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In this paper we treat the cancellous bone as is done in mixture theory, i.e. each point in the
material has both a fluid and a solid phase co-existing there. Each phase is weighted by the volume
fraction of material in the composite structure. It is seen that in such a material attenuation of
amplitude as frequency increases occurs as is observed in laboratory experiments33,34 and as was
observed in the finite element homogenization approach used by Hackl, Ilic and Gilbert.
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1. Introduction

Osteoporosis is characterized by a decrease in strength of the bone matrix. Currently, bone
mineral density (BMD) is the gold standard for in vivo assessment of fracture risk of bones
and is measured using X-ray absorptiometric techniques.11 However, only 70%–80% of the
variance of bone strength is accounted for by bone density. As the brittleness of bone depends
on more factors than bone density, biologists believe that quantitative ultrasound techniques
could provide an important new diagnostic tool.14,18,49 Moreover, in contrast to X-ray den-
sitometry, ultrasound does not ionize the tissue, and its implementation is relatively inex-
pensive. Since the loss of bone density and the destruction of the bone microstructure is
most evident in osteoporosis cancellous bone, it is natural to consider the possibility of
developing accurate ultrasound models for the isonification of cancellous bone. Ultrasound
has been considered as a means to characterize the elastic properties of cortical and cancel-
lous bone for some time.2–4,6–9,12–14,16,17,24,28,30,35,36,38,40,48,49,52–55,57,60,63–66 One particular
ultrasonic technique for assessing BMD is by calcaneal broadband ultrasonic attenuation
(BUA) and speed of sound which are highly correlated with calcaneal BMD.21,63 In this
method, the time is measured for sound to travel, in water, the distance between the two
transducers. Then the experiment is repeated with a bone sample placed between the two
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transducers. Two time measurements are taken, first without the bone sample in place and
then with the bone sample in place. From the velocity of sound in water, and the size of
the bone sample, the velocity of the compression wave through the bone sample can be
calculated.

In Ref. 5 three-dimensional numerical simulations of ultrasound transmission were per-
formed. Synchrotron microtomography provided high resolution three-dimensional images
of bone structures, which were used as the input geometry. It was found that simulations
reproduced phenomena observed in experiments, such as the speed of sound, and the slope
of the normalized frequency-dependent attenuation.

2. The Composite Model

Cancellous bone may be thought of as consisting of a solid matrix with an interstitial fluid.
In the case of defatted bone, the acoustic interrogation is accomplished in vitro as mentioned
in Sec. 1. In the in vivo case, the interstitial fluid is a blood–marrow mixture. Our idea is to
use a mixture theory approach which assumes that, at any position in the cancellous bone,
there are both a solid phase (trabeculae) and a fluid phase (water or blood–marrow). We
accomplish this by including both the solid and the fluid as part of a general system. In
this way, the stress tensor of the composite material is given by

τ = Θτ f + (1 − Θ)τ s, (1)

where Θ is the characteristic function of the fluid phase, i.e. Θ = 1 in the fluid region
(denoted by the superscript f), while Θ = 0 in the solid region (denoted by the
superscript s).

The solid constitutive equations may be written in the generalized form

τ s
ij = As

ijkle(u)kl + Bs
ijkle(v)kl, (2)

where the As
ijkl are the elasticity coefficients of the solid and are assumed to have the

classical symmetry and positivity properties, i.e.

As
ijkleijekl ≥ 0, As

ijkl = As
klij = As

jikl = As
ijlk,

while the Bs
ijkl correspond to instantaneous viscosity terms. The strain tensors are

defined by

e(u)ij :=
1
2
(∂jui + ∂iuj), e(v)ij :=

1
2
(∂jvi + ∂ivj), (3)

where u and v denote the displacement and velocity vector fields, respectively. The notation
∂j is shorthand for partial differentiation with respect to the subscript j. In the isotropic
elastic case, the As

ijkl become

As
ijklekl = (λδijδkl + 2µδikδjl)ekl = λδijekk + 2µeij , (4)
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where λ and µ are the Lamé coefficients of the solid, while the Bs
ijkl all vanish. The corre-

sponding equations of motion are given by

∂tv = bsdiv(τ s),

∂tu = v,

in Ωs × [0, T ], where bs := 1/ρs is the solid buoyancy.
Likewise, the fluid constitutive equations may also be written in the form

τ f
ij = Af

ijkle(u)kl + Bf
ijkle(v)kl, (5)

where assuming viscous dissipation together with small compressibility,19

Af
ijkl = c2ρfδijδkl, Bf

ijkl = 2ηδikδjl,

with ρf and η being the density and dynamic viscosity of the fluid, respectively, and c the
speed of sound in the fluid. The corresponding equations of motion read

∂tv = bfdiv(τ f ),

∂tu = v,

in Ωf × [0, T ], where bf := 1/ρf is the fluid buoyancy.
In this paper, as we consider a mixture theory approach, we replace Θ by β, the porosity.

Hence, by combining the solid and fluid phases, the resulting composite system has the
constitutive equation

τij = β[c2ρfδije(u)kk + 2ηe(v)ij ] + (1 − β)[λδije(u)kk + 2µe(u)ij ].

The corresponding equations of motion take the form

∂tv = βbfdiv(τ f ) + (1 − β)bsdiv(τ s), (6a)

∂tτ = β[c2ρfdiv(vI) + 2ηe(∂tv)] + (1 − β)[λdiv(vI) + 2µe(v)], (6b)

∂tu = v, (6c)

where I is the identity tensor, and the term e(∂tv) appearing in (6b) must be rewritten
using the expression given for ∂tv in (6a). These are the linearized equations for acoustic
propagation through the composite material, which will be used in our numerical experi-
ments. In the next sections, we present in detail the numerical scheme to solve the equations
for each phase.

2.1. Numerical scheme for the solid phase

Trabecular bone is essentially cortical and we may approximate it for acoustical purposes
as being elastic. If it is also isotropic,a this leads to the system described by (2) and (4).

aIt is most likely orthotropic.
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Hence, considering the general three-dimensional case in Cartesian coordinates (x, y, z), the
stresses become

τ s
xx = (λ + 2µ)∂xux + λ(∂yuy + ∂zuz),

τ s
yy = (λ + 2µ)∂yuy + λ(∂xux + ∂zuz),

τ s
zz = (λ + 2µ)∂zuz + λ(∂xux + ∂yuy),

τ s
xy = µ(∂xuy + ∂yux),

τ s
xz = µ(∂xuz + ∂zux),

τ s
yz = µ(∂yuz + ∂zuy),

(7)

and their evolution is governed by

∂tτ
s
xx = (λ + 2µ)∂xvx + λ(∂yvy + ∂zvz),

∂tτ
s
yy = (λ + 2µ)∂yvy + λ(∂xvx + ∂zvz),

∂tτ
s
zz = (λ + 2µ)∂zvz + λ(∂xvx + ∂yvy),

∂tτ
s
xy = µ(∂xvy + ∂yvx),

∂tτ
s
xz = µ(∂xvz + ∂zvx),

∂tτ
s
yz = µ(∂yvz + ∂zvy).

(8)

The equations of motion for the velocity field read

ρs∂tvx = ∂xτ s
xx + ∂yτ

s
xy + ∂zτ

s
xz,

ρs∂tvy = ∂xτ s
xy + ∂yτ

s
yy + ∂zτ

s
yz,

ρs∂tvz = ∂xτ s
xz + ∂yτ

s
yz + ∂zτ

s
zz,

(9)

and are supplemented by the evolution equations for the displacement field,

∂tux = vx, ∂tuy = vy, ∂tuz = vz. (10)

Following Graves,22 we use a staggered-grid finite difference method to solve the above
system of equations. This method is staggered and second-order in both space and time.
The computational domain is a regular volume of space that is divided into unit cubic cells.
A sketch of a unit cell is shown in Fig. 1. On a standard collocated grid, spurious oscillations
in the numerical solution may occur, due to the phenomenon of decoupling, if centered finite
differences are employed. The use of a staggered grid, where the various variables are defined
at different nodes in the unit cells, overcomes this difficulty while achieving high accuracy
with relatively simple finite difference formulas.

The discretized forms of (8) and (9) are given by

τ s n+1
xx i,j,k = τ s n

xx i,j,k + ∆t[(λ + 2µ)Dxvx + λ(Dyvy + Dzvz)]
n+ 1

2
i,j,k ,

τ s n+1
yy i,j,k = τ s n

yy i,j,k + ∆t[(λ + 2µ)Dyvy + λ(Dxvx + Dzvz)]
n+ 1

2
i,j,k ,
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Fig. 1. Sketch of a unit cell in the staggered-grid formulation. The (i, j, k) indices refer to the Cartesian
coordinates (x, y, z), respectively.

τ s n+1
zz i,j,k = τ s n

zz i,j,k + ∆t[(λ + 2µ)Dzvz + λ(Dxvx + Dyvy)]
n+ 1

2
i,j,k ,

τ s n+1
xy i+ 1

2
,j+ 1

2
,k

= τ s n
xy i+ 1

2
,j+ 1

2
,k

+ ∆t[µ(Dxvy + Dyvx)]
n+ 1

2

i+ 1
2
,j+ 1

2
,k

,

τ s n+1
xz i+ 1

2
,j,k+ 1

2

= τ s n
xz i+ 1

2
,j,k+ 1

2
+ ∆t[µ(Dxvz + Dzvx)]

n+ 1
2

i+ 1
2
,j,k+ 1

2

,

τ s n+1
yz i,j+ 1

2
,k+ 1

2

= τ s n
zz i,j+ 1

2
,k+ 1

2

+ ∆t[µ(Dyvz + Dzvy)]
n+ 1

2

i,j+ 1
2
,k+ 1

2

,

(11)

for the stress components, and

v
n+ 1

2

x i+ 1
2
,j,k

= v
n− 1

2

x i+ 1
2
,j,k

+ bs∆t[Dxτ s
xx + Dyτ

s
xy + Dzτ

s
xz]ni+ 1

2
,j,k

,

v
n+ 1

2

y i,j+ 1
2
,k

= v
n− 1

2

y i,j+ 1
2
,k

+ bs∆t[Dxτ s
xy + Dyτ

s
yy + Dzτ

s
yz]

n
i,j+ 1

2
,k

,

v
n+ 1

2

z i,j,k+ 1
2

= v
n− 1

2

z i,j,k+ 1
2

+ bs∆t[Dxτ s
xz + Dyτ

s
yz + Dzτ

s
zz]

n
i,j,k+ 1

2

,

(12)

for the velocity components. In our notation, the subscripts refer to the spatial indices while

the superscripts refer to the time index. For example, the expression v
n+ 1

2

x i+ 1
2
,j,k

represents

the x-component of the velocity at point xi+1/2 = (i + 1/2)∆x, yj = j∆y, zk = k∆z and
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at time tn+1/2 = (n + 1/2)∆t, where ∆x, ∆y, ∆z are the mesh sizes in the three spatial
directions (i.e. the dimensions of the unit cell) and ∆t is the time step. To avoid overly
cumbersome expressions, Dj denotes the difference operator for the discretization of the
partial derivative ∂j in space. The reader is referred to Appendix A for details on these
difference operators.

In the present formulation, Eqs. (11) and (12) form a closed system of equations for the
stress and velocity fields. An auxiliary computation determines the displacements from the
velocities at every time step, assuming their respective components are defined at the same
grid points but staggered temporally. Using second-order centered finite differences in time,
the discretization of (10) is given by

un+1
x i+ 1

2
,j,k

= un
x i+ 1

2
,j,k

+ ∆t v
n+ 1

2

x i+ 1
2
,j,k

,

un+1
y i,j+ 1

2
,k

= un
y i,j+ 1

2
,k

+ ∆t v
n+ 1

2

y i,j+ 1
2
,k

,

un+1
z i,j,k+ 1

2

= un
z i,j,k+ 1

2

+ ∆t v
n+ 1

2

z i,j,k+ 1
2

.

(13)

2.2. Numerical scheme for the fluid phase

We now turn to the fluid phase. In Cartesian coordinates, the evolution equations for the
stress field (5) become

∂tτ
f
xx = c2ρf (∂xvx + ∂yvy + ∂zvz) + 2η∂xv̇x,

∂tτ
f
yy = c2ρf (∂xvx + ∂yvy + ∂zvz) + 2η∂y v̇y,

∂tτ
f
zz = c2ρf (∂xvx + ∂yvy + ∂zvz) + 2η∂z v̇x,

∂tτ
s
xy = η(∂xv̇y + ∂y v̇x),

∂tτ
s
xz = η(∂xv̇z + ∂z v̇x),

∂tτ
s
yz = η(∂y v̇z + ∂z v̇y),

(14)

where the dot stands for differentiation with respect to time, and the evolution equations
for the velocity field are similar to those in the solid phase, i.e.

ρf∂tvx = ∂xτ f
xx + ∂yτ

f
xy + ∂zτ

f
xz,

ρf∂tvy = ∂xτ f
xy + ∂yτ

f
yy + ∂zτ

f
yz,

ρf∂tvz = ∂xτ f
xz + ∂yτ

f
yz + ∂zτ

f
zz.

(15)

Following the staggered-grid finite difference scheme described previously, the discretiza-
tion of (14) reads

τ f n+1
xx i,j,k = τ f n

xx i,j,k + ∆t[c2ρf (Dxvx + Dyvy + Dzvz) + 2ηDxv̇x]
n+ 1

2
i,j,k ,

τ f n+1
yy i,j,k = τ f n

yy i,j,k + ∆t[c2ρf (Dxvx + Dyvy + Dzvz) + 2ηDy v̇y]
n+ 1

2
i,j,k ,
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τ f n+1
zz i,j,k = τ f n

