2.02

160 × 160 9.42E−05 2.04 1.58E−04 2.05 2.71E−04 2.04

P2

10 × 10 2.94E−03 – 5.89E−03 – 6.47E−03 –

20 × 20 3.78E−04 2.96 7.23E−04 3.03 8.52E−04 2.92

40 × 40 4.66E−05 3.02 8.88E−05 3.02 1.06E−04 3.00

80 × 80 5.44E−06 3.10 1.05E−05 3.08 1.25E−05 3.09

160 × 160 5.75E−07 3.24 1.13E−06 3.23 1.34E−05 3.22

Table 6 L2 errors and orders of accuracy for (h, hu, hv) at t = 0.1 by the well-balanced CDG method

Mesh h hu hv

L2 error Order L2 error Order L2 error Order

P1

10 × 10 2.68E−02 – 4.45E−02 – 6.19E−02 –

20 × 20 6.54E−03 2.03 1.02E−02 2.11 1.59E−02 1.96

40 × 40 1.60E−03 2.02 2.36E−03 2.11 3.94E−03 2.01

80 × 80 3.95E−04 2.01 5.68E−04 2.05 9.73E−04 2.02

160 × 160 9.58E−05 2.04 1.36E−04 2.05 2.35E−04 2.04

P2

10 × 10 2.93E−03 – 5.88E−03 – 6.44E−03 –

20 × 20 3.76E−04 2.96 7.22E−04 3.03 8.50E−04 2.92

40 × 40 4.64E−05 3.02 8.87E−05 3.02 1.06E−04 3.00

80 × 80 5.41E−06 3.10 1.05E−05 3.08 1.25E−05 3.09

160 × 160 5.75E−07 3.23 1.12E−06 3.23 1.34E−05 3.22

The computational domain is [0, 1]×[0, 1]with periodic boundary conditions. The final time
is t = 0.1 at which the solution is still smooth. Since the exact solution is unknown for this
problem, we first compute the numerical solution on a fine mesh with 320 × 320 elements,
and then use it as the reference solution to evaluate errors and orders of accuracy for coarser
resolutions. We present L2 errors and orders of accuracy for h, hu and hv obtained by the
standard CDGmethod (30) and its well-balanced version (36) in Tables 5 and 6, respectively.
We can observe that both methods are (k + 1)st-order accurate for Pk with k = {1, 2} and
therefore the added correction terms in (36) do not affect the accuracy of the standard CDG
method.
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3.2.2 Stationary Solution

In this test, we validate the well-balanced feature of the 2D method (36) as applied to a
continuous and discontinuous variable bottom. The initial conditions are

hu(x, y, 0) = 0, hv(x, y, 0) = 0, h(x, y, 0) + b(x, y) = 1, (56)

and the continuous bottom profile is defined by

b(x, y) =
⎧⎨
⎩
0.2, r ≤ 0.3,
0.5 − r, 0.3 ≤ r ≤ 0.5,
0, otherwise,

(57)

with r = √
x2 + y2, while the discontinuous bottom profile is given by

b(x, y) =
{
0.5, −0.5 ≤ x, y ≤ 0.5,
0, otherwise.

(58)

We choose [−1, 1] × [−1, 1] as the computational domain, divided into 50 × 50 elements,
and use outgoing boundary conditions. We compute the solution up to t = 1 by the standard
and well-balanced CDG methods.

Contours of the computed water level h + b, discharges hu and hv are plotted in Fig. 18
for the continuous variable bottom and in Fig. 19 for the discontinuous variable bottom. We
see that the well-balanced CDG method maintains the stationary solution (56) in both cases,
while the standard CDGmethod fails to do so. To demonstrate that the well-balanced scheme
indeed preserves the still-water stationary solution exactly (i.e. up to machine precision), we

Fig. 18 Numerical results for the stationary solution over a 2D continuous variable bottom at t = 1. Left
standard CDG method; right well-balanced CDG method. Upper panel water level h + b; middle panel
discharge hu; lower panel discharge hv
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Fig. 19 Numerical results for the stationary solution over a 2D discontinuous variable bottom at t = 1.
Left standard CDG method; right well-balanced CDG method. Upper panel water level h + b; middle panel
discharge hu; lower panel discharge hv

Table 7 L2 and L∞ errors on (h + b, hu, hv) for the stationary solution at t = 1

Precision h + b hu hu

L2 error L∞ error L2 error L∞ error L2 error L∞ error

Continuous bottom

Single 1.19E−07 1.19E−07 9.25E−09 3.01E−08 9.78E−09 3.50E−08

Double 8.85E−16 1.67E−15 1.79E−15 7.69E−16 2.24E−16 8.42E−16

Discontinuous bottom

Single 1.19E−07 2.38E−07 1.40E−08 8.30E−08 1.42E−07 8.43E−07

Double 8.95E−16 2.00E−15 2.67E−16 1.38E−15 2.49E−16 1.03E−15

performed the computation in both single and double precision. The corresponding L2 and
L∞ errors on the water surface h + b, discharges hu and hv are listed in Table 7 for both
topographies. Their values have orders of magnitude consistent with machine single and
double precision, thus verifying the well-balanced property.

3.2.3 Perturbation of a Stationary Solution

Wenext consider the problemof 2Dperturbations to a stationary state [20]. The computational
domain is [0, 2] × [0, 1] and the bottom topography is an isolated elliptical hump defined by
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Fig. 20 Contours of the surface level h+b for the perturbation of a stationary solution at t = 0.6, 0.9, 1.2, 1.5
and 1.8 (from top to bottom). Left well-balanced CDG method, right standard CDG method

b(x, y) = 0.8 e−5(x−0.9)2−50(y−0.5)2 .

The initial conditions are given by

h(x, y, 0) =
{
1 − b(x, y) + ε, 0.05 ≤ x ≤ 0.15,
1 − b(x, y), otherwise,

u(x, y, 0) = v(x, y, 0) = 0,

where ε is a non-zero perturbation parameter which is selected to be 0.01 in our computation.
The well-balanced CDG method is used to solve this problem on a 200× 100 mesh. The

left column in Fig. 20 displays the water surface h+b at t = 0.6, 0.9, 1.2, 1.5 and 1.8. Clearly,
we can see that the numerical solution is able to capture complex small features of the flow
as reported in [18,35]. To demonstrate the importance of the well-balanced property, we also
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Fig. 21 Vertical cross-section of the water surface level h + b at y = 0 in a parabolic bowl at t =
T/8, T/4, 3T/8, T/2, 5T/8, 3T/4, 7T/8 and T (from left to right and from top to bottom).Circles numerical
solution; dashed line exact water surface; solid line domain geometry

compare with numerical results by the standard CDG method for the same 200× 100 mesh,
as presented in the right column of Fig. 20. The corresponding solution tends to produce
parasitic waves which are of about the same amplitude as the principal waves generated by
the small bottom perturbation.

3.2.4 Parabolic Bowl

Finally, we examine a water surface oscillating in a 2D parabolic bowl embedded in a square
domain [−2, 2] × [−2, 2]. The parabolic geometry is defined by

b(x, y) = h0

(
x2 + y2

a2
− 1

)
,
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where h0 and a are constants to be specified later. The exact solution for the 2D NSWEs is
given by

η(x, y, t) = max

{
b, h0

[ √
1 − A2

1 − A cos(ωt)
− 1 − x2 + y2

a2

(
1 − A2

(1 − A cos(ωt))2
− 1

)]}
,

u(x, y, t) = 1

1 − A cos(ωt)

(
1

2
ωx sin(ωt)

)
, if h > 0,

v(x, y, t) = 1

1 − A cos(ωt)

(
1

2
ωy sin(ωt)

)
, if h > 0, (59)

where η = h + b, ω = √
8gh0/a, A = (a2 − r20 )/(a2 + r20 ), and r0 is a given constant

representing the distance from the edge to the center of the water surface at the initial time
t = 0 [29].

For this experiment, the computational domain [−2, 2]×[−2, 2] is divided into 200×200
elements. The exact solution (59) at t = 0 serves as the initial condition, and outgoing
boundary conditions are specified. We choose h0 = 0.1, a = 1.0 and r0 = 0.8. Similar
to the 1D case, since the near-boundary regions are always dry, we apply the positivity-
preserving well-balanced CDG method to this problem. We plot the water surface level
at t = T/8, T/4, 3T/8, T/2, 5T/8, 3T/4, 7T/8 and T in Fig. 21, where T = 2π/ω is the
oscillation period. Excellent agreement between the numerical and analytical results is found
and, in particular, no negative values of the water depth are discernible. However, these would
appear and the computation would break down if the positivity-preserving limiter were not
used.

4 Conclusions

In this paper, we have proposed a family of high-order numerical methods for 1D and 2D
NSWEs, including well-balanced CDG methods, positivity-preserving CDG methods and
their combined versions. Our numerical tests on various 1D and 2D problems demonstrate the
properties of high-order accuracy, positivity-preservation and well-balance of the proposed
schemes. Designing CDG-based methods with such features for simulations of 2D NSWEs
on unstructuredmeshes is envisioned for futurework. It is also planned to extend the proposed
methods to solving 2DGreen–Naghdimodels forwaterwaves over bottom topography. These
equations are more complicated than the NSWEs and their numerical simulation poses major
technical challenges [25,40].
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