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We present a new numerical method to simulate the time evolution of axisymmetric 
nonlinear waves on the surface of a ferrofluid jet. It is based on the reduction of this 
problem to a lower-dimensional computation involving surface variables alone. To do 
so, we describe the associated Dirichlet–Neumann operator in terms of a Taylor series 
expansion where each term can be efficiently computed by a pseudo-spectral scheme 
using the fast Fourier transform. We show detailed numerical tests on the convergence 
of this operator and, to illustrate the performance of our method, we simulate the long-
time propagation and pairwise collisions of axisymmetric solitary waves. Both depression 
and elevation waves are examined by varying the magnetic field. Comparisons with weakly 
nonlinear predictions are also provided.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Due to surface tension, it is well-known that an inviscid liquid jet (in the absence of gravity) is unstable to long-wave dis-
turbances with wavelength greater than the jet circumference, eventually leading to the formation of disconnected droplets 
[35]. It has been observed however that a magnetic field can be used to suppress this Rayleigh instability for a jet composed 
of a ferrofluid [2].

Ferrofluids are colloidal liquids made of ferromagnetic nano-particles suspended in a carrier Newtonian fluid (e.g. an 
organic solvent or water). Therefore, in the presence of an external magnetic field, they become strongly magnetized and 
experience a body force. Ferrofluids have been a topic of intense research for the last few decades because of their potential 
commercial applications in various sectors. Industrial applications include 100% leak-free sealants, optical filters, heat sinks 
for loud speakers and transformers, viscous dampers, separators, magnetic fluid inks, actuators, acceleration and position 
probes, etc. [33]. There are also medical applications exploiting the extreme relative size difference between magnetic 
nano-particles and living cells. Examples include blood flow tracing in non-invasive circulatory measurements and magnetic 
drug targeting. In the latter case, the drugs would be enclosed by a ferrofluid layer and injected into the patient’s body 
where they could be released at a specific location and time by turning off the magnetic field [36]. In addition, ferrofluids 
have been employed to study many intriguing phenomena and fundamental aspects of fluid mechanics, e.g. to obtain insight 
into colloidal forces and their role in the stabilization of colloidal suspensions, which has led to new applications for 
ferrofluid-based emulsions [31].
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Of particular interest here is the set-up where a ferrofluid jet is exposed to an azimuthal magnetic field generated by a 
thin current-carrying wire positioned along the jet axis. The induced axisymmetric body force has a stabilizing effect and 
allows long-wave disturbances to develop on the jet surface [3,4]. In this configuration, Rannacher and Engel [34] confirmed 
via a linear stability analysis that the jet can indeed be stabilized and derived the cylindrical Korteweg–de Vries (KdV) 
equation describing axisymmetric weakly nonlinear disturbances in the long-wave limit. These authors identified soliton 
solutions to this model and showed that they are elevation waves (with a central hump) if 1 < B < 3/2 and are depression 
waves (with a central dip) if 3/2 < B < 9, where B denotes the magnetic Bond number. For B < 1, the jet is unstable [2]. 
More recently, Bourdin et al. [6] reported the first experimental observation of such axisymmetric waves and found a good 
agreement with the KdV predictions. Blyth and Părău [5] subsequently revisited this ferrofluid problem by solving the fully 
nonlinear equations numerically. After a hodograph transformation of these equations, a finite-difference scheme was used 
to discretize them over the entire fluid domain. Comparisons with results of [34] and [6] were made, and new nonlinear 
branches of solitary wave solutions were found. These include limiting cases such as a static wave with zero phase speed 
and overhanging waves with a trapped toroidal-shaped bubble. It should be pointed out however that [5] only computed 
steadily progressing solutions whose profile is fixed in a moving reference frame.

In the present paper, we extend the results of [34] and [5] by solving the full time-dependent nonlinear problem. 
For this purpose, we propose a new numerical approach based on the reduction of the original Laplace problem to a 
lower-dimensional system involving quantities evaluated only at the jet surface. No conformal or hodograph transformation 
is required, so the resulting equations are still written in terms of the physical Eulerian coordinates. This reduction is 
accomplished by introducing the Dirichlet–Neumann operator (DNO) which, in light of its analyticity properties, is expressed 
via a convergent Taylor series expansion about the uniform cylindrical geometry of the jet. Each term in this Taylor series is 
determined recursively as a sum of concatenations of Fourier multipliers with powers of the surface deformation, and thus is 
efficiently computed by a pseudo-spectral method using the fast Fourier transform. This computational efficiency is the key 
benefit of our surface formulation as compared to a volumetric one [5] and thus makes our numerical method particularly 
suitable for simulating the time evolution. Extensive numerical tests on the convergence of the DNO and on the accuracy of 
the time-integration scheme are provided. Although the present algorithm is applicable to a wide range of nonlinear wave 
phenomena, we focus here on solitary wave solutions, motivated by the above-mentioned literature. Numerical simulations 
of solitary wave collisions in various magnetic regimes are performed to illustrate their characteristics in this ferrofluid 
problem and to demonstrate the effectiveness of our numerical approach. Solutions from the finite-difference method of [5]
are used to initialize our time-dependent computations, and the ensuing solitary wave collisions are compared with KdV 
predictions.

To our knowledge, this is the first time that such a numerical model is applied to investigating the present problem. 
In particular, the surface formulation as well as the derivation of the DNO in its series form and the corresponding nu-
merical testing have previously never been reported for this axisymmetric cylindrical configuration. Earlier papers on DNO 
expansions have dealt with various examples from acoustics, electromagnetics and hydrodynamics featuring irregular do-
mains [27,16,28,18,19] but they have only considered cases where the bulk equations and boundary conditions are linear 
in the field variables or where the reference geometry is rectangular with Cartesian coordinates. In addition, most of these 
previous studies only examined the time-harmonic regime and thus did not explicitly solve the time-evolution problem. 
The only exception that we are aware of is de la Llave and Panayotaros [17] who proposed a Hamiltonian formulation for 
nonlinear gravity waves on the surface of a sphere and derived a series expansion of the corresponding DNO in terms of 
spherical coordinates. This however was a theoretical work of different nature than ours and it did not produce any nu-
merical result. As will be shown below, the series expansion of our DNO is established by using a harmonic solution to the 
Laplace equation whose form depends of course on the geometry of the problem. We also conduct here the first study of 
axisymmetric solitary wave collisions in the highly nonlinear regime and find notable qualitative differences compared to 
e.g. water waves in the classical rectangular configuration. This follows upon Bourdin et al.’s [6] conclusions suggesting that 
such a study would be of interest.

The remainder of the paper is organized as follows. In Section 2, we present the mathematical formulation of this ax-
isymmetric ferrofluid problem, including the reduction to surface variables and the Taylor series expansion of the DNO. In 
Section 3, we describe the numerical methods for spatial and temporal discretization of the governing equations, including 
the procedures for generating the initial conditions, for de-aliasing and filtering. Section 4 shows numerical tests on the con-
vergence of the DNO as well as applications to solitary waves, including their long-time propagation and pairwise collisions. 
Both depression and elevation waves are examined depending on B . Finally, concluding remarks are given in Section 5.

2. Mathematical formulation

2.1. Governing equations

Following Rannacher and Engel [34] and Blyth and Părău [5], we consider the inviscid, incompressible and irrotational 
flow of a liquid jet of density ρ along the outside of a cylindrical metal rod of radius b. The liquid flows in the z-direction 
of a cylindrical coordinate system (r, θ, z). Moreover, we assume conditions of axisymmetry so that all variables are inde-
pendent of θ . In the basic steady configuration, the jet surface is a circular cylinder of radius r = a. The jet liquid is taken 
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to be a ferrofluid, i.e. a liquid that can be magnetized and thereby experience a body force in the presence of an external 
magnetic field. The axial rod carries a current I in the z-direction which generates an azimuthal magnetic field

B = μ0 Ieθ

2πr
,

where eθ is the unit vector in the θ -direction. The magnetic field induces a radial body force per unit volume in the 
ferrofluid, given by

F = χ

μ0
B · ∇ B = −μ0χ I2

4π2r3
er ,

where er is the unit vector in the r-direction, χ is the magnetic susceptibility of the ferrofluid and μ0 = 4π × 10−7 H m−1

is the magnetic permeability in a vacuum.
For convenience, we introduce the dimensionless spatial and temporal variables

r̃ = r

a
, z̃ = z

a
, t̃ =

√
γ

a3ρ
t ,

where γ is the surface tension at the free surface of the jet. Dropping the tildes, the jet surface is located at r = S(z, t) =
1 + η(z, t), where η denotes the surface deformation relative to the basic configuration r = 1. The flow in the ferrofluid is 
described by a velocity potential �(z, r, t) so that the velocity field is given by u = ∇�. This velocity potential satisfies the 
Laplace equation

∇2� = 0 , for z ∈R , b < r < S(z, t) , (1)

where ∇ = (∂z, ∂r)
� . At the axial rod r = b, a no-flux condition is imposed, namely

∂r� = 0 . (2)

At the free surface r = S(z, t), the two nonlinear boundary conditions are the kinematic condition

∂t S + (∂z�)(∂z S) = ∂r�, (3)

and the dynamic (or Bernoulli) condition

∂t� + 1

2
|∇�|2 − ∂2

z S

(1 + (∂z S)2)3/2
+ 1

S
√

1 + (∂z S)2
− 1 − B

2

(
1

S2
− 1

)
= 0 , (4)

where

B = μ0χ I2

4π2γ a
,

is the magnetic Bond number. To preserve the axial symmetry of the problem, gravity is neglected. The third, fourth and 
fifth terms on the left-hand side of (4) represent the capillary pressure, while the last group of terms involving B represents 
the magnetic stress. The two latter equations govern the time evolution of the jet surface.

Mass (or volume) as defined by

V =
∞∫

−∞
ηdz , (5)

is a simple invariant of motion for (1)–(4), which will be established in a subsequent section. We remark however that 
Eq. (5) is not the actual volume integral in this axisymmetric cylindrical setting, which would be given by

W =
∞∫

−∞

2π∫
0

1+η∫
0

rdr dθ dz = π

∞∫
−∞

(1 + η)2 dz ,

for b = 0, or simply

W =
∞∫

−∞
(1 + η)2 dz , (6)

if the coefficient π is omitted. Although not crucial, we may subtract unity from the integrand of (6) to ensure that the 
integral exists in the limit η → 0. As shown below, our numerical simulations suggest that Eq. (6) is also an invariant of 
motion but we have no mathematical proof for this fact. Apart from these two quantities, we are unaware of any conserved 
energy for this system. Hereafter, for simplicity, we will restrict ourselves to the case b = 0 corresponding to a very thin 
conducting rod, as in [3] and [34]. The more realistic case 0 < b < 1 simply changes the geometry of the domain, would 
make the algebra more tedious and accordingly would lead to more complicated equations, but the proposed approach 
remains the same in principle.
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2.2. Linearized problem

Because we are interested in waves propagating at the jet surface, we first examine the linearized problem. The disper-
sion relation for solutions of the form

S = 1 + εAei(kz−ωt) , � = ε f (r)ei(kz−ωt) ,

where ε � 1 is a small parameter, and A and f (r) are unknowns to be determined, reads

c2 = (k2 + B − 1)I1(k)

kI0(k)
, (7)

where I0, I1 are modified Bessel functions of the first kind and c = ω/k is the phase speed of linear waves. In the long-wave 
limit k → 0, this phase speed reduces to

c0 =
(

B − 1

2

)1/2

. (8)

A key observation to be made from (7) is that the jet is unstable if B < 1, in which case there is a range of wavenumbers 
k <

√
1 − B for which c is purely imaginary and disturbances are amplified. If B ≥ 1, then the wave speed c is real and 

neutral waves exist for arbitrary wavenumber k. It follows that a magnetic field of sufficient intensity can stabilize the 
Rayleigh capillary mode responsible for jet breakup under normal conditions [35]. Hence, the latter range of B is the regime 
of interest where we will look for nonlinear wave solutions. A more detailed linear analysis can be found in [34].

2.3. Surface formulation

Similarly to other free-surface flow problems such as water waves [16,14,20,38], we can reduce the dimensionality of the 
Laplace problem (1)–(4) by introducing

ξ(z, t) = �(z,1 + η(z, t), t) , (9)

the trace of the velocity potential on the free surface r = 1 + η(z, t), together with the Dirichlet–Neumann operator (DNO)

G(η)ξ =
√

1 + (∂zη)2 ∂n�

∣∣∣
r=1+η

= (−∂zη,1)� · ∇�

∣∣∣
r=1+η

, (10)

which is the singular integral operator that takes Dirichlet data ξ on r = 1 + η(z, t), solves the Laplace equation (1) for �
subject to (2), and returns the corresponding Neumann data (i.e. the normal velocity ∂n� on the free surface). Note that 
∂t S = ∂tη and ∂z S = ∂zη. It is also pointed out that the DNO is linear in ξ but depends nonlinearly on η.

With these definitions, we are able to express the boundary conditions (3)–(4) in terms of surface variables alone. Recall 
that the jet surface is where the dynamics of interest takes place. In particular, all the spatial and temporal derivatives of �
on r = 1 +η(z, t) can be explicitly written in terms of η and ξ (and their derivatives) together with G(η)ξ . For this purpose, 
we use a number of identities namely

∂tξ = ∂t� + (∂r�)(∂tη)

∣∣∣
r=1+η

, ∂zξ = ∂z� + (∂r�)(∂zη)

∣∣∣
r=1+η

, (11)

by differentiating (9) and using the chain rule, as well as

G(η)ξ = ∂r� − (∂z�)(∂zη)

∣∣∣
r=1+η

,

by virtue of (10). This implies

∂z� = ∂zξ − (∂r�)(∂zη)

∣∣∣
r=1+η

, (12)

and

∂r� = G(η)ξ + (∂z�)(∂zη) = G(η)ξ +
[
∂zξ − (∂r�)(∂zη)

]
(∂zη)

∣∣∣
r=1+η

,

= G(η)ξ + (∂zξ)(∂zη) − (∂r�)(∂zη)2
∣∣∣
r=1+η

,

which yields

∂r�

∣∣∣
r=1+η

= 1

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
. (13)

Then, by substituting (13) back into (12) and (11), we obtain
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∂z�

∣∣∣
r=1+η

= ∂zξ − ∂zη

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
,

= 1

1 + (∂zη)2

[
∂zξ − (∂zη)G(η)ξ

]
, (14)

and

∂t� = ∂tξ − (∂r�)(∂tη)

∣∣∣
r=1+η

,

= ∂tξ − G(η)ξ

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
.

For the latter equation, we have also used the fact that

∂tη = ∂r� − (∂z�)(∂zη)

∣∣∣
r=1+η

= G(η)ξ ,

according to the kinematic condition (3) and the definition (10) of the DNO. Moreover, adding up the squares of (13) and 
(14),

(∂r�)2
∣∣∣
r=1+η

= 1

(1 + (∂zη)2)2

[
(G(η)ξ)2 + 2(∂zη)(∂zξ)G(η)ξ + (∂zη)2(∂zξ)2

]
,

(∂z�)2
∣∣∣
r=1+η

= 1

(1 + (∂zη)2)2

[
(∂zξ)2 − 2(∂zη)(∂zξ)G(η)ξ + (∂zη)2(G(η)ξ)2

]
,

leads to

(∂z�)2 + (∂r�)2
∣∣∣
r=1+η

= 1

(1 + (∂zη)2)2

[
(1 + (∂zη)2)(∂zξ)2 + (1 + (∂zη)2)(G(η)ξ)2

]
,

= 1

1 + (∂zη)2

[
(∂zξ)2 + (G(η)ξ)2

]
.

Inserting these expressions in (3)–(4) gives a closed system of two equations

∂tη = G(η)ξ , (15)

∂tξ = − 1

2(1 + (∂zη)2)

[
(∂zξ)2 − 2(∂zη)(∂zξ)G(η)ξ − (G(η)ξ)2

]
(16)

+ ∂2
z η

(1 + (∂zη)2)3/2
− 1

(1 + η)
√

1 + (∂zη)2
+ 1 + B

2

[
1

(1 + η)2
− 1

]
,

for the two surface variables η and ξ , which is completely equivalent to the original formulation (1)–(4). Recall that, by 
construction, the solution of the Laplace equation (1) subject to the no-flux condition (2) at r = 0 is encoded in the DNO. 
Details are provided in the next section.

2.4. Dirichlet–Neumann operator

As shown by Coifman and Meyer [8], Craig et al. [15] and Craig [9] for data defined on the whole hyperplane, and by 
Nicholls and Reitich [29] and Hu and Nicholls [25] for periodic data, the DNO has a number of properties including:

(i) it is self-adjoint,
(ii) it is analytic in η,

under certain (relatively mild) regularity conditions on the free surface (say η ∈ C1). It is reasonable to assume that these 
properties hold in our axisymmetric cylindrical configuration although we leave the details of their rigorous analysis outside 
the scope of this paper. We refer the interested reader to [28] and [18] who rigorously established the analyticity of the 
DNO in the two-dimensional circular and three-dimensional spherical settings, respectively.

Property (i) can be used to easily prove the conservation of V in time as stated above. We first remark that G(η)1 = 0
which directly follows from the definition (10) of the DNO by substituting � with 1. From (5), we have

dV

dt
=

∞∫
−∞

∂tηdz .

Then using (15) and integrating by parts lead to



P. Guyenne, E.I. Părău / Journal of Computational Physics 321 (2016) 414–434 419
dV

dt
=

∞∫
−∞

G(η)ξ dz =
∞∫

−∞
ξ G(η)1 dz = 0 .

The question now is, given η and ξ at time t , how to evaluate G(η)ξ so that Eqs. (15)–(16) can be completed and then 
solved. To this aim, we proceed as outlined earlier when defining the DNO. Considering harmonic functions of the form 
� = f (r)eikz associated with wave propagation in the z-direction, where the t-dependence is omitted since the domain is 
fixed at a given time, and inserting this expression into (1) yield the modified Bessel’s equation

κ2 f ′′ + κ f ′ − κ2 f = 0 , (17)

where κ = kr and the primes represent differentiation with respect to κ . The general solution of (17) can be written as a 
linear combination of modified Bessel functions of the first and second kinds, I0 and K0 respectively. Here we only need to 
consider I0 because the no-flux condition (2) at r = 0 cannot be enforced with K0. Hence the choice of harmonic solution

� = I0(kr)eikz , (18)

is sufficient for the purposes of our derivation since the DNO is linear in ξ . It readily follows from (18) that

∂r� = kI ′0(kr)eikz = kI1(kr)eikz , ∂z� = ikI0(kr)eikz ,

which confirms that ∂r�|r=0 ∼ I1(0) = 0. An extensive review on the modified Bessel functions and their properties can be 
found in e.g. [1].

Next we will take advantage of the analyticity property (ii) to derive a Taylor series expansion in η,

G(η) =
∞∑
j=0

G j(η) , (19)

for evaluating the DNO. Each term G j in (19) is homogeneous of degree j in η, and thus its action on the basis function 
eikz can be characterized recursively in the following way. Substituting (18) and (19) into (10) gives( ∞∑

j=0

G j(η)
)

I0
(
k(1 + η)

)
eikz =

[
I1

(
k(1 + η)

) − i(∂zη)I0
(
k(1 + η)

)]
keikz ,

which becomes( ∞∑
j=0

G j(η)
)( ∞∑

n=0

(kη)n

n! I(n)
0 (k)

)
eikz =

∞∑
n=0

(kη)n

n!
[

I(n)
1 (k) − i(∂zη)I(n)

0 (k)
]
keikz ,

after Taylor expanding I0
(
k(1 + η)

)
and I1

(
k(1 + η)

)
about η = 0. The functions I(n)

0 , I(n)
1 denote the n-th derivatives of I0, 

I1 with respect to their arguments. Then identifying terms of the same degree in η provides a recursion formula for the 
various G j ’s in (19). For j = 0 (i.e. η = 0), we obtain

G0(0)I0(k)eikz = kI1(k)eikz , so G0(0)eikz = kI1(k)

I0(k)
eikz ,

which can be viewed as the Fourier symbol of the pseudo-differential operator

G0(0) = D I1(D)

I0(D)
,

acting in the physical z-space, where D = −i∂z is defined in such a way that its Fourier symbol is k (the factor i represents 
the imaginary unit). Note that I0(0) = 1 
= 0 for k = 0, so G0 is well-defined for all values of k. The pseudo-differential 
operators D and G0 are also called Fourier multipliers due to their multiplicative action in the Fourier k-space.

Similarly, for j > 0, we find

G j(η) = 1

j! (kη) jk
I( j)
1 (k)

I0(k)
− 1

( j − 1)! (i∂zη)(kη) j−1k
I( j−1)
0 (k)

I0(k)
−

j−1∑
�=0

1

( j − �)! G�(η)(kη) j−� I( j−�)
0 (k)

I0(k)
,

=
(

1

j!η
jk j+1 + 1

( j − 1)! (Dη)η j−1k j
)

I( j−1)
0 (k)

I0(k)
+ 1

j!η
jk j+1

(
I( j)
1 (k) − I( j−1)

0 (k)

I0(k)

)

−
j−1∑ 1

( j − �)! G�(η)η j−�k j−� I( j−�)
0 (k)

I0(k)
,

�=0
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and again its action in the physical space can be formulated in terms of D as

G j(η) = 1

j! Dη j D j I( j−1)
0 (D)

I0(D)
+ 1

j!η
j D j+1

(
I( j)
1 (D) − I( j−1)

0 (D)

I0(D)

)
−

j−1∑
�=0

1

( j − �)! G�(η)η j−�D j−� I( j−�)
0 (D)

I0(D)
, (20)

after noting that

1

j! Dη j D j = 1

j!η
j D j+1 + 1

( j − 1)! (Dη)η j−1 D j .

For example, the first two contributions from (20) are

G1(η) = DηD + ηD2
(

I ′1(D) − I0(D)

I0(D)

)
− G0ηD

I ′0(D)

I0(D)
,

= DηD − G0ηG0 − ηG0 , (21)

since

I ′0(D) = I1(D) , I ′1(D) = I0(D) − D−1 I1(D) ,

and

G2(η) = 1

2
Dη2 D2 I ′0(D)

I0(D)
+ 1

2
η2 D3

(
I ′′1(D) − I ′0(D)

I0(D)

)
− 1

2
G0η

2 D2 I ′′0(D)

I0(D)
− G1ηD

I ′0(D)

I0(D)
,

= 1

2
Dη2 DG0 + 1

2
η2 D2G0 − 1

2
η2 D2 + η2G0 − 1

4
G0η

2 D2 − 1

4
G0η

2 D2 I2(D)

I0(D)
− G1ηG0 , (22)

since

I ′′0(D) = 1

2

(
I0(D) + I2(D)

)
, I ′′1(D) =

(
1 + 2D−2

)
I1(D) − D−1 I0(D) .

By virtue of the self-adjointness property (i), the order of application of the various operators in (20) can be switched to 
arrive at

G j(η) = 1

j!
I( j−1)
0 (D)

I0(D)
D jη j D + 1

j!η
j D j+1

(
I( j)
1 (D) − I( j−1)

0 (D)

I0(D)

)
−

j−1∑
�=0

1

( j − �)!
I( j−�)
0 (D)

I0(D)
D j−�η j−�G�(η) . (23)

Equation (23) forms the basis of our numerical method to compute the DNO and thus to solve (15)–(16). As pointed out 
by Craig and Nicholls [14] and Xu and Guyenne [38], the adjoint recursion formula (23) is equivalent to (20) but it is 
computationally more efficient since it allows us to save and re-use the G j ’s as vector operations on ξ , without having 
to re-compute them at each order j when applied to concatenations of Fourier multipliers and powers of η. The various 
derivatives of I0 and I1 in (23) can be calculated as linear combinations of modified Bessel functions, namely

I(n)
0 (D) = 1

2n

n∑
m=0

Cn
m I2m−n(D) , (24)

= 1

2n

[
Cn

0 I−n(D) + Cn
1 I2−n(D) + · · · + Cn

n In(D)
]
,

and

I(n)
1 (D) = 1

2n

n∑
m=0

Cn
m I2m+1−n(D) , (25)

= 1

2n

[
Cn

0 I1−n(D) + Cn
1 I3−n(D) + · · · + Cn

n I1+n(D)
]
,

where

Cn
m = n!

m!(n − m)! ,

represents the binomial coefficient [1, Chap. 9]. The values of modified Bessel functions of the first kind are tabulated; for 
example, these functions are denoted by the command besseli in Matlab.

It should be pointed out that the surface formulation (15)–(16) together with the series expansion (19) of the DNO 
require that the free surface η be a single-valued graph of z. Therefore, overturning waves (with a multi-valued profile) are 
not permitted with the present algorithm.
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3. Numerical methods

3.1. Space discretization

For space discretization, we assume periodic boundary conditions in z (with zmin ≤ z ≤ zmax) and use a pseudo-spectral 
method based on the fast Fourier transform (FFT). This is a particularly suitable choice for the computation of the DNO 
since each term (23) in its Taylor series expansion consists of concatenations of Fourier multipliers with powers of η.

More specifically, both functions η and ξ are expanded in truncated Fourier series(
η
ξ

)
=

∑
k

(
η̂k

ξ̂k

)
eikz .

Spatial derivatives and Fourier multipliers are evaluated in the Fourier space, while nonlinear products are calculated in the 
physical space on a regular grid of N collocation points [7]. For example, if we wish to apply the zeroth-order operator 
G0 to a function ξ in the physical space, we first transform ξ to the Fourier space via FFT, apply the diagonal operator 
kI1(k)/I0(k) to the Fourier coefficients ̂ξk of ξ , and then transform back to the physical space.

In practice, the Taylor series of the DNO is also truncated to a finite number of terms,

G(η) ≈ G M(η) =
M∑

j=0

G j(η) , (26)

where the truncation order M is chosen according to the physical regime under consideration and/or the level of accuracy 
desired. In its adjoint form (23), the computational cost for evaluating (26) is estimated to be O (M2 N log N) by using the 
FFT. The choice of M will be discussed in more detail below but, thanks to the analyticity property (ii), it is usually sufficient 
to select a relatively small number of terms (M < 10 � N) for satisfactory results. This cost estimate is an indicator of how 
efficient our numerical method potentially is as compared to other elliptic solvers such as boundary-integral methods or 
volumetric finite-difference/element methods.

3.2. De-aliasing and ill-conditioning

Two major sources of numerical error in the present algorithm are aliasing and ill-conditioning. Typically the larger the 
wave amplitude or steepness, the more significant these effects. Aliasing is inherent to the pseudo-spectral approach when 
applied to nonlinear equations [32]. As commonly observed in operator expansion methods [30], ill-conditioning is related 
to the evaluation of the DNO in its series form (26) which relies heavily on cancellations of terms to ensure convergence. 
In practice, terms are not canceled exactly due to round-off errors which are then amplified through the recursive process, 
most severely in the highest Fourier modes, to eventually ruin the accuracy of the numerical calculation. As shown in 
(23), the presence of many Fourier multipliers D j (equivalent to derivatives) whose order increases with the series order, 
can dramatically amplify numerical errors and thus may promote numerical instabilities during the time evolution. This 
ill-conditioning issue will be discussed in more detail below when presenting numerical tests.

Here aliasing occurs primarily in the computation of the DNO. The j-term G jξ in (26) involves nonlinearities of order 
j + 1, so aliasing errors may accumulate quickly for large j. Complete de-aliasing may be achieved by the zero-padding 
technique which, for the DNO truncated at order M , requires increasing the size of the spectra of η and ξ by a factor of 
up to M + 1. The extra modes are then set to zero to prevent aliasing errors from arising. In fact, since the FFT is used, the 
nearest power of 2 greater than or equal to M + 1 should be chosen. This de-aliasing procedure was also used in [10,38]
and [21,22] for simulations of gravity and flexural-gravity waves. Note that it is accompanied by an increase in computer 
memory storage and run time but, in the present axisymmetric situation, this was not found to be a serious issue.

3.3. Time integration

Time integration of (15)–(16) is performed in the Fourier space so that the linear terms can be solved exactly by the 
integrating factor technique, thus lessening the stiffness of the problem [7,16,12]. For this purpose, we first separate the 
linear and nonlinear parts in (15)–(16). Defining v = (η, ξ)� , these equations can be expressed as

∂t v = Lv +N (v) , (27)

where the linear part L is defined by

Lv =
(

0 G0

∂2
z + 1 − B 0

)(
η
ξ

)
,

with ∂2
z η + (1 − B)η being the leading-order linear contributions from the capillary and magnetic terms in (16), and the 

nonlinear part N = (N1, N2)
� is given by
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N1 = (
G(η) − G0

)
ξ ,

N2 = − 1

2(1 + (∂zη)2)

[
(∂zξ)2 − 2(∂zη)(∂zξ)G(η)ξ − (G(η)ξ)2

]
− ∂2

z η

+ ∂2
z η

(1 + (∂zη)2)3/2
− η − 1

(1 + η)
√

1 + (∂zη)2
+ 1 + Bη + B

2

[
1

(1 + η)2
− 1

]
.

Subtraction of the terms G0ξ in N1 and ∂2
z η + (1 − B)η in N2 is meant to compensate for their presence in the linear part 

Lv . Then, by taking the Fourier transform of (27) and making the change of variables

v̂k(t) = �(t)ŵk(t) , (28)

where

�(t) =
⎛⎝ cos

(
t
√

(k2 + B − 1)G0
) √

G0
k2+B−1

sin
(
t
√

(k2 + B − 1)G0
)

−
√

k2+B−1
G0

sin
(
t
√

(k2 + B − 1)G0
)

cos
(
t
√

(k2 + B − 1)G0
)

⎞⎠ ,

we obtain the following nonlinear system

∂t ŵk = �(t)−1N̂k
[
�(t)ŵk

]
,

for ŵk , which is solved numerically in time using the fourth-order Runge–Kutta scheme with constant step �t . In terms of 
the original variables v̂k , by inverting (28), this scheme reads

v̂n+1
k = �(�t )̂vn

k + �t

6
�(�t)

(
f1 + 2 f2 + 2 f3 + f4

)
, (29)

where

f1 = N̂k
(

v̂n
k

)
,

f2 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

)(
v̂n

k + �t

2
f1

)]
,

f3 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

)(
v̂n

k + �t

2
f2

)]
,

f4 = �(−�t)N̂k
[
�(�t)

(̂
vn

k + �t f3
)]

,

for the solution at time tn+1 = tn + �t . The integrating factor �(t) is the fundamental matrix of the linear system

∂t v̂k = L̂k v̂k =
(

0 G0

1 − B − k2 0

)(
η̂k

ξ̂k

)
,

and, in the limit k → 0, it reduces to

�(t) =
(

1 0
−(B − 1)t 1

)
,

as given by l’Hôpital’s rule. In establishing (29), we have used the fact that �(t) is a semigroup and satisfies

�(a + b) = �(a)�(b) , �−1(a) = �(−a) .

These identities can be easily checked by direct calculation. Note that the coefficient of t in the argument of the cosine 
and sine functions for the fundamental matrix �(t) is nothing but the linear dispersion relation in terms of the angular 
frequency

ω =
√

(k2 + B − 1)G0 =
√

(k2 + B − 1)kI1(k)

I0(k)
,

which is related to the phase speed (7) by ω = ck.
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3.4. Filtering and initial condition

In our simulations, we have typically used �t = 0.001 as a good compromise between accuracy, stability and computa-
tional cost. For reference, this time step is thousands times smaller than the linear wave period τ = 2π/ω � 6 for B = 2.5
and k = 1. Given the fourth-order accuracy of our time-integration scheme, this value of �t is quite reasonable. We have 
also observed that using a smaller time step does not generally yield much better results partly because, to reach the same 
simulation time, more computations of the DNO are required, thus introducing more numerical errors.

In the case of large-amplitude or highly deformed waves, we have found it necessary to apply filtering in order to stabi-
lize the numerical solution so that it can be computed over a sufficiently long time. Otherwise, spurious high-wavenumber 
instabilities tend to develop, eventually leading to the computation breakdown. This issue may be related to ill-conditioning 
of the DNO as mentioned earlier (which will be further discussed in Section 4.1) but it may also be related to the specific 
nonlinearity and stiffness of the problem, hence use of prohibitively small time steps may be required to ensure stability. 
As a remedy, we apply a hyperviscosity-type filter of the form

exp

(
−36

∣∣∣∣ k

kmax

∣∣∣∣36
)

,

to the Fourier coefficients η̂k and ξ̂k at each time step, where kmax is the largest wavenumber of the resolved spectrum. 
Such a filter has been commonly employed in direct numerical simulations of nonlinear fluid flows by spectral methods 
[7,24,23,38] and its form ensures that only energy levels at high wavenumbers are significantly affected. Therefore, if a 
sufficiently fine resolution is specified, this filtering procedure should be able to suppress instabilities while preserving the 
overall solution.

To initialize our simulations of (15)–(16) for solitary waves, we use the finite-difference method of Blyth and Părău [5]
which computes such solutions in a reference frame moving with the wave speed. For the reader’s convenience, we present 
a brief description of their finite-difference method in the next section and refer to their paper for more details.

3.5. Finite-difference method for solitary waves

Solitary waves traveling at constant speed c > 0 are considered. In a reference frame moving with speed c, the boundary 
conditions (3) and (4) at the free surface r = S(Z) = 1 + η(Z) where Z = z − c t , become

∂r� = (∂Z �)(∂Zη) ,

and

1

2
(∂Z �)2

[
1 + (∂Zη)2

]
− ∂2

Zη

(1 + (∂Zη)2)3/2
+ 1

(1 + η)
√

1 + (∂Zη)2
− B

2(1 + η)2

= 1

2
c2 + 1 − B

2
.

To compute solitary waves on an axisymmetric jet, we employ the numerical method initially described by Jeppson [26]
and subsequently used by Vanden-Broeck et al. [37] for capillary waves. It is based on finite differences and requires solving 
for the unknowns r(�, ψ) and z(�, ψ) in the inverse plane (�, ψ ), where ψ is the Stokes streamfunction defined as

−∂Z ψ

r
= ∂r�,

∂rψ

r
= ∂Z �.

The advantage of this approach is that the fluid domain is rectangular and fixed in the inverse plane, as given by

−∞ < � < ∞ , 0 ≤ ψ ≤ ψS ,

where ψS = c/2. The derivatives of the new unknowns can be written as

∂ψ Z = −∂�r

r
, ∂ψr = ∂� Z

r
. (30)

In terms of these new variables, the Laplace equation (1) becomes

r3(∂2
ψ r) + r(∂2

�r) + r2(∂ψ r)2 − (∂�r)2 = 0 , (31)

and the Bernoulli condition at ψ = ψS reads

1/2

r2(∂ψ r)2 + (∂�r)2
− r(∂ψ r)(∂2

�r) − (∂�r)2(∂ψr) − r(∂�r)(∂2
�ψ r)[

(∂�r)2 + r2(∂ψ r)2
]3/2

− |∂ψr|[
(∂ r)2 + r2(∂ r)2

]1/2
− B

2r2
= 1

2
c2 + 1 − B

2
. (32)
� ψ
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We are interested in symmetric solutions and truncate the variable � at some point �∞ > 0, so our rectangular computa-
tional domain reduces to

0 ≤ � ≤ �∞ , 0 ≤ ψ ≤ ψS .

Together with these equations, we impose the no-flux condition

r = 0 , (33)

at the axial rod ψ = 0, 0 ≤ � ≤ �∞ . The symmetry condition at � = 0, 0 ≤ ψ ≤ ψS and the truncation condition at � = �∞ , 
0 ≤ ψ ≤ ψS are specified by

∂�r = 0 . (34)

The exact solution corresponding to a uniform stream with velocity c is given by � = c Z and η = 0, and can be re-written 
in terms of the new variables as r = √

2ψ/c. To avoid the singularity of ∂ψ r at ψ = 0, we introduce another variable ψ = �2. 
The partial derivatives on ψ can be easily replaced with derivatives on � in the equations to be solved.

We use a regular grid with Np equally spaced points in � between 0 and �∞ , and Mp equally spaced points in �
between 0 and �S = √

ψS to perform the computations. We discretize the equivalent of (31) in terms of � and � using 
centered differences at the interior points of this mesh and enforce the boundary conditions (32)–(34). Given B and c, the 
Np × Mp nonlinear algebraic equations obtained for the Np × Mp unknowns r(�i, � j), i = 1, . . . , Np , j = 1, . . . , Mp are 
solved iteratively using Newton’s method. The free-surface location is extracted from the converged solution as r(�, �S ). 
The unknown Z(�) is determined by integrating numerically the second equation of (30) at � = �S , using the trapezoidal 
rule. The accuracy of the numerical solution was checked by varying the numbers of grid points N p and Mp , and by varying 
the truncation point �∞ . Most of the results presented here were obtained with Np = 77, Mp = 20 and for various values 
of �∞ , �S ranging from 5 to 20. We have also used a version of this numerical method where the wave amplitude is fixed 
as the (Np × Mp + 1)-st equation and the speed c is found as the (Np × Mp + 1)-st unknown. Typically, a forced solution 
of small amplitude is first calculated by applying a Gaussian pressure at the free surface and then is prescribed as an initial 
guess to look for the branch of pure solitary waves by continuation in amplitude.

Because this finite-difference scheme generates a non-uniform spatial grid in Z , the resulting data are fitted onto the 
pseudo-spectral uniform grid in z by using cubic interpolation to provide the initial solution at t = 0. Furthermore, to 
comply with the periodic boundary conditions imposed by the pseudo-spectral method, the interpolated data on velocity 
potential �min ≤ � ≤ �max are made periodic (with zero boundary conditions) over zmin ≤ z ≤ zmax via a linear harmonic 
transformation such that the initial conditions are

η(z,0) = r(�,�S) − 1 , ξ(z,0) = � − �min + �max − �min

zmax − zmin
(zmin − z) .

The interpolated data on the free surface r are spatially localized and thus need not be further periodized.

4. Numerical results

4.1. Convergence of the DNO

The DNO has been shown to be analytic in η under certain regularity conditions on the free surface, which implies that 
it can be written in terms of a convergent Taylor series expansion in η and its convergence is expected to be exponen-
tial with the truncation order. We have examined this property with the present algorithm by comparing the numerical 
approximation (26) of the DNO with an exact expression, based on the harmonic solution

� = I0(kr) sin(kz) , (35)

where, again, the time dependence is omitted because the domain is fixed in this test. Given η, an exact expression of the 
DNO can be obtained by inserting (35) into (10), yielding

G E(η)ξ = ∂r� − (∂z�)(∂zη)

∣∣∣
r=1+η

,

= k
[

I1
(
k(1 + η)

)
sin(kz) − (∂zη)I0

(
k(1 + η)

)
cos(kz)

]
.

We will present convergence tests for two types of surface profiles, namely a sinusoidal one

η = ε cos(kz) , (36)

mimicking periodic waves, and a Gaussian one

η = εe−αz2
, (37)

mimicking solitary waves.
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Fig. 1. Relative L∞ error on the DNO as a function of M for a sinusoidal surface profile η of varying amplitude ε with wavenumber k = 1 (left) and k = 10
(right). The spatial resolution is N = 1024.

Fig. 1 shows the relative L∞ error between G E and G M , i.e.

Error = ‖G E − G M‖∞
‖G E‖∞

,

as a function of M for different values of ε in the case of a slowly varying sinusoidal profile (k = 1) and a rougher one 
(k = 10). The computational domain is [−π, π ] with resolution N = 1024 (i.e. grid size �z = 0.006). A first observation is 
that convergence with respect to ε is clearly demonstrated: the lower the amplitude ε, the lower the error for a fixed M . 
This error falls down to near machine precision for very small values of ε. However, although the errors remain overall 
small, their decay quickly stagnates past M � 2. We also see that, for large amplitudes, the convergence deteriorates leading 
to a dramatic error growth past some critical value of M . The larger the amplitude or steepness of η (i.e. the larger ε or 
k), the smaller this critical value. Such a phenomenon is an illustration of numerical ill-conditioning of the series expansion 
(19) for the DNO that we mentioned earlier and it has been observed in other physical contexts [30,18,38].

The rapid stagnation of convergence is also related to this ill-conditioning but is more peculiar to the present axisym-
metric case. Unlike the rectangular geometry with Cartesian coordinates as adopted in previous studies of the water wave 
problem, where the harmonic solution (18) involves a hyperbolic sine (i.e. sinh) function in the vertical direction and hence 
its successive derivatives are simply either a cosh or sinh function, here each derivative of I0 or I1 in (23) contains several 
terms whose number increases with the differentiation order. As a consequence, the number of contributions to each G j is 
also further increased and, for example, we can already see that many more terms are produced in (21)–(22) when going 
from G1 to G2. Via recursion, the expression of each G j is expected to grow fast in complexity with the order j, which 
may explain why the convergence saturates so early at M � 2 as revealed in Fig. 1. This pinpoints the recursion formulas 
(24)–(25) for I(n)

0 and I(n)
1 as an additional aggravating contributor to ill-conditioning of the DNO by promoting numerical 

errors due to non-exact cancellation of terms. Unfortunately, we are unaware of alternate efficient ways to compute the 
derivatives of modified Bessel functions.

The same features are observed for a localized Gaussian profile in Fig. 2. Moreover, as illustrated with a sinusoidal profile 
in Fig. 3, the convergence versus M also deteriorates with increasing resolution N (while fixing ε and k). This is consistent 
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Fig. 2. Relative L∞ error on the DNO as a function of M for a Gaussian surface profile η of varying amplitude ε with decay rate α = 5. The spatial resolution 
is N = 1024.

Fig. 3. Relative L∞ error on the DNO as a function of M for a sinusoidal surface profile η of amplitude ε = 0.2 and wavenumber k = 1 with varying 
resolution N . The numbers of grid points N = 64, 128, 256, 512, 1024 correspond to grid sizes �z = 0.098, 0.049, 0.024, 0.012, 0.006 respectively.

with our previous statement that the presence of Fourier multipliers in (23) tend to amplify numerical errors in the high 
Fourier modes. For fine resolutions, this error amplification is particularly severe past some critical value of M . Below this 
critical value, the convergence rate quickly stagnates as noted before and is pretty much identical in all cases. For low 
resolutions or low amplitudes, it is nonetheless a little comfort that the errors only stagnate and remain small rather than 
quickly growing with M . This helps justify that our numerical method could still be employed to simulate the present 
ferrofluid problem with reasonable accuracy by specifying suitable values of M and N .

We have also examined the influence of de-aliasing on the convergence of the DNO, as depicted in Fig. 4 for ε = 0.1, 
k = 10 and N = 1024. It can be seen that the loss of convergence in the aliased computation occurs sooner (at M � 10) than 
in the de-aliased one. This indicates that the zero-padding technique is effective at reducing aliasing errors in the evaluation 
of the DNO. Needless to say that it is important to minimize errors as much as possible at this stage since they may quickly 
accumulate during the time integration owing to the nonlinearity in the governing equations.

4.2. Solitary waves

Solitary waves on the surface of a ferrofluid jet have been the subject of several recent studies ranging from theoretical 
[34] to experimental [6] and numerical [5]. In particular, Rannacher and Engel [34] derived a KdV equation for the present 
ferrofluid problem and examined a case of overtaking collision with the two-soliton solution of this weakly nonlinear model. 
Here we extend their results to the highly nonlinear regime by performing time-dependent simulations of (15)–(16). Doing 
so helps validate not only the proposed algorithm that solves the time-evolution problem but also the finite-difference 
method of [5] which independently generates the initial condition. Because the present paper is focused on the development 
and testing of our DNO approach, we only show illustrative examples and postpone a more in-depth study of solitary wave 
collisions to a future publication. For the interested reader, such an investigation in the context of water waves can be 
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Fig. 4. Relative L∞ error on the DNO as a function of M for a sinusoidal surface profile η of amplitude ε = 0.1 and wavenumber k = 10 with (blue circles) 
and without (red triangles) de-aliasing. The spatial resolution is N = 1024. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)

Fig. 5. Solitary wave of depression with amplitude ε = 0.3 for B = 2.5. Left: profiles at t = 0 (dashed line) and t = 1000 (solid line). Right: relative errors 
on mass V (dashed line) and volume W (solid line) versus time.

found in [10]. Based on the convergence tests shown in the previous section, we have found it sufficient to use M = 2 (with 
de-aliasing) for all the numerical simulations to be presented below. We have checked that using a higher value of M gives 
similar results.

Following the KdV analysis [3,34], we first consider the range 3/2 < B < 9 that supports solitary waves of depression 
with speed c < c0 and then the narrower range 1 < B < 3/2 for solitary waves of elevation with c < c0. The first experiment 
concerns the free propagation of a single solitary wave, in which case the solution is expected to evolve in time without 
change of shape and speed. Fig. 5 plots the initial condition of η at t = 0 together with its counterpart at a much later time 
t = 1000 � τ from the simulation of a depression solitary wave with amplitude ε = 0.3 for B = 2.5. The spatial resolution 
is �z = 0.15 (N = 256 grid points over −20 ≤ z ≤ 20). Apart from the translation in z, we see that the two profiles look 
pretty much identical. It is because of the periodic boundary conditions that the initial and final pulses end up being 
located relatively close together. Over the time interval [0, 1000], the solution has actually traveled several times through 
the computational domain [−20, 20]. Fig. 5 also indicates that mass (5) and volume (6) are well conserved throughout the 
entire simulation, with relative errors

�V (t)

V 0
=

∣∣∣∣ V (t) − V 0

V 0

∣∣∣∣ ,
�W (t)

W0
=

∣∣∣∣ W (t) − W0

W0

∣∣∣∣ ,

of order O (10−4) and O (10−5) respectively, where V 0 and W0 denote the initial values of V and W at t = 0, and further-
more these errors exhibit no global increasing or decreasing trend over time. The integrals in (5) and (6) were evaluated 
by the trapezoidal rule. Because this long computation required filtering (which is typically needed for ε > 0.1), it supports 
the fact that our filtering technique is effective at suppressing numerical instabilities while keeping the solution’s spectrum 
essentially unaffected. The small reduction in wave amplitude discernible from Fig. 5 at t = 1000 is partly attributable to 
filtering.

To more closely check the numerical preservation of solitary wave profiles over time, Fig. 6 shows their superposition in 
such a way that their troughs coincide. For ε = 0.3, the two profiles at t = 0 and t = 1000 are pretty much indistinguishable 
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Fig. 6. Superposition of solitary wave profiles at t = 0 (solid line) and t = 1000 (dashed line) for B = 2.5. Left: ε = 0.3. Right: ε = 0.4.

Fig. 7. Head-on collision of two solitary waves of depression for B = 2.5. Reversed profiles are shown. Left: equal amplitudes ε = 0.3. Right: different 
amplitudes ε = 0.1 and ε = 0.3.

to graphical accuracy while, for ε = 0.4, small discrepancies are noticeable at the bottom and on both sides of the wave 
trough. As ε is increased, the computed wave tends to decay and lose coherency over time by emitting radiation. More 
quantitatively, the relative L2 error between the two profiles at t = 0 and t = 1000 is found to be 1.4 × 10−2, 4.3 × 10−2

for ε = 0.3, 0.4 respectively. For lower wave amplitudes, the errors on wave profile and mass/volume conservation are even 
smaller, so the results are not shown here for convenience. For ε > 0.4 in this magnetic regime, the numerical solution was 
observed to disperse or the code broke down after a short run time.

We further examine properties of solitary waves in this ferrofluid problem by simulating their pairwise collisions. From 
the existing literature, it was not known whether such collisions are elastic in the fully nonlinear case and, if not, to what 
extent they are inelastic. Physically, this has implications for the nonlinear stability of ferrofluid jets and their potential 
applications. Fig. 7 depicts the (z, t)-diagram for the head-on collision of two solitary waves moving in opposite directions. 
Two situations are considered: a symmetric collision of two waves with equal amplitude ε = 0.3, and an asymmetric col-
lision of two waves with different amplitudes ε = 0.1 and 0.3. For clarity, the reversed profile of these depression solitary 
waves is shown in Fig. 7. In both cases, the spatial resolution is �z = 0.11 (N = 1024 grid points over 0 ≤ z ≤ 120), and 
the initial condition is simply the superposition of two individual solutions generated by the finite-difference scheme. This 
is justified by the fact that their initial locations are chosen to be sufficiently well separated from each other. Note that the 
direction of wave propagation (left or right) can be set initially by simply changing the sign of the velocity potential ξ . At 
first glance, the collision patterns look similar to those occurring in e.g. the water wave problem [10] but there are notable 
differences as discussed in more detail next.

Closer examination of the symmetric head-on collision with ε = 0.3 is presented in Fig. 8 displaying snapshots of the 
free surface at various times. As a reference, the numerical solution is compared with the superposition of two individual 
counter-propagating KdV solitons

η(z, t) = 3c1

κ
sech2

[√
c1

4σ

(
z − z1 − (c1 + c0)t

)]
+ 3c2

κ
sech2

[√
c2

4σ

(
z − z2 + (c2 + c0)t

)]
, (38)

where z1, z2 are the initial locations of the two pulses, c0 is given by (8),

κ = 2B − 3
, σ = B − 9

, ci = sgn(σ )

∣∣∣εiκ
∣∣∣ , i = {1,2} ,
4c0 32c0 3



P. Guyenne, E.I. Părău / Journal of Computational Physics 321 (2016) 414–434 429
Fig. 8. Head-on collision of two solitary waves of depression with equal amplitude ε = 0.3 for B = 2.5. The numerical solution is represented by a solid 
line while the superposition of two KdV solitons is represented by a dashed line. Profiles at t = 0 (a), 32 (b), 35 (c), 37 (d), 38 (e) and 70 (f) are shown.

and here ε1 = ε2 = 0.3 [34]. Equation (38) reveals why solitary waves are expected to be of depression in the range 3/2 <
B < 9 since κ > 0 and σ < 0, while they should be of elevation for 1 < B < 3/2 since both κ < 0 and σ < 0. This formula 
also predicts that the solitary wave speed should be less than the linear phase speed c0 in both ranges of B since σ < 0 and 
hence ci < 0 for B < 9, which implies that ci + c0 < c0. In particular, the lower the wave amplitude, the higher the speed 
which gets closer to c0.

These weakly nonlinear predictions are qualitatively verified by our numerical simulations (see also the discussion for 
elevation waves below). However, on the quantitative level, “fully nonlinear” solutions tend to be steeper than KdV solitons 
for the same amplitude. As expected from the superposition (38), the KdV approximation can reach a maximum amplitude 
twice as large as the initial one (at t = 37 in Fig. 8), while the numerical solution does not get so deep. This phenomenon 
contrasts with the water wave problem where colliding solitary waves attain a maximum amplitude slightly higher than 
the sum of the initial ones. Moreover, consistent with a previous statement, the interaction is inelastic and induces small-
amplitude long residual waves that develop ahead of (rather than trailing behind) the two separating pulses because they 
travel faster at the linear speed c0. These residual waves can be clearly seen at t = 70 in Fig. 8 and their wake-like pat-
tern can also be identified in the (z, t)-diagram of Fig. 7. We believe their nature is physical, rather than being spurious 
numerical excitations, because the collision takes place over a relatively short interval of time and these residual waves 
distinctively arise after it. We have also checked their presence in computations with a finer resolution or a higher value 
of M . Not surprisingly, another observation from Fig. 8 is the occurrence of a phase shift due to the interaction, which 
is indicated by the slight mismatch between KdV and numerical profiles at t = 70. Similar results were obtained for the 
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Fig. 9. Overtaking collision of two solitary waves of depression with amplitudes ε = 0.1 and ε = 0.3 for B = 2.5. The numerical solution is represented by 
a solid line while the KdV two-soliton solution is represented by a dashed line. Wave propagation is from left to right. Profiles at t = 0 (a), 365 (b), 425
(c), 590 (d), 700 (e) and 1000 (f) are shown.

asymmetric head-on collision and, understandably, a more pronounced residual wave tends to develop near the larger pulse 
as depicted in Fig. 7.

In addition to head-on interactions, we have also simulated overtaking cases where both solitary waves move in the 
same direction, and an example is provided in Fig. 9. Clearly, the two waves must now be of different amplitudes so that 
their speeds are different otherwise one cannot overtake the other. Fig. 9 shows snapshots of such a collision for ε = 0.1
and ε = 0.3. This time, the computation is compared with the one-way KdV two-soliton solution

η(z, t) = 4
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2
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2
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2
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and γ 2
i = 3ci/κ (i = 1, 2) as derived by Rannacher and Engel [34]. The parameters ci , κ and σ are the same as those 

defined in (38). As stated earlier (unlike water waves), it is the smaller solitary wave that catches up with the larger 
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Fig. 10. Head-on collision of two solitary waves of elevation with equal amplitude ε = 0.1 for B = 1.25. The numerical solution is represented by a solid 
line while the superposition of two KdV solitons is represented by a dashed line. Profiles at t = 0 (a), 176 (b), 220 (c), 236 (d), 276 (e) and 500 (f) are 
shown.

one and overtakes it. The first snapshot of Fig. 9 also confirms the expectation that the lower the wave amplitude, the 
closer the KdV approximation to the numerical solution. Because overtaking collisions take place over a longer time scale 
than head-on collisions, differences between KdV and “fully nonlinear” evolutions get more pronounced. In particular, the 
interaction process predicted by the KdV equation is significantly delayed compared to the numerical one: it is delayed both 
in the overall evolution and propagation. However, apart from this delay, Fig. 9 suggests that the main features are well 
reproduced by the KdV solution. The two interacting waves seem to pass each other without amplitude increase. When 
they merge at t = 425, the resulting profile looks like being their average rather than a superposition. After the collision, 
they tend to separate into two individual solitary waves resembling the initial ones, with negligible residual. This close 
resemblance with the initial condition is clearly displayed in Fig. 9 at the late time t = 1000 and further demonstrates the 
good performance of our algorithm.

We turn our attention to solitary waves of elevation for B = 1.25 in the range 1 < B < 3/2. We have again checked that 
a single wave of this type propagates with negligible change in shape and speed if its amplitude is not too large, and this 
is not reported here for convenience. Note that, for a given amplitude, a solitary wave of elevation for B = 1.25 is found to 
be significantly broader than the depression one for B = 2.5. Fig. 10 displays snapshots during the head-on collision of two 
elevation waves with equal amplitude ε = 0.1. The spatial resolution is �z = 0.14 (N = 2048 grid points over 0 ≤ z ≤ 300), 
and the initial condition is set up as before. We first observe that the KdV formula (38) is quite a good approximation to 
these solitary waves at t = 0. It also reproduces well their shape during the early stages of the interaction and later during 
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Fig. 11. Overtaking collision of two solitary waves of elevation with amplitudes ε = 0.1 and ε = 0.5 for B = 1.25. The numerical solution is represented 
by a solid line while the KdV two-soliton solution is represented by a dashed line. Wave propagation is from left to right. Profiles at t = 0 (a), 1010 (b), 
1150 (c), 1900 (d), 2170 (e) and 2500 (f) are shown.

the separation. However, in contrast to the previous regime B = 2.5, the numerical solution can now reach a maximum 
amplitude > 0.2 (well beyond the sum of the two initial amplitudes), as illustrated in Fig. 10 at t = 236. Small residual 
waves are again produced by the collision but are barely discernible in front of each exiting pulse.

An example of overtaking collision between two solitary waves of elevation with amplitudes ε = 0.1 and ε = 0.5 is 
provided in Fig. 11. Note that ε = 0.5 is quite a large amplitude relative to the mean fluid depth a = 1 (in dimensionless 
units), nonetheless the corresponding pulse is seen to still match the KdV approximation well at t = 0. Observations similar 
to those for B = 2.5 can be made here and, in particular, the solution’s amplitude turns out to be less than the largest initial 
amplitude at the time of complete merging, as shown in Fig. 11 at t = 1150 when ‖η‖∞ � 0.4 < 0.5. A major difference 
with the depression case is that, although the numerical process of interaction occurs faster than the one predicted by the 
KdV equation, its overall propagation is slower (i.e. the mean location of the numerical profile tends to trail behind that 
of the KdV profile). When looking at Fig. 11, recall that the waves have traveled multiple times through the computational 
domain due to the periodic boundary conditions. The asymptotic state as t → +∞ is again two separate solitary waves 
almost identical to the initial ones coexisting with some small radiative background. Many features occurring here bear 
close resemblance with those observed in the water wave problem [10] and, for future work, it would be worth identifying 
more clearly the various mechanisms and scenarios involved. Finally, it is emphasized that simulation of overtaking collisions 
is a particularly discriminating test because the numerical model must be able to accurately capture both the dispersive and 
nonlinear effects over a long period of time.
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5. Conclusions

We have explored the possibility of using a boundary-perturbation technique to simulate the propagation of axisym-
metric nonlinear waves on the surface of a ferrofluid jet. Our new numerical approach is based on the reduction of the 
original Laplace problem to a lower-dimensional system involving surface variables alone. This is achieved by introducing 
the DNO which is expressed in terms of a convergent Taylor series expansion about the uniform cylindrical geometry of the 
jet. A recursion formula was derived to evaluate this Taylor series up to an arbitrary order, with each term being given as a 
sum of concatenations of Fourier multipliers with powers of the surface deformation. This allows the DNO to be efficiently 
computed by a pseudo-spectral method using the FFT, and thus makes our boundary-perturbation approach especially suit-
able for time-evolution simulations. In the axisymmetric case, these Fourier multipliers involve modified Bessel functions in 
the radial direction.

We have shown extensive numerical tests on the convergence of the DNO as a function of the truncation order M for 
various surface profiles, surface amplitudes and spatial resolutions. Effects of de-aliasing were also investigated. Although 
the errors remain overall small, their decrease is not found to be exponential in M , unlike what could be expected from 
the analyticity property of the DNO. Rather, our tests indicate that the convergence quickly stagnates past M � 2 and even 
deteriorates past a critical higher value of M for large surface deformations or fine spatial resolutions. Although the latter 
behavior is known to be related to ill-conditioning of the DNO in its series form, the former behavior is an issue believed 
to be more peculiar to the present axisymmetric case. Indeed, the recursion formula for our DNO involves derivatives of 
modified Bessel functions that are themselves determined recursively and this tends to amplify numerical errors as M
increases.

Despite these numerical issues on the DNO, we have found that our algorithm gives quite satisfactory results when 
applied to solving the initial-value problem. We have extended the results of [34] and [5] by simulating the long-time 
propagation and pairwise collisions of solitary wave solutions in the highly nonlinear regime. Both depression and elevation 
waves were examined by varying the magnetic Bond number B , and comparisons with KdV predictions were also made. 
In all cases that we have considered, the collisions are found to be inelastic, generating small residual waves ahead of the 
separating pulses. The significance of these residual waves depends on the collision type and on the initial amplitude of 
the colliding solitary waves. In the overtaking case, the interaction is relatively weak and produces residual waves that are 
barely noticeable. In the head-on case, the interaction is typically stronger leading to more radiation but the maximum 
amplitude reached may be slightly less or more than the sum of the two initial amplitudes depending on whether the 
solitary waves are of depression or elevation.

Our preliminary results together with those of [5] suggest that this ferrofluid problem has a rich physical nature and 
thus further investigation is called for to better characterize the observed phenomena. A magnetic regime that we have 
not described here is B ≥ 9 where solutions are particularly nonlinear and solitary waves may be unstable. Their numerical 
simulation requires special care and is envisioned for future work. In addition, it would be of interest to extend our numer-
ical model to the more realistic situation 0 < b < 1 (i.e. an inner conducting wire of small but finite thickness) and explore 
whether there are major differences in dynamical behavior as compared with b = 0. Adapting the procedure of [11,13], we 
might also consider the configuration where the jet surface lies between two fluid layers (rather than assuming vacuum in 
the outer region) so as to more closely describe the experimental set-up of [6] and possibly compare with their data.
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