zz i,j,k + ∆t[c2ρf (Dxvx + Dyvy + Dzvz) + 2ηDz v̇z]
n+ 1

2
i,j,k ,

τ f n+1

xy i+ 1
2
,j+ 1

2
,k

= τ f n

xy i+ 1
2
,j+ 1

2
,k

+ ∆t[η(Dxv̇y + Dy v̇x)]
n+ 1

2

i+ 1
2
,j+ 1

2
,k

,

τ f n+1

xz i+ 1
2
,j,k 1

2

= τ f n

xz i+ 1
2
,j,k+ 1

2

+ ∆t[η(Dxv̇z + Dz v̇x)]
n+ 1

2

i+ 1
2
,j,k+ 1

2

,

τ f n+1

yz i,j+ 1
2
,k+ 1

2

= τ f n

yz i,j+ 1
2
,k+ 1

2

+ ∆t[η(Dy v̇z + Dz v̇y)]
n+ 1

2

i,j+ 1
2
,k+ 1

2

,

(16)

and that for (15) is similar to (12). The acceleration field v̇ = ∂tv that appears in (16) is
defined at the same nodes as for the velocity field v, and is directly evaluated from (15).
Details on the difference operators applied to v̇ can be found in Appendix A. The displace-
ments are again computed by integrating the velocities in time similarly to (13).

Since the time-stepping procedure is explicit, it is thus conditionally stable. A von Neu-
mann stability analysis of the fluid–solid system, estimating an upper bound for the time
step as a function of the spatial resolution, is provided in Appendix B.

2.3. Boundary conditions

The present stress–velocity formulation combined with the use of a staggered grid is espe-
cially suitable for simulating free-surface boundary conditions. The typical physical situation
that we have in mind is an in vitro experiment with a bone sample immersed in a water
tank.30 We also assume that the boundary is in the solid phase, which is a natural choice
for real bones.

Therefore, assuming the domain (i.e. the bone sample) is a rectangular cuboid and
considering e.g. the right face of its boundary located at say i = i0, the zero Dirichlet
condition on τxx together with the antisymmetry property of τxy and τxz

22 imply

τxx|i=i0 = 0, (17a)

τxy|i=i0− 1
2

= −τxy|i=i0+ 1
2
, (17b)

τxz|i=i0− 1
2

= −τxz|i=i0+ 1
2
. (17c)

Using (7), condition (17a) yields

Dxvx|i=i0 = − λ

λ + 2µ
(Dyvy + Dzvz)|i=i0 , (18)

which is used in (11) to update the boundary values of τyy and τzz. Conditions (17b) and
(17c), on the other hand, specify values of τxy and τxz at “fictitious” nodes i = i0 + 1/2
outside the physical domain, which are used in (12) to compute Dxτxy and Dxτxz needed to
update the boundary values of vy and vz. A two-dimensional sketch of the node distribution
near the front right corner of the boundary is shown in Fig. 2.
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Fig. 2. Top view of the node distribution in the (x, y)-plane near the front right corner of the boundary. The
velocities are in black for interior nodes and in gray for fictitious exterior nodes. The boundary is represented
by the straight lines i = i0 and j = j0.

Similarly, considering the front face of the boundary located at say j = j0, the zero
Dirichlet condition on τyy together with the antisymmetry property of τyx and τyz imply

τyy|j=j0 = 0, (19a)

τyx|j=j0− 1
2

= −τyx|j=j0+
1
2
, (19b)

τyz|j=j0− 1
2

= −τyz|j=j0+
1
2
, (19c)

with (19a) being equivalent to

Dyvy|j=j0 = − λ

λ + 2µ
(Dxvx + Dzvz)|j=j0.

These conditions enable us to update the boundary values of τxx, τzz, vx and vz, using
values of τyx and τyz at fictitious exterior nodes j = j0 − 1/2.

3. Numerical Tests

We present numerical tests of the mixture model (6) which is simulated by combining
the discretizations for the solid and fluid phases, as described in the previous sections.
For convenience, we restrict ourselves to the two-dimensional case where the domain is a
rectangle with sides of length Lx and Ly, divided into Nx and Ny unit cells in the x- and
y-directions, respectively. The first test assesses the convergence of our numerical scheme
in comparison with an exact solution. The second test assesses the dissipative properties of
our model and examines their dependence on ultrasonic frequency.

1250017-8
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Table 1. Values of physical parameters for cancellous bone.

Parameter Symbol Value

Sound speed in fluid c 1497 m s−1

Pore fluid density ρf 950 kgm−3

Fluid bulk modulus Kf 2 × 109 Pa

Pore fluid viscosity η 1.5 N s m−2

Frame material density ρs 1960 kgm−3

Solid bulk modulus Ks 2.04 × 1010 Pa

Solid shear modulus µ 0.833 × 1010 Pa

Solid Young’s modulus E 2.2 × 1010 Pa

Poisson’s ratio ν 0.32

Typical values for the physical parameters of the model are given in Table 1.8,30,33 The
Lamé coefficient λ is defined by

λ = Kb − 2
3
µ +

(Ks − Kb)2 − 2βKs(Ks − Kb) + β2(Ks)2

D − Kb
,

where

Kb =
E

3(1 − 2ν)
(1 − β)1.46, D = Ks

[
1 + β

(
Ks

Kf
− 1

)]
.

All these parameters are chosen to be real and thus our equations are real-valued.
In our numerical simulations, we also find it convenient to nondimensionalize the equa-

tions by using a characteristic time scale T in the ultrasonic range, a characteristic length
scale L related to the size of the bone sample and a characteristic density which we choose
to be ρs. Therefore it is understood that values of dimensional quantities, specified with-
out physical units in the following, are dimensionless values relative to these characteristic
scales.

3.1. Comparison with exact solution

Let us restrict our attention to the solid phase (β = 0). In the case of one-dimensional wave
propagation, Eqs. (8)–(10) with free-surface boundary condition (18) reduce to the wave
equation

∂2
t ux =

λ + 2µ
ρs

∂2
xux, (20)

for the displacement ux, with reflecting boundary condition ∂xux = 0 at both endpoints
x = 0 and x = Lx. The corresponding stress and velocity are determined by

τxx = (λ + 2µ)∂xux, vx = ∂tux.

Given initial conditions

ux = f(x), ∂tux = 0,

1250017-9
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centered at x = Lx/2 and considering only the first rebound off the endpoints, Eq. (20)
admits the exact d’Alembert solution

ux =
1
2
[f(x + cst) + f(x − cst)],

vx =
1
2
cs[f ′(x + cst) − f ′(x − cst)],

τxx =
1
2
(λ + 2µ)[f ′(x + cst) + f ′(x − cst)],

if x − cst > 0, x + cst < Lx, and

ux =
1
2
[f(2Lx − x − cst) + f(cst − x)],

vx = −1
2
cs[f ′(2Lx − x − cst) − f ′(cst − x)],

τxx = −1
2
(λ + 2µ)[f ′(2Lx − x − cst) + f ′(cst − x)],

otherwise, where

cs =

√
λ + 2µ

ρs
.

To compare with this exact solution, we perform numerical simulations of (8)–(10) using
initial conditions

ux(x, y, 0) = f(x) = 0.01e−100(x−Lx/2)2 ,

vx(x, y, 0) = 0,

and

τxx(x, y, 0) = (λ + 2µ)f ′(x) = −(λ + 2µ)(2x − Lx)e−100(x−Lx/2)2 ,

which are invariant in the y-direction. The computational domain is a square with sides
Lx = Ly = 3.

Figure 3 plots the relative L∞ and L2 errors between the exact and numerical solutions
at t = 0.5, for different values of Nx with a fixed ∆t = 5 × 10−4. The good agreement (on
all three variables ux, vx and τxx) with the −2 slope confirms the second-order accuracy in
space of our numerical scheme.

Figures 4–6 show the comparison between exact and numerical profiles of ux, vx and τxx

in the cross section y = Ly/2 at various values of t. The spatial resolution is Nx × Ny =
200 × 200 and the time step is ∆t = 5 × 10−4. This simulation includes the splitting of the
initial condition into left- and right-moving components, as well as their propagation to and
bouncing off the boundaries of the domain. For all three variables, we see that the shape
of the profile, the propagation speed and the reflecting boundary condition, as well as the

1250017-10
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(a)

(b)

Fig. 3. Relative (a) L∞ and (b) L2 errors versus Nx between the exact and numerical solutions at t = 0.5. The
displacement ux is represented in circles, the velocity in diamonds and the stress in squares. For reference,
the dashed line represents the curve N−2

x which has a −2 slope in log–log plot.
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Fig. 4. Profile of displacement ux in the cross section y = Ly/2 at t = 0, 0.3, 0.65 and 1. The solid line
corresponds to the numerical solution while the dashed line corresponds to the exact solution.

(anti)symmetry of the solution with respect to x = Lx/2, are well reproduced numerically.
In particular, no visible spurious oscillations nor significant numerical diffusion are observed.
Of course, a better agreement can be obtained by increasing the spatial resolution.

3.2. Ultrasound attenuation

It is well known that ultrasound propagation through cancellous bone experiences attenu-
ation.11,33,37 This attenuation is more pronounced at higher frequencies and also increases
with bone volume fraction (i.e. bone density). In this section, we check numerically that
these features of ultrasound attenuation are reproduced well, at least qualitatively, by our
mixture model.
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Fig. 5. Profile of velocity vx in the cross section y = Ly/2 at t = 0, 0.3, 0.65 and 1. The solid line corresponds
to the numerical solution while the dashed line corresponds to the exact solution.

Following Ilic et al.,32,33 the bone sample is assumed to be rectangular, 30 mm long
in the x-direction and 50 mm wide in the y-direction. The incoming wave is generated by
a localized pressure source, centrally located on the left side of the domain (x = 0) and
defined by

τxx(0, y, t) = −P cos(2πft)e−8(y−Ly/2)2 ,

where f denotes the prescribed temporal frequency, and the mollifier

e−8(y−Ly/2)2 ,

is used to avoid discontinuities which may lead to spurious waves propagating in the
y-direction. The pressure is applied over a length of about 10 mm on the left side of the bone
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Fig. 6. Profile of stress τxx in the cross section y = Ly/2 at t = 0, 0.3, 0.65 and 1. The solid line corresponds
to the numerical solution while the dashed line corresponds to the exact solution.

sample. Its amplitude is set to be P = 8 kPa and the choice for the porosity is β = 0.82 so
that the average density of our composite medium,

ρ = βρf + (1 − β)ρs = 1132 kg m−3,

coincides with that used in Ref. 33. The spatial resolution Nx × Ny = 500 × 500 and
the time step ∆t = 5 × 10−4 are selected sufficiently fine so they can resolve well the
excitation wavelength and period. Since we expect the excitation to be mainly longitudinal,
propagating from left to right in the x-direction, we focus our attention on ux.

Figure 7 shows two-dimensional color plots representing the magnitude of ux at t = 1.5
for viscosity η = 1.5 N s m−2 and frequencies f = 0.9, 1.1, 1.4, 1.7 MHz. Cross sections
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Fig. 7. (Color online) Displacement ux at t = 1.5 for β = 0.82, η = 1.5 N sm−2 and f = 0.9, 1.1, 1.4, 1.7 MHz.
Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by a
factor of 103.

of ux at y = Ly/2 are also displayed in this figure. As expected, the higher the excitation
frequency, the shorter the wavelength. These graphs also clearly reveal that (i) the incoming
wave attenuates and diffracts as it travels across the bone sample, and (ii) this attenuation
increases with frequency. Wave diffraction, on the other hand, is more apparent at lower
frequencies. For clarity, the dimensionless values indicated in Fig. 7 are the computed ones
magnified by a factor of 103. Therefore, given T = 10−5 s and L = 0.01 m as used in our
nondimensionalization, the actual values of ux are of order of 10−10 m, which is consistent
with those found in Ref. 33. The transverse displacement uy (not shown here) is typically
of an order of magnitude smaller than ux.
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Fig. 8. (Color online) Displacement ux at t = 1.5 for β = 0.82, η = 5 Nsm−2 and f = 0.9, 1.1, 1.4, 1.7 MHz.
Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by a
factor of 103.

Although we observe wave attenuation, we note it is not as significant as that reported
in Ref. 33 for similar values of the physical parameters. This may be explained by the fact
that we describe the solid part as a purely elastic material without dissipative contributions.
Recall the Lamé coefficients λ and µ are assigned real values as listed in Table 1. Therefore,
fluid viscosity is the only physical mechanism that controls wave attenuation in our mixture
model. Figures 8 and 9 confirm that wave attenuation increases with η. In particular, for
η = 8N s m−2 (high viscosity) and f = 1.7 MHz (high frequency), the incoming wave is so
strongly damped that it barely reaches the right side of the bone sample.

1250017-16



3rd Reading

November 7, 2012 10:48 WSPC/S0218-396X 130-JCA 1250017

Simulation of a Mixture Model for Ultrasound Propagation

Fig. 9. (Color online) Displacement ux at t = 1.5 for β = 0.82, η = 8 Nsm−2 and f = 0.9, 1.1, 1.4, 1.7 MHz.
Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by a
factor of 103.

To further quantify this damping, the envelope of the profile of ux in the cross section
y = Ly/2 at t = 1.5 (before the wave reflects back from the right boundary) is fitted to an
exponential function of the form

ux = u0e
−αx,

by the method of least squares. The so-obtained coefficient α > 0 then yields an estimate for
the damping rate through the domain. Figure 10 plots α as a function of f for various values
of β and η. We clearly see that the damping rate increases with excitation frequency as well
as with bone porosity and viscosity, which is consistent with our previous observations from
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Fig. 10. Attenuation rate α as a function of frequency for β = 0.72, 0.82, 0.92. The thin solid line refers to
η = 1.5 N sm−2, the dashed line to η = 5Nsm−2 and the thick solid line to η = 8Nsm−2.

Figs. 7–9. The fact that α increases with f is more apparent for larger values of η. The
observed curves suggest that the damping rate grows faster than linearly with frequency,
while previous work indicates that it behaves close to linearly.40 Again, this discrepancy
may be attributed to the fact that only the fluid phase is viscous in our mixture model.
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Fig. 11. (Color online) Displacement ux at t = 1.5 for η = 1.5 N sm−2, f = 1.1 MHz and β = 0.72, 0.82,
0.92. Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by
a factor of 103.

Finally, the dependence of wave attenuation on bone porosity is further examined in
Fig. 11 which compares the profile of ux for η = 1.5 N s m−2, f = 1.1 MHz and β = 0.72,
0.82, 0.92. Note that higher porosity (β = 0.72, 0.82, 0.92) corresponds to lower average
density (ρ = 1233 kg m−3, 1132 kgm−3, 1031 kg m−3 respectively). Comparing the different
amplitudes of ux, we see that, for higher densities, the composite medium is overall more
dissipative and this dissipation is also more uniform spatially, hence the smaller damping
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Fig. 12. (Color online) Displacement ux at t = 1.5 for η = 5Ns m−2, f = 1.1 MHz and β = 0.72, 0.82, 0.92.
Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by a
factor of 103.

rate as shown in Fig. 10. Similar results are obtained for η = 5 and 8N s m−2 (Figs. 12
and 13). This supports observations made e.g. in Refs. 11, 33 and 37 that wave attenuation
tends to increase with bone volume fraction.

4. Conclusion

According to Wear,63,65 many studies report attenuation to demonstrate an approximately
linear dependence on frequency in this range, for instance see Refs. 38–40. However,
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Fig. 13. (Color online) Displacement ux at t = 1.5 for η = 8Ns m−2, f = 1.1 MHz and β = 0.72, 0.82, 0.92.
Top: two-dimensional color plot. Bottom: cross section at y = Ly/2. The values of ux are magnified by a
factor of 103.

a breakpoint was noticed in the attenuation coefficient versus frequency data near 600 kHz
in healthy bone. “Between 200 kHz and 600 kHz, attenuation varied roughly linearly with
frequency with a relatively steep slope. Between 600 kHz and 1.0 MHz, the relationship also
was approximately linear, but with a noticeably diminished slope”. The present model is
based on mixture theory. Future work will treat a more exact model where each point of the
cancellous bone simulation will be either solid matrix or viscous fluid. Moreover, the solid
matrix will have attenuation built into it by using complex parameters which is usually
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done in bone models. The viscous fluid will be chosen to model a blood–marrow mixture as
was done in the recent work.20
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Appendices

A. Staggered-Grid Finite Difference Operators

We give here the expressions for the second-order finite difference operators Dj that approx-
imate the spatial derivatives ∂j in the evolution equations for the stress and velocity fields.

The velocity gradient is discretized as follows,

Dxvx|i,j,k =
vx i+ 1

2
,j,k − vx i− 1

2
,j,k

∆x
,

Dyvy|i,j,k =
vy i,j+ 1

2
,k − vy i,j− 1

2
,k

∆y
,

Dzvz|i,j,k =
vz i,j,k+ 1

2
− vz i,j,k− 1

2

∆z
,

which are evaluated at point xi = i∆x, yj = j∆y and zk = k∆z. The cross-derivatives are
approximated by

Dxvy|i+ 1
2
,j+ 1

2
,k =

vy i+1,j+ 1
2
,k − vy i,j+ 1

2
,k

∆x
,

Dyvx|i+ 1
2
,j+ 1

2
,k =

vx i+ 1
2
,j+1,k − vx i+ 1

2
,j,k

∆y
,

Dxvz|i+ 1
2
,j,k+ 1

2
=

vz i+1,j,k+ 1
2
− vz i,j,k+ 1

2

∆x
,

Dzvx|i+ 1
2
,j,k+ 1

2
=

vx i+ 1
2
,j,k+1 − vx i+ 1

2
,j,k

∆z
,

Dyvz|i,j+ 1
2
,k+ 1

2
=

vz i,j+1,k+ 1
2
− vz i,j,k+ 1

2

∆y
,

Dzvy|i,j+ 1
2
,k+ 1

2
=

vy i,j+ 1
2
,k+1 − vy i,j+ 1

2
,k

∆z
.

Note that the superscript denoting the time index is omitted for convenience.
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For the stress gradient, its discretized forms are given by

Dxτxx|i+ 1
2
,j,k =

τxx i+1,j,k − τxx i,j,k

∆x
,

Dyτxy|i+ 1
2
,j,k =

τxy i+ 1
2
,j+ 1

2
,k − τxy i+ 1

2
,j− 1

2
,k

∆y
,

Dzτxz|i+ 1
2
,j,k =

τxz i+ 1
2
,j,k+ 1

2
− τxz i+ 1

2
,j,k− 1

2

∆z
,

Dxτxy|i,j+ 1
2
,k =

τxy i+ 1
2
,j+ 1

2
,k − τxy i− 1

2
,j+ 1

2
,k

∆x
,

Dyτyy|i,j+ 1
2
,k =

τyy i,j+1,k − τyy i,j,k

∆y
,

Dzτyz|i,j+ 1
2
,k =

τyz i,j+ 1
2
,k+ 1

2
− τyz i,j+ 1

2
,k− 1

2

∆z
,

Dxτxz|i,j,k+ 1
2

=
τxz i+ 1

2
,j,k+ 1

2
− τxz i− 1

2
,j,k+ 1

2

∆x
,

Dyτyz|i,j,k+ 1
2

=
τyz i,j+ 1

2
,k+ 1

2
− τyz i,j− 1

2
,k+ 1

2

∆y
,

Dzτzz|i,j,k+ 1
2

=
τzz i,j,k+1 − τzz i,j,k

∆z
.

Although we only use second-order approximations in this paper, higher-order formulas can
be obtained following the technique of Levander42 and Yomogida and Etgen.69

B. von Neumann Stability Analysis

Through a von Neumann stability analysis, we derive a condition on ∆t that ensures stability
of the numerical scheme. For convenience, we restrict the analysis to the two-dimensional
case as in our numerical simulations. We thus assume a displacement field of the form

u(x, t) = (ûx, ûy)ei(k·x−ωt). (B.1)

First, let us consider the solid phase. Substituting v = ∂tu and (7) into (9) yields a closed
system of equations for the displacement field. The corresponding discretized equations, set
up in matrix form, read[

(α2
sDxx + β2

sDyy) − Dtt (α2
s − β2

s )Dxy

(α2
s − β2

s )Dxy (α2
sDyy + β2

sDxx) − Dtt

]
u = 0,
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where

αs =

√
λ + 2µ

ρs
, βs =

√
µ

ρs
.

This linear system admits a nontrivial solution if and only if the determinant of the coeffi-
cient matrix is zero, which implies

Dtt =
1
2
(α2

s + β2
s )(Dxx + Dyy)

± 1
2
(α2

s − β2
s )

√
(Dxx + Dyy)2 − 4(DxxDyy − D2

xy). (B.2)

Then substituting (B.1) into (B.2) leads to

sin2 ω∆t

2
=

1
2

(
∆t

h

)2
(α2

s + β2
s )

(
sin2 kxh

2
+ sin2 kyh

2

)

± (α2
s − β2

s )

[(
sin2 kxh

2
− sin2 kyh

2

)2

+
(

cos
(kx + ky)h

2
− cos

(kx − ky)h
2

)2
]1/2

,

where k = (kx, ky) and, for simplicity, we assume that ∆x = ∆y = h. By requiring that the
right-hand side be less than or equal to 1, we arrive at the stability condition

∆t ≤ h√
2αs

,

which is similar to that reported in Ref. 22.
We now turn to the fluid phase. Following the same procedure as before, we obtain the

linear system[
α2

fDxx + β2
f (2Dxxt + Dyyt) − Dtt α2

fDxy + β2
fDxyt

α2
fDxy + β2

fDxyt α2
f + β2

f (2Dyyt + Dxxy) − Dtt

]
u = 0,

whose solvability implies

Dtt =
1
2
[α2

f (Dxx + Dyy) + 3β2
f (Dxxt + Dyyt)]

± 1
2

√
[α2

f (Dxx − Dyy)+β2
f (Dxxt − Dyyt)]2 + 4(α2

f Dxy + β2
fDxyt)2, (B.3)

where

αf = c,
√

βf = η/ρf .
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Again, substituting (B.1) into (B.3) leads to

sin2 ω∆t

2
=

1
2

(
∆t

h

)2


(
α2

f + 3β2
f

e−iω∆t − 1
∆t

)(
sin2 kxh

2
+ sin2 kyh

2

)

±
(

α2
f + β2

f

e−iω∆t − 1
∆t

)[(
sin2 kxh

2
− sin2 kyh

2

)2

+
(

cos
(kx + ky)h

2
− cos

(kx − ky)h
2

)2
] 1

2

 ,

=
1
2

(
∆t

h

)2 [
α2

f + 3β2
f

e−iω∆t − 1
∆t

±
(

α2
f + β2

f

e−iω∆t − 1
∆t

)](
sin2 kxh

2
+ sin2 kyh

2

)
. (B.4)

Assuming ω∆t � 1 so we can Taylor expand

e−iω∆t − 1
∆t

=
1 − iω∆t + · · · − 1

∆t
≈ −iω,

then Eq. (B.4) further simplifies to

sin2 ω∆t

2
=

1
2

(
∆t

h

)2 [
α2

f − 3iωβ2
f ± (α2

f − iωβ2
f )

](
sin2 kxh

2
+ sin2 kyh

2

)
.

By requiring that the right-hand side be less than or equal to 1, we arrive at the stability
condition

∆t ≤ h√
2(α4

f + 4ω2β4
f )

1
4

.

For the composite model, the time step should thus satisfy

∆t ≤ min

{
h√
2αs

,
h√

2(α4
f + 4ω2β4

f )
1
4

}
.

A similar analysis would yield stability conditions in higher dimensions.
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51. E. