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In this paper, we consider a one-dimensional fully nonlinear weakly dispersive Green–
Naghdi model for shallow water waves over variable bottom topographies. Such model
describes a large spectrum of shallow water waves, and it is thus of great importance
to design accurate and robust numerical methods for solving it. The governing equations
contain mixed spatial and temporal derivatives of the unknowns. They also have still-water
stationary solutions which should be preserved in stable numerical simulations. In our
numerical approach, we first reformulate the Green–Naghdi equations into balance laws
coupled with an elliptic equation. We then propose a family of high order numerical
methods which discretize the balance laws with well-balanced central discontinuous
Galerkin methods and the elliptic part with continuous finite element methods. Linear
dispersion analysis for both the (reformulated) Green–Naghdi system and versions of the
proposed numerical scheme is performed when the bottom topography is flat. Numerical
tests are presented to illustrate the accuracy and stability of the proposed schemes as well
as the capability of the Green–Naghdi model to describe a wide range of shallow water
wave phenomena.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Despite the rapid development in recent years of numerical methods that directly solve the Euler equations for water
waves [18–20,44,7], simplified long-wave models of shallow water and Boussinesq type still remain the preferred choice
for applications in such areas as coastal and hydraulic engineering. Shallow water (or Saint-Venant) equations can model
the propagation of strongly nonlinear waves up to breaking and runup in nearshore zones. However, they fail to properly
describe wave propagation in deeper water because they do not incorporate frequency dispersion. Boussinesq systems carry
weak frequency dispersion but are typically restricted to small-amplitude waves. In the past few decades, much effort has
been devoted to improve their dispersive and nonlinear properties and, as a result, the current generation of Boussinesq
models has reached a high degree of sophistication, being applicable to highly nonlinear waves, shorter wavelengths and
deeper water [1,15,13,34].

Extensions of the shallow water equations that incorporate frequency dispersion can be traced back to Serre [33] who
derived a one-dimensional system of equations for fully nonlinear weakly dispersive waves over flat bottom (see also [35]).
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Green and Naghdi [17] presented the two-dimensional counterpart of these equations for wave propagation over variable
bottom topography. Israwi [21] derived and analyzed a new two-dimensional Green–Naghdi system which allows control
of the rotational part of the horizontal velocity. Because so-called Green–Naghdi equations combine both full nonlinearity
(i.e. no assumption is made on the wave amplitude) and weak dispersion, they are applicable to a wide range of problems
involving small- to large-amplitude waves on both shallow and relatively deep water. For these reasons, there has been
increasing interest in the development and simulation of Green–Naghdi models in recent years [8,9,23,31,3,4,6], and this is
also the motivation of the present work.

One challenge in developing numerical methods for the Green–Naghdi model is related to the newly added spatial and
temporal mixed derivative terms resulting from the inclusion of dispersive effects. To treat such terms, the original Green–
Naghdi model is usually reformulated and discretized by hybrid schemes [8,23,3]. This framework is followed in the present
work. More specifically, we reformulate the Green–Naghdi equations into balance laws coupled with an elliptic equation
by introducing a new unknown instead of working with the traditional one, hu, where h is the total water depth and u is
the vertically averaged horizontal velocity. The resulting system is then discretized by a hybrid method combining central
discontinuous Galerkin (CDG) methods [27] and continuous finite element (FE) methods. The technique we adopt to refor-
mulate the equations by introducing a new unknown was used in [23] for flat bottom. We here extend it to variable bottom
topography. Our reformulation is also close to that in [8] where the original Green–Naghdi model with a dispersion correc-
tion term is reformulated into a quasi-conservative system coupled with an elliptic equation using an auxiliary unknown
similar to ours. The balance law in the present work has a nontrivial source term which needs special treatment in order to
achieve a well-balanced scheme.

In this regard, another issue in simulating Green–Naghdi equations over variable bottom topography is to exactly preserve
their still-water stationary wave solution [2]

u = 0, h + b = constant, (1)

where b represents the bottom topography and h + b is called the water surface. Numerical schemes exactly preserving
the still-water stationary solution are called well-balanced methods. Absence of the well-balanced treatment may intro-
duce oscillations into the approximate solution when it is in or close to a stationary state. For hyperbolic shallow water
equations, many high order well-balanced methods have been developed [37–42,30]. In this paper, we propose high order
well-balanced methods for a Green–Naghdi model based on the coupled CDG–FE schemes mentioned above. The main in-
gredient to achieve the well-balanced property is to modify the source term through a special decomposition similar to that
proposed in [42]. The resulting spatial discretization has the features of being both high order accurate for general solutions
and exactly preserving the still-water stationary solution. In physically relevant numerical simulations, it is also important to
preserve the positivity of the water height at all times. A positivity-preserving well-balanced DG scheme solving the classical
shallow water equations was recently reported in [43]. Motivated by this work, the development of a positivity-preserving
well-balanced CDG scheme for the Green–Naghdi model is currently under way.

The underlying CDG methods are a family of high order numerical methods defined on overlapping meshes, which were
originally introduced for hyperbolic conservation laws [27] and then for diffusion equations [28]. These methods can be
systematically formulated with any order of (formal) accuracy. By evolving two sets of numerical solutions without using
any numerical flux at element interfaces as in Godunov schemes, CDG methods provide new opportunities to designing
accurate and stable schemes such as for Hamilton–Jacobi equations [24] and for ideal MHD equations [25,26]. These methods
prove again in the present work that they are a good candidate to solve the balance laws resulting from the reformulation
of the Green–Naghdi model (see Section 3.1) without explicitly “knowing” a lot about the equations, and to achieve the
well-balanced property of the overall scheme.

After the proposed well-balanced CDG–FE schemes are formulated, their performance and reliability will be demon-
strated through a sequence of numerical tests. Moreover, we will validate the Green–Naghdi model by comparing with real
data from laboratory experiments in coastal engineering. The remainder of the paper is organized as follows. In Section 2,
we present the mathematical formulation of the governing equations. Section 3 is devoted to the numerical methods. We
first reformulate the equations, and then propose a family of high order schemes which couple well-balanced CDG meth-
ods and continuous finite element methods. In Section 4, we analyze the linear dispersion relation for the (reformulated)
Green–Naghdi model, together with that for the linearized numerical scheme in its semi-discrete form when the bottom
topography is flat. Then, a set of numerical experiments are presented to illustrate the accuracy and well-balanced property
of the methods in Section 5. Finally, concluding remarks are given in Section 6.

2. Mathematical formulation: the Green–Naghdi model

We consider the one-dimensional system for fully nonlinear weakly dispersive waves [17,32],⎧⎨⎩
ht + (hu)x = 0,

(hu)t +
(

hu2 + 1

2
gh2 + 1

3
h3Φ + 1

2
h2Ψ

)
= −

(
gh + 1

2
h2Φ + hΨ

)
bx,

(2)
x
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on the domain Ω = (xmin, xmax), with

Φ = −uxt − uuxx + u2
x , Ψ = bxut + bxuux + bxxu2, (3)

where h is the total water depth, u is the vertically averaged horizontal velocity, g is the gravitational constant, and b is the
bottom topography. The subscripts t and x denote the partial derivatives with respect to the time variable t and the spatial
variable x, respectively. For flat bottom, meaning b(x) is constant, system (2) becomes⎧⎨⎩

ht + (hu)x = 0,

(hu)t +
(

hu2 + 1

2
gh2 + 1

3
h3Φ

)
x
= 0,

(4)

which was first derived by Serre [33] and then rederived by Su and Gardner [35]. We refer to system (2) (resp. (4)) as
Green–Naghdi equations for a non-flat (resp. flat) bottom. If Φ = Ψ = 0, then (2) and (4) coincide with the classical shallow
water equations for non-flat and flat bottom topography, respectively.

One difficulty in designing numerical schemes for the Green–Naghdi model comes from the mixed spatial and temporal
derivatives in the equations. To tackle this, we first reformulate the original equations, as described in Section 3.1. Moreover,
in the case of variable bottom, system (2) has a still-water stationary solution (1) for which the flux term is nonzero yet it
is exactly balanced by the source term. This balance law however is often violated in standard numerical methods, which
may lead to oscillations when the solution is in or close to a stationary state. In the present work, a new well-balanced
scheme based on CDG methods is proposed in Section 3.2.2 which exactly preserves the still-water stationary solution (1).

3. Numerical schemes

3.1. Reformulation of the Green–Naghdi model

In order to treat the mixed spatial and temporal derivatives in (2), we first introduce a new unknown

hK = −1

3

(
h3ux

)
x + h

(
1 + hxbx + 1

2
hbxx + b2

x

)
u. (5)

Note that the terms containing Φ and Ψ in (2) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
h3Φ = −

(
1

3
h3ux

)
t
−

(
1

3
h3ux

)
x
u − 2

3
h3u2

x ,

1

2
h2bxΦ = −

(
1

2
h2bxux

)
t
− hhxbxuux − 1

2
h2bxuuxx − 1

2
h2bxu2

x ,

1

2
h2Ψ =

(
1

2
h2bxu

)
t
+ 1

2
h2u2bxx + hhxu2bx + 3

2
h2uuxbx,

hbxΨ = (
hb2

x u
)

t + (
hu2b2

x

)
x − hu2bxbxx.

(6)

By applying the identities in (6) and using K , system (2) can be reformulated into a balance law⎧⎨⎩
ht + (hu)x = 0,

(hK )t +
(

hK u + 1

2
gh2 − 2

3
h3u2

x + h2uuxbx

)
x
= −ghbx − 1

2
h2uuxbxx + hu2bxbxx,

(7)

where the conventional unknowns (h,hu)� are replaced by the new unknowns (h,hK )� . With this new formulation, the so-
lution of the original Green–Naghdi model (2) amounts to finding the unknowns (h,hK )� based on (7) and the unknown u
from (5). Note that Eq. (5) is of elliptic type as long as h > 0. In the region where h = 0, we impose the solution u to be
zero.

For flat bottom, Eqs. (5) and (7) become a coupled system of an elliptic equation

hK = −1

3

(
h3ux

)
x + hu, (8)

and conservation laws⎧⎨⎩
ht + (hu)x = 0,

(hK )t +
(

hK u + 1

2
gh2 − 2

3
h3u2

x

)
= 0.

(9)
x
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From now on, we refer to Eqs. (7) and (5) as the non-flat bottom Green–Naghdi (GN-NFB) model, and to Eqs. (9) and (8) as
the flat bottom Green–Naghdi (GN-FB) model. The technique to replace hu by hK was first used in [5] for the Hamiltonian
formulation of the Green–Naghdi model, and later in [23] for the Green–Naghdi model with flat bottom.

The unknown K in (8) is an alternative definition for the potential flow of the Green–Naghdi model with flat bottom,
and its definition is not unique [23]. In the present paper, the unknown K given in (5) plays a similar role for variable
bottom and its definition is not unique either [29]. This auxiliary variable is used for numerical purposes, as in [8] where a
fourth-order finite volume method was developed to solve the reformulated Serre equations.

For ease of presentation, we rewrite (7) as

Ut + G(U, u;b)x = S(U, u;b), (10)

where U = (h,hK )� ,

G(U, u;b) =
(

hu,hK u + 1

2
gh2 − 2

3
h3u2

x + h2uuxbx

)�

is the flux, and

S(U, u;b) =
(

0,−ghbx − 1

2
h2uuxbxx + hu2bxbxx

)�

is the source term. Note that if we instead replace ht , the first component of Ut , by (h + b)t , then Eq. (10) still holds with
the same G(U, u;b) and S(U, u;b) due to the fact that (h + b)t = ht + bt = ht . This observation will be used in formulating
the well-balanced schemes in Section 3.2.2. Similarly, Eq. (9) can be rewritten as

Ut + F(U, u)x = 0, (11)

with

F(U, u) =
(

hu,hK u + 1

2
gh2 − 2

3
h3u2

x

)�

being the flux.

3.2. Numerical schemes for GN-FB and GN-NFB models

In this section, we develop numerical schemes for the GN-FB and GN-NFB models. Since extra consideration on the
balance of the flux and source terms is required for the GN-NFB model, we present numerical schemes for these two
models separately. Let {x j} j be a partition of the computational domain Ω . With x j+ 1

2
= 1

2 (x j + x j+1), I j = (x j− 1
2
, x j+ 1

2
)

and I j+ 1
2

= (x j, x j+1), we define two discrete function spaces, associated with overlapping meshes {I j} j and {I j+ 1
2
} j , to

approximate U,

VC
h = VC,k

h = {
v: v

∣∣
I j

∈ [
Pk(I j)

]2
, ∀ j

}
,

VD
h = VD,k

h = {
v: v

∣∣
I

j+ 1
2

∈ [
Pk(I j+ 1

2
)
]2

, ∀ j
}
,

where Pk(I) denotes the space of polynomials in I with degree at most k, and [P k(I)]2 = {v = (v1, v2)
�: vi ∈ Pk(I), i = 1,2}

is its vector version. To approximate u, we define two continuous finite element spaces

WC
h = WC,k

h = {
w: w

∣∣
I j

∈ Pk(I j), ∀ j and w is continuous
}
,

WD
h = WD,k

h = {
w: w

∣∣
I

j+ 1
2

∈ Pk(I j+ 1
2
), ∀ j and w is continuous

}
.

For simplicity, we present the schemes in the case of the forward Euler method for time discretization. High order time
discretizations will be discussed afterward. The proposed methods evolve two copies of numerical solutions, which are
assumed to be available at t = tn , denoted by Un,�

h = (hn,�
h , (hK )

n,�
h )� ∈ V�

h and un,�
h ∈W�

h , and we want to find the solutions
at t = tn+1 = tn + �tn . Hereinafter, the symbol � denotes C or D . For convenience, we only present the procedure to update
Un+1,C

h and un+1,C
h as the one for Un+1,D

h and un+1,D
h is similar. For the bottom topography function b, we project it onto

Pk(I j) on I j (resp. into Pk(I j+ 1
2
) on I j+ 1

2
) in the L2 sense, and obtain an approximation bC

h (resp. bD
h ) throughout the

domain Ω .
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3.2.1. Schemes for GN-FB
To get Un+1,C

h = (hn+1,C
h , (hK )

n+1,C
h )� , we apply to (11) the CDG methods of [27] for space discretization and the forward

Euler method for time discretization. That is, to look for Un+1,C
h ∈ VC,k

h such that for any V ∈ VC,k
h |I j with any j,∫

I j

Un+1,C
h · V dx =

∫
I j

(
θnUn,D

h + (1 − θn)Un,C
h

) · V dx + �tn

∫
I j

F
(
Un,D

h , un,D
h

) · Vx dx

− �tn
[
F
(
Un,D

h (x j+ 1
2
), un,D

h (x j+ 1
2
)
) · V(x j+ 1

2
) − F

(
Un,D

h (x j− 1
2
), un,D

h (x j− 1
2
)
) · V(x j− 1

2
)
]
. (12)

Here θn = �tn/τn ∈ [0,1] with τn being the maximal time step allowed by the CFL restriction at tn (see [27] and also
Section 4) and �tn = tn+1 − tn being the actual time step in the simulation.

Once Un+1,C
h is available, we can obtain un+1,C

h by a continuous finite element method: look for un+1,C
h ∈ W̃C,k

h such that

for any v ∈ ŴC,k
h ,

1

3

∫
Ω

(
hn+1,C

h

)3(
un+1,C

h

)
x vx dx +

∫
Ω

hn+1,C
h un+1,C

h v dx =
∫
Ω

hn+1,C
h K n+1,C

h v dx. (13)

Here W̃C,k
h and ŴC,k

h are variants of WC,k
h with consideration of the boundary conditions. For instance, when the boundary

condition for u is of Dirichlet type, we use

W̃C,k
h = {

w ∈ WC,k
h : w has the same boundary condition as u

}
,

ŴC,k
h = {

w ∈ WC,k
h : w has zero boundary condition

}
.

When the boundary condition is periodic, then

W̃C,k
h = ŴC,k

h = {
w ∈ WC,k

h : w(xmin) = w(xmax)
}
.

When the boundary condition is of Neumann type, W̃C,k
h = ŴC,k

h = WC,k
h is taken. The unique solvability of this finite

element method can be obtained in a straightforward manner if hn+1,C
h � h0 > 0. Though the positivity of hn+1,C

h (and

hn+1,D
h ) is not established for our scheme, all systems resulting from the finite element discretizations reported in Section 5.1

are uniquely solvable. We refer to (12) and (13) as the CDG–FE method.

3.2.2. Well-balanced schemes for GN-NFB
In this subsection, we propose a family of high order well-balanced CDG–FE schemes for the GN-NFB model in (5) and

(10), which exactly preserve the still-water steady state solution (1). These schemes involve

(a) Using (η = h +b,hK )� as the unknowns in (10) instead of (h,hK ) (see also Section 3.1). We denote (η,hK )� by Û. This
is not essential, yet when the nonlinear limiter is applied to unknowns Û to ensure numerical stability in Section 3.2.3,
the well-balanced property of the overall scheme will not be affected.

(b) Adding a term to the discretized source term. This guarantees the balance between the flux and source terms in the
numerical scheme when solving for the steady state solution (1). This added term is a high order correction when the
bottom topography is smooth, hence it will not affect the formal high order accuracy of the scheme.

To get Ûn+1,C
h = (ηn+1,C

h , (hK )
n+1,C
h )� , we again first apply to (10) the CDG methods of [27] for space discretization and

the forward Euler method for time discretization. That is, to look for Ûn+1,C
h ∈ VC,k

h such that for any V ∈ VC,k
h |I j with any j,∫

I j

Ûn+1,C
h · V dx =

∫
I j

(
θnÛn,D

h + (1 − θn)Ûn,C
h

) · V dx + �tn

∫
I j

G
(
Un,D

h , un,D
h ;bD

h

) · Vx dx

− �tn
[
G
(
Un,D

h (x j+ 1
2
), un,D

h (x j+ 1
2
);bD

h (x j+ 1
2
)
) · V(x j+ 1

2
)

− G
(
Un,D

h (x j− 1
2
), un,D

h (x j− 1
2
);bD

h (x j− 1
2
)
) · V(x j− 1

2
)
]

+ �tn

∫
I j

S
(
Un,D

h , un,D
h ;bD

h

) · V dx, (14)

where θn is defined as in Section 3.2.1.
In general, the numerical scheme (14) does not maintain the still-water stationary solution and may produce numerical

solutions with spurious oscillations when they are in or close to a stationary state. To achieve the well-balanced property,
instead of working with (14), we modify it into the following
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∫
I j

Ûn+1,C
h · V dx =

∫
I j

(
θnÛn,D

h + (1 − θn)Ûn,C
h

) · V dx + �tn

∫
I j

G
(
Un,D

h , un,D
h ;bD

h

) · Vx dx

− �tn
[
G
(
Un,D

h (x j+ 1
2
), un,D

h (x j+ 1
2
);bD

h (x j+ 1
2
)
) · V(x j+ 1

2
)

− G
(
Un,D

h (x j− 1
2
, t), un,D

h (x j− 1
2
);bD

h (x j− 1
2
)
) · V(x j− 1

2
)
]

+ �tn

∫
I j

S
(
Un,D

h , un,D
h ;bD

h

) · V dx + �tñS
(
ηn,D

h ;bD
h

) · V(x j), (15)

where a new term S̃(ηn,D
h ;bD

h ) is added, which is given by

S̃
(
ηn,D

h ;bD
h

) =
(

0,
g

2

((
bD

h

(
x+

j

))2 − (
bD

h

(
x−

j

))2) − γ n,D
j g

(
bD

h

(
x+

j

) − bD
h

(
x−

j

)))�
. (16)

Here

γ n,D
j = 1

2

(
ηn,D

h (x j+ 1
2
) + ηn,D

h (x j− 1
2
)
)
,

and

bh
(
x±) = lim

�x→0+ bh(x ± �x).

To construct a well-balanced scheme, the crucial property of γ n,D
j is that in the case of the still-water stationary solution,

γ n,D
j should be a constant with respect to both j and n. In particular, it should be equal to the constant water surface in (1).

Alternatively, we can take

γ n,D
j = 1

|I j|
∫
I j

ηn,D
h dx.

Note that the modification by adding the term S̃ is of O (�xk+1) when the bottom topography function b is sufficiently
smooth, and hence it will not affect the (formal) spatial accuracy of standard CDG schemes in (14).

The inclusion of the term S̃ is motivated by the following decomposition

S
(
Un,D

h , un,D
h ;bD

h

) =
(

0,
g

2

(
bD

h

)2 − γ n,D
j gbD

h

)�

x
− (

0, g
(
ηn,D

h − γ n,D
j

)(
bD

h

)
x

)�

+
(

0,hn,D
h

(
un,D

h

)2(
bD

h

)
x

(
bD

h

)
xx − 1

2

(
hn,D

h

)2
un,D

h

(
un,D

h

)
x

(
bD

h

)
xx

)�
, (17)

where hn,D
h is computed from hn,D

h = ηn,D
h − bD

h . With this, the last two terms in (15) become

�tn

∫
I j

S
(
Un,D

h , un,D
h ;bD

h

) · V dx + �tñS
(
ηn,D

h ;bD
h

) · V(x j)

= �tn

(
0,

g

2

(
bD

h (x j+ 1
2
)
)2 − γ n,D

j gbD
h (x j+ 1

2
)

)�
· V

(
x−

j+ 1
2

)
− �tn

(
0,

g

2

(
bD

h (x j− 1
2
)
)2 − γ n,D

j gbD
h (x j− 1

2
)

)�
· V

(
x+

j− 1
2

)
− �tn

∫
I j

(
0,

g

2

(
bD

h

)2 − γ n,D
j gbD

h

)�
· Vx dx − �tn

∫
I j

(
0, g

(
ηn,D

h − γ n,D
j

)(
bD

h

)
x

)� · V dx

+ �tn

∫
I j

(
0,hn,D

h

(
un,D

h

)2(
bD

h

)
x

(
bD

h

)
xx − 1

2

(
hn,D

h

)2
un,D

h

(
un,D

h

)
x

(
bD

h

)
xx

)�
· V dx, (18)

which is obtained by integrating the first term of (17) by parts, given that bD
h is discontinuous at x j . The newly added S̃

contributes to canceling terms in this integration by parts. Eq. (18) is used to update Ûn+1,C in (15).
h
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Once Ûn+1,C
h is available, we can obtain un+1,C

h by again applying a continuous finite element method to (5): look for

un+1,C
h ∈ W̃C,k

h such that for any v ∈ ŴC,k
h ,

1

3

∫
Ω

(
hn+1,C

h

)3(
un+1,C

h

)
x vx dx +

∫
Ω

f
(
hn+1,C

h ;bC
h

)
un+1,C

h v dx =
∫
Ω

hn+1,C
h K n+1,C

h v dx, (19)

where hn+1,C
h = ηn+1,C

h − bC
h and

f
(
hn+1,C

h ;bC
h

) = hn+1,C
h

(
1 + (

hn+1,C
h

)
x

(
bC

h

)
x + 1

2
hn+1,C

h

(
bC

h

)
xx + ((

bC
h

)
x

)2
)

. (20)

As in Section 3.2.1, W̃C,k
h and ŴC,k

h are variants of WC,k
h that take the boundary conditions into account.

In general, the unique solvability of this finite element scheme is more difficult to determine than that of (13) for flat
bottom. In all the numerical applications in Section 5.2 we considered, the system for un+1,C

h (and un+1,D
h ) was found to be

always uniquely solvable.
Next we turn to the well-balanced property of the proposed scheme. To establish this property, assumptions are made to

ensure the unique solvability of the finite element discretization in (19) when the overall scheme is applied to simulating
the still-water stationary solution: h + b = C0 and u = 0. One set of such assumptions is given below.

(A1) The water height h in the still-water stationary solution considered here has a strictly positive lower bound. That is,
there exists a positive constant h0 such that h � h0 > 0.

(A2) With � = C or D ,

1 + 1

2
h�

h

(
b�

h

)
xx = 1 + 1

2

(
C0 − b�

h

)(
b�

h

)
xx > 0. (21)

Proposition. The numerical scheme defined in (15) and (19) for the GN-NFB equations (10) and (5) is well-balanced, in the sense that
it preserves the still-water stationary solution (1), provided assumptions (A1) and (A2) hold.

Proof. We start with the still-water solution at t = 0, such that the still-water surface h+b = C0, u = 0, and the water height
h and the bottom topography b satisfy (A1) and (A2). In the initialization step, it is easy to ensure Ûn,C

h = Ûn,D
h = (C0,0)�

and un,C
h = un,D

h = 0 for n = 0. Suppose Ûn,C
h = Ûn,D

h = (C0,0)� and un,C
h = un,D

h = 0 for n � 0, we want to establish that the

numerical solution computed from (15) and (19) satisfies Ûn+1,C
h = (C0,0)� and un+1,C

h = 0.

Since Ûn,C
h = Ûn,D

h = (C0,0)� and un,D
h = 0, the first term on the right-hand side of (15) becomes∫

I j

(
θnÛn,D

h + (1 − θn)Ûn,C
h

) · V dx =
∫
I j

(C0,0)� · V dx, (22)

and the flux term is

G
(
Un,D

h , un,D
h ;bD

h

) =
(

0,
g

2

(
C0 − bD

h

)2
)�

=
(

0,
g

2
C2

0 + g

2

(
bD

h

)2 − gC0bD
h

)�
. (23)

With this, the three terms in (15) related to the flux become

�tn

∫
I j

G
(
Un,D

h , un,D
h ;bD

h

) · Vx dx − �tn
[
G
(
Un,D

h (x j+ 1
2
), un,D

h (x j+ 1
2
);bD

h (x j+ 1
2
)
) · V

(
x−

j+ 1
2

)
− G

(
Un,D

h (x j− 1
2
, t), un,D

h (x j− 1
2
);bD

h (x j− 1
2
)
) · V

(
x+

j− 1
2

)]
= �tn

∫
I j

(
0,

g

2

(
bD

h

)2 − gC0bD
h

)�
· Vx dx − �tn

(
0,

g

2

(
bD

h (x j+ 1
2
)
)2 − gC0bD

h (x j+ 1
2
)

)�
· V

(
x−

j+ 1
2

)

+ �tn

(
0,

g

2

(
bD

h (x j− 1
2
)
)2 − gC0bD

h (x j− 1
2
)

)�
· V

(
x+

j− 1
2

)
. (24)

In addition, from (18) and the fact that γ n,D = C0 (∀ j,n), the last two terms in (15) are simply
j
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�tn

∫
I j

S
(
Un,D

h , un,D
h ;bD

h

) · V dx + �tñS
(
ηn,D

h ;bD
h

) · V(x j)

= �tn

(
0,

g

2

(
bD

h (x j+ 1
2
)
)2 − gC0bD

h (x j+ 1
2
)

)�
· V(x j+ 1

2
) − �tn

(
0,

g

2

(
bD

h (x j− 1
2
)
)2 − gC0bD

h (x j− 1
2
)

)�
· V(x j− 1

2
)

− �tn

∫
I j

(
0,

g

2

(
bD

h

)2 − gC0bD
h

)�
· Vx dx. (25)

Now we can combine (15), (22), (24) and (25), and get∫
I j

Ûn+1,C
h · V dx =

∫
I j

(C0,0)� · V dx. (26)

By further taking V = Ûn+1,C
h − (C0,0)� ∈ VC,k

h , we obtain Ûn+1,C
h = (C0,0)� . On the other hand, with Ûn+1,C

h = (C0,0)� ,
Eq. (20) becomes

f
(
hn+1,C

h ;bC
h

) = hn+1,C
h

(
1 + 1

2
hn+1,C

h

(
bC

h

)
xx

)
.

This, together with assumptions (A1) and (A2), ensures the unique solvability of the finite element discretization (19) and
therefore implies un+1,C

h = 0. Similarly, we can establish Ûn+1,D
h = (C0,0)� and un+1,D

h = 0. This completes the proof. �
3.2.3. High order time discretizations, nonlinear limiter, boundary conditions, dry elements and linear solver

To achieve better accuracy in time, strong stability preserving (SSP) high order time discretizations [16] will be used.
Such discretizations can be written as a convex combination of the forward Euler method, and therefore the full scheme
with a high order SSP time discretization is still well-balanced.

When CDG methods are applied to nonlinear problems, nonlinear limiters are often needed. In this work, we observed
that nonlinear limiters are needed when the solution of the Green–Naghdi equations develops sharp gradients and when
the bottom topography is variable. In these cases, we use the total variation bounded (TVB) minmod slope limiter with
parameter M = 1 [10]. The limiter is applied to (η = h + b,hK )� as suggested in [43] and is implemented component by
component.

It is known that the numerical treatment of boundary conditions is of great importance in wave simulations. This is
especially so when the computational domain is truncated from the physical domain. Effort needs to be made to reduce
reflected waves from the computational domain boundary. In the present work, for the generating boundary condition
(as in Section 5.2.3), ghost elements are introduced adjacent to the boundary. In these elements, the L2 projection of
the prescribed incident wave is applied to implement the boundary condition. For outgoing boundary conditions, ghost
elements are used as well, with the same polynomial representation as in the adjacent interior element. In our numerical
experiments, when outgoing boundary conditions are specified, the computational domain is also chosen large enough so
that the nontrivial part of solutions remains away from the boundary and thus possible wave reflection has negligible effects
in the region of interest. This simple treatment works effectively at the expense of high computational cost, although it is
not much of an issue in the one-dimensional case. In general however, it should be replaced by more efficient boundary
treatments [9].

To treat dry areas (as in Section 5.2.4), we first identify elements where the water height satisfies h � 10−13. We then
assign u = K = 0 for these dry elements.

When the continuous finite element method is applied to the elliptic equation, one needs to solve a linear algebraic
system at each discrete time or at each Runge–Kutta inner stage. In the present work, we simply employ the Gaussian
elimination method as the linear solver.

4. Linear dispersion analysis

In this section, we carry out linear dispersion analysis for both the (reformulated) Green–Naghdi system and versions of
the proposed numerical scheme. To allow for a sufficiently tractable analysis and illustrate the dispersion properties of the
models, we focus on the flat-bottom case.

4.1. Linear dispersion analysis for the continuous model

We first derive the linear dispersion relation for the reformulated Green–Naghdi system (8)–(9). Linearizing this nonlinear
system about the trivial solution h = h0 > 0, u = u0 (both h0 and u0 are real constants) and hK = h0u0, i.e. looking for
solutions of the form

h = h0 + h̃, u = u0 + ũ, hK = h0u0 + h̃K ,
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where (̃h, h̃K , ũ) are small perturbations, and retaining only linear terms in (̃h, h̃K , ũ), we obtain{
h̃t + h0ũx + u0̃hx = 0,

(h̃K )t + gh0̃hx + u0(h̃K )x + h0u0ũx = 0,
(27)

with

h̃K = −1

3
h3

0ũxx + h0ũ + u0h̃. (28)

Then looking for perturbations as plane waves⎛⎝ h̃
h̃K
ũ

⎞⎠ =
⎛⎝ ĥ

ĥK
û

⎞⎠ ei(κx−ωt),

we end up with the linear system{
−i(ω − u0κ)̂h + ih0κ û = 0,

−i(ω − u0κ)ĥK + igh0κĥ + ih0u0κ û = 0,
(29)

with

ĥK =
(

1 + 1

3
h2

0κ
2
)

h0û + u0ĥ. (30)

Here κ is the wavenumber and ω is the frequency of the perturbations. Without loss of generality, κ is taken to be real and
positive. By substituting ĥK from (30) into (29), this system is reduced to( −(ω − u0κ) h0κ

gκ − u0
h0

(ω − u0κ) −(ω − u0κ)(1 + 1
3 h2

0κ
2) + u0κ

)(
ĥ
û

)
=

(
0
0

)
,

and it has nontrivial solutions if the determinant of the coefficient matrix is zero, i.e.

(ω − u0κ)2
(

1 + 1

3
h2

0κ
2
)

− gh0κ
2 = 0,

or, alternatively,

ω = ω± :=
(

u0 ±
√

gh0

(
1 + 1

3
h2

0κ
2

)−1 )
κ. (31)

This gives the linear dispersion relation for the reformulated Green–Naghdi equations (8)–(9). Note that both ω+ and ω−
are real according to (31). We also carry out the linear dispersion analysis for the original Green–Naghdi equations (3)–(4)
and get the same relation (31). Due to similarity in the calculation, the details are omitted here.

In Fig. 1, we compare the linear dispersion relation (31) of the Green–Naghdi equations and that of the full water wave
problem in finite depth,

(ω − u0κ)2 = gκ tanh(h0κ),

with g = 1, h0 = 1 and u0 = 0. As expected, the two curves coincide in the long-wave limit κ → 0. Furthermore, the linear
phase speed corresponding to (31) is

c =
∣∣∣∣ωκ

∣∣∣∣ =
√

gh0

(
1 + 1

3
h2

0κ
2

)−1

,

for u0 = 0, which consistently tends to the shallow-water limit c = √
gh0 as κ → 0, and remains bounded (i.e. c → 0) as

κ → ∞.
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Fig. 1. Comparison between the linear dispersion relation (31) of the Green–Naghdi equations (solid line) and the exact linear dispersion relation of the full
water wave problem (dashed line), with g = 1, h0 = 1 and u0 = 0.

4.2. Linear dispersion analysis for the discrete model

We now derive the linear dispersion relation for the proposed scheme in its semi-discrete form in time. The mesh is
assumed to be uniform with mesh size �x. Because such analysis is more involved algebraically for higher order cases, we
will focus on low order versions of the proposed scheme, as described below.

To approximate (27) for (̃h, h̃K ), the first order semi-discrete CDG method is applied. That is, we look for hC
j , (hK )C

j ,hD
j− 1

2
,

(hK )D
j− 1

2
∈R, ∀ j, satisfying

dhC
j

dt
= 1

2τmax

(
hD

j− 1
2

+ hD
j+ 1

2
− 2hC

j

) − 1

�x

(
h0uD

j+ 1
2

+ u0hD
j+ 1

2

) + 1

�x

(
h0uD

j− 1
2

+ u0hD
j− 1

2

)
, (32)

d(hK )C
j

dt
= 1

2τmax

(
(hK )D

j− 1
2

+ (hK )D
j+ 1

2
− 2(hK )C

j

) − 1

�x

(
gh0hD

j+ 1
2

+ u0(hK )D
j+ 1

2
+ h0u0uD

j+ 1
2

)
+ 1

�x

(
gh0hD

j− 1
2

+ u0(hK )D
j− 1

2
+ h0u0uD

j− 1
2

)
, (33)

dhD
j− 1

2

dt
= 1

2τmax

(
hC

j−1 + hC
j − 2hD

j− 1
2

) − 1

�x

(
h0uC

j + u0hC
j

) + 1

�x

(
h0uC
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)
, (34)

d(hK )D
j− 1

2

dt
= 1

2τmax

(
(hK )C

j−1 + (hK )C
j − 2(hK )D

j− 1
2

) − 1

�x

(
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j

)
+ 1

�x

(
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j−1 + h0u0uC

j−1

)
, (35)

where τmax is the maximal time step over the whole time domain required for numerical stability, see [27].
As for ũ, since a continuous finite element method is undefined with piecewise constant discrete spaces, the following

two cases are considered instead. The first one (Case 1) is to work with (28) exactly. The second one (Case 2) is to ap-
proximate ũ on each mesh by solving (28) with a continuous finite element method using piecewise linear approximations.
In this second case, if the standard Lagrangian basis {φC

j− 1
2
} j is used for WC,1

h , namely, φC
j− 1

2
is continuous and piecewise

linear, satisfying φC
j− 1

2
(x j′− 1

2
) = δ j j′ (a similar basis is used for WD,1

h ) with δ j j′ being the Kronecker delta, then by explicitly

writing the mass and stiffness matrices, the scheme is given as follows. Look for uC
j+ 1

2
, uD

j ∈ R, ∀ j, such that

(
h3

0

3�x
(−1,2,−1) + h0�x

6
(1,4,1)

)⎛⎜⎜⎜⎝
uC

j+ 3
2

uC
j+ 1

2

uC
1

⎞⎟⎟⎟⎠ = �x

2

(
(hK )C

j + (hK )C
j+1 − u0

(
hC

j + hC
j+1

))
, (36)
j− 2
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(
h3

0

3�x
(−1,2,−1) + h0�x

6
(1,4,1)

)⎛⎜⎜⎝
uD

j+1

uD
j

uD
j−1

⎞⎟⎟⎠ = �x

2

(
(hK )D

j− 1
2

+ (hK )D
j+ 1

2
− u0

(
hD

j− 1
2

+ hD
j+ 1

2

))
. (37)

In the numerical dispersion analysis, we look for discrete plane wave solutions of the form⎛⎜⎝ hC
j

(hK )C
j

uD
j

⎞⎟⎠ =
⎛⎝ ĥ

ĥK
û

⎞⎠ ei(κx j−ω̃t),

⎛⎜⎜⎜⎝
hD

j− 1
2

(hK )D
j− 1

2

uC
j− 1

2

⎞⎟⎟⎟⎠ =
⎛⎝ ĥ

ĥK
û

⎞⎠ e
i(κx

j− 1
2
−ω̃t)

, (38)

where, again, κ is the wavenumber and ω̃ is the frequency. Based on (32)–(35) and denoting β = (κ�x)/2, we find⎧⎪⎪⎨⎪⎪⎩
−iω̃ĥ = −1 − cosβ

τmax
ĥ − 2i sinβ

�x
(h0û + u0ĥ ),

−iω̃ĥK = −1 − cosβ

τmax
ĥK − 2i sinβ

�x
(gh0ĥ + u0ĥK + h0u0û ),

which can be rewritten as(
α 0

−2igh0 sinβ α

)(
ĥ

ĥK

)
− 2ih0 sinβ

(
1

u0

)
û =

(
0
0

)
, (39)

with

α = i(w̃�x − 2u0 sinβ) − �x

τmax
(1 − cosβ).

4.2.1. Linear discrete dispersion analysis for Case 1
In Case 1, ũ is expressed exactly in terms of h̃ and h̃K based on (28). Combining (39) with (30) yields[(

α 0
−2igh0 sinβ α

)
− 2iγ sinβ

( −u0 1
−u2

0 u0

)](
ĥ

ĥK

)
=

(
0
0

)
, (40)

where γ = (1 + 1
3 h2

0κ
2)−1. This system has nontrivial solutions if the determinant of the coefficient matrix is zero, which

leads to the linear dispersion relation for the numerical scheme,

ω̃ = ω̃r + iω̃i = sinβ

β
(u0 ± √

gh0γ )κ − i

(
1 − cosβ

τmax

)
. (41)

Note that the imaginary part ω̃i = −(1 − cosβ)/τmax is nonpositive and thus the scheme is linearly stable. In particular,
when τmax = +∞, ω̃i = 0 and the scheme is non-dissipative. Moreover, as κ�x → 0,

ω̃i = − (κ�x)2

8τmax
+ 1

τmax
O

(
(κ�x)4), (42)

ω̃r = sinβ

β
ω = ω − ω(κ�x)2

24
+ O

(
(κ�x)4). (43)

Here ω is from the exact linear dispersion relation (31). In actual implementation, τmax is often taken to be τmax = O (�x)
[27]. When this happens, the dissipative error ω̃i is of first order and thus dominates. When τmax = +∞, this error no
longer exists. On the other hand, the dispersive error ω̃r − ω is always of second order.

4.2.2. Linear discrete dispersion analysis for Case 2
In Case 2, ũ is approximated by solving (28) with a continuous finite element method on each mesh using piecewise

linear approximations. Plugging (38) into (36) (or (37)), we obtain

ĥK − u0ĥ = h0
(
γ (β)

)−1
û, (44)

with

γ (β) = cosβ

(
κ2h2

0

6

(1 − cos(2β))

β2
+ 2 + cos(2β)

3

)−1

. (45)

Combining this relation with (39), we have similar results as in (40) and (41) with γ being replaced by γ (β). Hence one
gets the numerical dispersion relation ω̃ = ω̃r + iω̃i , where ω̃i is the same as for Case 1, and
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ω̃r = sinβ

β

(
u0 ± √

gh0γ (β)
)
κ

= ω± − 1

24

(
ω± ± κ(h2

0κ
2 − 3)

2(h2
0κ

2 + 3)

√
gh0

(
1 + 1

3
h2

0κ
2

)−1 )
(κ�x)2 + O

(
(κ�x)4). (46)

Here ω± are from the exact linear dispersion relation (31). Again, the dispersive error is second order accurate in Case 2.
Note that, in the numerical dispersion analysis, we use the same ω̃ in (38) for the solutions on both meshes. This can be

justified by the fact that in the low order scheme considered in this section, . . .hD
j− 1

2
,hC

j ,hD
j+ 1

2
,hC

j+1 . . . (similarly to other

numerical unknowns) can be regarded as one function evaluated at . . . , x j− 1
2
, x j, x j+ 1

2
, x j+1 . . . . The superscripts C and D

do not essentially contribute to the scheme hence the analysis.

5. Numerical examples

In this section, numerical experiments are presented to demonstrate the performance of the Green–Naghdi model and
the proposed methods. We examine in the first part solitary wave solutions of the GN-FB equations, including accuracy
tests with varying mesh size, long-time wave propagation (with tests on phase accuracy for P 1 and P 2 approximations, on
conservation of mass and energy), as well as simulations of head-on and overtaking collisions. In these flat-bottom cases,
the CDG–FE method proposed in Section 3.2.1 is applied, without the need for the well-balanced treatment nor the TVB
limiter. In the second part, we test the well-balanced CDG–FE method proposed in Section 3.2.2 on the GN-NFB equations.
We consider cases of stationary solutions over continuous and discontinuous bottom topographies, as well as the generation
of higher harmonics in Stokes waves over a submerged bar and the runup of solitary waves on a sloping beach. Only the
simulations of harmonic generation over a bar (Section 5.2.3) and runup of breaking solitary waves on a slope (Section 5.2.4),
in which steep solutions develop, require using the TVB limiter to ensure numerical stability. For the other variable-bottom
tests, the limiter is not needed.

All simulations were performed with both P 1 and P 2 approximations. For convenience, we only show P 2 results in most
tests, and all reported results are from numerical solutions on the primal mesh {I j} j . In all simulations, we used a uniform
mesh with constant mesh size �x, and the third-order TVD Runge–Kutta method for time discretization [10], with the time
step dynamically determined by

Ccfl�x

max(|u|) , (47)

where the CFL number Ccfl was taken as 0.16 for both P 1 and P 2 approximations. We point out that formula (47) may lead
to large time steps in cases where the velocity is or close to zero, which thus promotes numerical instabilities. Therefore we
used a constant time step Ccfl�x, instead of (47), for the examples in Sections 5.2.1–5.2.3. No instability was experienced
with (47) in other examples. We also set θn = 1 for computational efficiency and non-dimensionalize the equations such
that the gravitational constant g is unity.

The GN-FB model has an exact solitary wave solution [35] given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
h(x, t) = h1 + (h2 − h1) sech2

(
x − Dt

2

√
3(h2 − h1)

h2h2
1

)
,

u(x, t) = D

(
1 − h1

h(x, t)

)
,

(48)

where h1 is the typical water depth, h2 corresponds to the solitary wave crest and D = √
gh2 is the wave speed. Unless

stated otherwise, this expression will be used as initial conditions in our numerical simulations. In particular, it will serve
as the reference solution to evaluate numerical errors in our accuracy tests.

5.1. Examples with flat bottom

In this first part, we consider numerical solutions of the GN-FB model (4), based on the CDG–FE method described in
Section 3.2.1.

5.1.1. Accuracy tests
As a first example, we test the high order accuracy of the CDG–FE method by varying the mesh size. This situation

describes a solitary wave initially located at x = 0 and propagating in the positive x-direction. We set initial conditions with
h1 = 1 and h2 = 2.25 in (48). The computational domain is Ω = [−45,45] and the final time is t = |Ω|/D at which the
soliton has traveled one length of the domain. Periodic boundary conditions are used. We present L2 errors and orders of
accuracy for h and u in Table 1. The results show that the CDG–FE method is (k + 1)st order accurate for P k with k = 1,2
and therefore it is optimal with respect to the approximation properties of the discrete spaces. Regarding the numerical
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Table 1
L2 errors and orders of accuracy of (h, u) for solitary waves with h2 = 2.25.

Mesh h u

L2 error Order L2 error Order

P 1

100 3.78E−01 – 2.66E−01 –
200 1.08E−01 1.81 6.78E−02 1.97
400 1.93E−02 2.49 1.19E−02 2.51
800 3.44E−03 2.49 2.11E−03 2.49

1600 6.77E−04 2.35 4.15E−04 2.35
3200 1.46E−04 2.21 8.98E−05 2.21

P 2

100 2.45E−01 – 1.60E−01 –
200 3.87E−02 2.66 2.42E−02 2.72
400 5.06E−03 2.93 3.16E−03 2.94
800 6.40E−04 2.98 3.99E−04 2.98

1600 8.04E−05 2.99 5.01E−05 2.99
3200 1.01E−05 3.00 6.27E−06 3.00

Table 2
L2 errors and orders of accuracy of (h, u) for solitary waves with h2 = 10.

Mesh h u

L2 error Order L2 error Order

P 2

100 3.36E−01 – 1.04E−01 –
200 2.90E−02 3.53 9.18E−03 3.51
400 3.07E−03 3.23 9.58E−04 3.26
800 3.87E−04 2.99 1.18E−04 3.01

1600 5.05E−05 2.94 1.53E−05 2.95

errors presented in Table 1 and in other tables below, we use the 5-point Gaussian quadrature formula to evaluate the
corresponding integral on each element.

We also test the impact of solitary wave nonlinearity on the convergence rate of the scheme. For this purpose, we take
h1 = 1 and h2 = 10 in (48) with the same setting as above. L2 errors for the P 2 approximation are presented in Table 2,
showing the optimal order of accuracy with respect to the approximation properties of the discrete spaces. We have also
tried larger values of h2 up to 50 and still observed the optimal order of accuracy for the CDG–FE method.

5.1.2. Long-time propagation of solitary waves
The second example addresses the performance of the CDG–FE method when simulating the long-time propagation of a

single solitary wave. We use the same setting as in the previous test (h1 = 1 and h2 = 2.25), and the computational domain
is discretized with 1000 elements. We compute the solution up to t = 900. In this setting, the solitary wave has a uniform
speed D = 1.5, and therefore it has traveled 15 lengths of the domain at the final time.

The wave profiles at t = 0 and t = 900 are presented in Fig. 2. To graphical accuracy, we see that the wave shape and
height are well preserved during this long-time propagation. Moreover, the P 2 approximation displays much better phase
accuracy than the P 1 result. For a more quantitative assessment, we depict the time evolution of the relative errors on total
mass and energy for the P 2 approximation in Fig. 3. These errors are computed relative to the values at t = 0. The total
mass and energy associated with the GN-FB model are defined by [23]

M =
∫
Ω

h dx, E =
∫
Ω

(
1

2
gh2 + 1

6
h3u2

x

)
dx. (49)

The integrals in (49) are evaluated numerically by using the 5-point Gaussian quadrature formula in each mesh element.
Fig. 3 indicates that both mass and energy are overall well conserved throughout the computation. Mass conservation is
especially well satisfied, within O (10−14) (near machine precision), while energy conservation is of O (10−5) and tends to
slowly deteriorate in time.

5.1.3. Head-on collision of two solitary waves
The third example concerns the collision between two solitary waves traveling in opposite directions (head-on collision).

Numerical and experimental investigations of this problem have been carried out by many researchers using different math-
ematical models and numerical methods. During the head-on collision, the solution rises to an amplitude larger than the
sum of the amplitudes of the two incident solitary waves. After the collision, two principal waves emerge, with amplitudes
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Fig. 2. Comparison of solitary wave profiles at t = 0 (solid line) and t = 900 (circles: P 1, dots: P 2). The left panel represents h while the right panel
represents u.

Fig. 3. Time evolution of relative errors in mass (left) and energy (right) for the long-time propagation of a solitary wave.

initially significantly below their initial amplitudes. They then relax, regain amplitude, and finally return to the form of two
solitary waves separating from each other. As a result of this collision, the amplitudes of the two resulting solitary waves are
slightly smaller than the initial amplitudes, their centers are slightly retarded from the trajectories of the incoming centers
(the phase lag), and there is a small residual from the inelastic nature of the interaction.

We start the computation with two solitary waves of different amplitudes. The left wave is initially located at x = 25
with h2 = 1.213 in (48) and propagates to the right, while the right wave is initially located at x = 47 with h2 = 1.243
and propagates to the left. The typical water depth is h1 = 1 and the computational domain is [0,72] discretized into 1000
elements. Outgoing boundary conditions are specified in this case.

Snapshots of the head-on collision at t = 7, 10.5, 11.2, 11.9, 12.5, 14.4, 16.8 and 24.4 are shown in Fig. 4. Our numerical
results (in dimensional units) are compared with experimental data together with simulations of the full Euler equations
based on a high order spectral method [11]. Overall, there is a very good agreement among these three sets of results. It can
be observed that the two initial solitary waves move toward each other and merge together, reaching a maximum height at
t = 11.2. The water height then begins to decrease before two principal waves re-emerge. Finally they return to the form of
two separating solitary waves, with small dispersive tails (also called residual waves) behind them. Zooming in the GN-FB
solution at t = 24.4 clearly reveals these residual waves in Fig. 5, which is consistent with those observed in numerical
simulations of the Euler equations [11].

5.1.4. Overtaking collision of two solitary waves
The last example with flat bottom is devoted to the investigation of the collision between two solitary waves traveling in

the same direction. An overtaking collision consists of the larger solitary wave catching up and interacting with the smaller
one, subsequently passing on and separating from it, and leaving a residual wave trailing both resulting solitary waves.
Because this interaction occurs between waves with velocities of the same sign, it takes place over a long time interval,
in contrast to the case of head-on collisions. Solitary waves resulting from an overtaking collision have slightly modified
amplitudes and velocities, but they experience a substantial positive phase shift. Here the computational domain is [0,72]
with periodic boundary conditions and discretized into 500 elements.
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Fig. 4. Head-on collision of two solitary waves of height 1.213 (1.063 cm, left) and 1.243 (1.217 cm, right) at (from left to right, from top to bottom)
t = 7 (18.29993 s), 10.5 (18.80067 s), 11.2 (19.05257 s), 11.9 (19.10173 s), 12.5 (19.15088 s), 14.4 (19.19389 s), 16.8 (19.32905 s) and 24.4 (19.50109 s).
Experimental data are in dots, full Euler results are in dashed line [11] and GN-FB results are in solid line. Numbers in parentheses next to the height and
time data are the corresponding dimensional values. The label η denotes the water surface.

Snapshots of the overtaking collision at t = 0.0, 36.40, 49.05, 58.09, 65.79, 78.40, 92.47 and 117.64 are shown in Fig. 6.
Our numerical results are again compared with experimental data together with simulations of the full Euler equations [11].
Note that the comparison is displayed in a reference frame that aligns the centers of mass of the interacting waves (see [11]
for further explanations). There are clear discrepancies regarding the amplitude and relative phase of the solitary waves. For
the GN-FB solution, the collision process seems to occur faster and the emerging waves seem to be of larger amplitude than
for the other two sets of results. Nevertheless, there is a good agreement in the overall features of the interaction. These
discrepancies are most likely due to the GN-FB model (which has weakly dispersive properties) rather than the numerical
method. Because an overtaking collision takes place over a relatively long period of time, accumulated dispersive effects are
expected to play a significant role. Furthermore, the much lower wave amplitudes shown by the experimental data after the
collision are attributable to dissipative mechanisms in the wave channel, as explained in [11].
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Fig. 5. Zoom-in of dispersive tails generated by the head-on collision of two solitary waves at t = 24.4.

5.2. Examples with variable bottom

In this subsection, we demonstrate the ability of the GN-NFB model to describe wave propagation over variable bottom
topography. The well-balanced CDG–FE method proposed in Section 3.2.2 is applied to this model.

5.2.1. Stationary solution
We first validate the well-balanced feature, i.e. the ability to preserve still-water steady states, of the proposed well-

balanced CDG–FE method in cases of a smoothly variable bottom

b(x) = 0.5 − (x − 0.5)2, (50)

and a discontinuous bottom

b(x) =
{

0.5, 0.3 � x � 0.7,

0, otherwise.
(51)

The initial conditions are given by

hu = 0, and h + b = 1. (52)

We choose [0,1] as the computational domain, divided into 50 elements and with outgoing boundary conditions. We
compute the solution up to t = 0.5 by the standard CDG–FE method, which combines (14) and (19) without the change of
unknowns, and by the well-balanced CDG–FE method.

The computed water level h + b and discharge hu are plotted in Figs. 7 and 8, respectively. We see that the standard
CDG–FE method fails to maintain the stationary solution (52). After refining the mesh, we cannot observe the solution con-
vergence which is usually attained for the hyperbolic shallow water equations [22]. For the well-balanced CDG–FE method,
however, the stationary solution is well preserved, and this is also the case on a coarser mesh (say, 10 elements). To further
demonstrate that the well-balanced scheme indeed preserves the still-water stationary solution exactly (i.e. up to machine
precision), we performed the computation in both single and double precision. The corresponding L1 and L∞ errors on
the water height h and discharge hu are listed in Table 3. Their values have orders of magnitude consistent with machine
single- and double-precision, thus verifying the well-balanced property.

5.2.2. Accuracy tests
In this example, we test the high order accuracy of the well-balanced CDG–FE method for a smoothly variable solution.

We choose the following smooth functions for the initial conditions,

η = h + b = 1.25 sech2(0.65x), u = 0, (53)

and for the bottom profile,

b(x) = 0.5e−0.05(x−10)2 − 1. (54)

The computational domain is [−30,30] with outgoing boundary conditions. The final time is t = 1 at which the solution is
still smooth (indeed it tends to steepen in time). Since an exact solution is not known for this problem, we first compute
the numerical solution on a very fine mesh with 12 800 elements, and then use it as the reference solution to evaluate
errors and orders of accuracy for coarser resolutions. We present L2 errors and orders of accuracy for the water surface η
and velocity u in Table 4. Like the standard CDG–FE method, our results also show that the well-balanced CDG–FE method
is (k + 1)st order accurate for Pk with k = 1,2 and therefore the well-balanced treatment does not affect the accuracy of
the standard CDG–FE method.
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Fig. 6. Overtaking collision of two solitary waves of height 1.456 (2.295 cm, left) and 1.146 (0.730 cm, right) at (from left to right, from top to bottom)
t = 0 (2.90304 s), 36.40 (5.50196 s), 49.05 (6.40513 s), 58.09 (7.05025 s), 65.79 (7.60014 s), 78.40 (8.50024 s), 92.47 (9.50478 s) and 117.64 (11.30191 s).
Experimental data are in dots, full Euler results are in dashed line [11] and GN-FB results are in solid line. Numbers in parentheses next to the height and
time data are the corresponding dimensional values. The label η denotes the water surface.

5.2.3. Harmonic generation over a submerged bar
This example describes the propagation of Stokes waves over a submerged bar. As shown in experimental work [12],

regular waves decompose into higher-frequency free waves as they propagate past a submerged bar. As the waves travel
up the front slope of the bar, higher harmonics are generated due to nonlinear interactions, causing the waves to steepen.
These harmonics are then released as free waves on the downslope, producing an irregular pattern behind the bar. This
experiment is particularly difficult to simulate because it includes nonlinear interactions and requires accurate propagation
of waves in both deep and shallow water over a wide range of depths. Therefore it has often been used as a discriminating
test case for nonlinear models of surface wave propagation over variable bottom [12,20,6].

Here we also compare our well-balanced GN-NFB results with experimental data of Dingemans [12]. The computational
domain is [0 m,120 m] with mesh size 1/40. The bottom variation (in meters) is defined by
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Fig. 7. Numerical results for the stationary solution over a smoothly variable bottom at t = 0.5. Dots: numerical solution, thin solid line: exact solution,
thick solid line: bottom profile. Top: standard CDG–FE method, bottom: well-balanced CDG–FE method.

Fig. 8. Numerical results for the stationary solution over a discontinuous bottom at t = 0.5. Dots: numerical solution, thin solid line: exact solution, thick
solid line: bottom profile. Top: standard CDG–FE method, bottom: well-balanced CDG–FE method.
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Table 3
L1 and L∞ errors on (h,hu) for the stationary solution at t = 0.5.

Precision h hu

L1 error L∞ error L1 error L∞ error

smooth bottom
single 3.24E−10 3.52E−09 2.81E−08 1.87E−07
double 2.50E−16 4.04E−15 3.42E−17 2.29E−16

discontinuous bottom
single 1.99E−09 1.74E−07 2.98E−08 1.99E−07
double 4.24E−16 1.75E−14 3.05E−17 1.06E−16

Table 4
L2 errors and orders of accuracy of (η, u) at t = 1.

Mesh η u

L2 error Order L2 error Order

P 1

100 7.39E−03 – 6.18E−03 –
200 1.76E−03 2.07 1.25E−03 2.31
400 4.43E−04 1.99 2.85E−04 2.13
800 1.12E−04 1.98 6.86E−05 2.05

1600 2.83E−05 1.99 1.68E−05 2.03
3200 6.99E−06 2.02 4.07E−06 2.05

P 2

100 5.05E−04 – 3.37E−04 –
200 6.31E−05 3.00 4.29E−05 2.97
400 7.90E−06 3.00 5.39E−06 2.99
800 9.86E−07 3.00 6.75E−07 3.00

1600 1.22E−07 3.01 8.44E−08 3.00
3200 1.48E−08 3.04 1.06E−08 3.00

Fig. 9. Experimental set-up and locations of the wave gauges as used in [12].

b(x) =

⎧⎪⎪⎨⎪⎪⎩
−0.4 + 0.05(x − 6), 6 � x � 12,

−0.1, 12 � x � 14,

−0.1 − 0.1(x − 14), 14 � x � 17,

−0.4, elsewhere,

(55)

and is depicted in Fig. 9 in which we also label the positions of 10 gauges used in [12]. At initial time, h + b = 0 and u = 0
in the computational domain. The incident wave (entering from the left) is a third-order Stokes wave [14] given by

η(x, t) = a0 cos

(
2π

(
x

λ
− t

T0

))
+ πa2

0

λ
cos

(
4π

(
x

λ
− t

T0

))
− π2a3

0
2

[
cos

(
2π

(
x − t

))
− cos

(
6π

(
x − t

))]
, (56)
2λ λ T0 λ T0
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Fig. 10. Time series of surface elevations for waves passing over a submerged bar at x = 2 m, 4 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m, 17.3 m, 19 m
and 21 m (from left to right, from top to bottom). Circles: experimental data [12], dashed line: numerical results.

Fig. 11. Sketch for the problem of runup of a solitary wave on a sloping beach.



M. Li et al. / Journal of Computational Physics 257 (2014) 169–192 189
Fig. 12. Runup of a solitary wave with amplitude a0 = 0.0185 at t = 30, 40, 50, 60, 70 (from top to bottom). Circles: experimental data [36], dots:
Green–Naghdi equations.

where T0, a0 and λ denote the wave period, amplitude and wavelength in scaled units, respectively. We choose (T0,a0, λ) =
(2.02 s,0.01 m,3.73 m) corresponding to one of the experiments in [12]. An outgoing condition is applied at the right
boundary.

Time histories of the water surface at the 10 gauges are shown in Fig. 10. The time origin has been shifted so that the
numerical results match the measurements for the first gauge at x = 2 m. Overall, both sets of data compare well together.
However, discrepancies in amplitude and phase can be observed for gauges beyond the crest of the bar (i.e. x � 15.7 m).
These discrepancies again should be attributed to the weakly dispersive character of the GN-NFB model. As described
above, the wave pattern on the downslope of the bar (and beyond) consists of high-frequency free waves which are highly
dispersive waves. Recently, a new Green–Naghdi system with improved dispersive properties has shown better performance
in comparison with the experimental data [6].



190 M. Li et al. / Journal of Computational Physics 257 (2014) 169–192
Fig. 13. Runup of a solitary wave with amplitude a0 = 0.28 at t = 15, 20, 25, 30 (from top to bottom). Circles: experimental data [36], dots: Green–Naghdi
equations.

5.2.4. Runup of solitary waves on a slope
In this example, we examine the runup of solitary waves on a mild slope of 1 : 19.85 following experimental work of

Synolakis [36]. The bottom slope is specified by

b(x) =
{ −x tan β, x � cotβ,

−1, x > cotβ,
(57)

with β = 2.884◦ and is depicted in Fig. 11. We first consider the runup of a solitary wave of small amplitude a0 = 0.0185
with h1 = 1 and h2 = 1.0185 in (48). The solution is initially located at x = 38.5 and travels to the left up the sloping beach.
The computational domain is [−30,70] divided into 1000 elements and with outgoing boundary conditions.

A sequence of wave profiles is presented in Fig. 12. To illustrate the performance of the GN-NFB model and of the
numerical method, we also plot experimental data from [36] for comparison. We see that the wave profiles computed by
the Green–Naghdi model match the experimental data well during both runup and rundown phases. Discrepancies observed
at t = 70 near the shoreline (where the sloping beach and the water surface meet) are likely due to viscous effects, as stated
in [36].

Finally, we investigate the runup of a breaking solitary wave with larger amplitude a0 = 0.28 (h1 = 1 and h2 = 1.28).
The solution is initially located at x = 25.6 and again travels to the left. We show a sequence of wave profiles in Fig. 13
which again includes a comparison with experimental data from [36]. We also see that the wave profiles computed by the
Green–Naghdi model match the experimental data well up to the runup phase. In particular, the solitary wave shoaling and
steepening are well reproduced by the numerical solution.



M. Li et al. / Journal of Computational Physics 257 (2014) 169–192 191
6. Conclusions

In this paper, we develop a family of high order numerical methods which couple the central discontinuous Galerkin
methods and the continuous finite element methods for solving one-dimensional Green–Naghdi equations with flat bottom
topography, and their well-balanced counterparts for solving one-dimensional Green–Naghdi equations with variable bottom
topography. These methods are based on reformulating the original system into a conservation/balance law coupled with
an elliptic equation. Linear dispersion analysis is performed for both the reformulated Green–Naghdi system and versions
of the proposed numerical scheme. Numerical experiments are presented to demonstrate the accuracy, robustness and
well-balanced property of the proposed methods, as well as the capability of the Green–Naghdi equations to model a wide
range of shallow water wave phenomena.

In the future, we will consider the inclusion of the positivity-preserving treatment in the well-balanced CDG framework
for shallow water and Green–Naghdi equations. The reformulation technique by introducing the new unknown K can also
be extended to two dimensions in a straightforward manner.
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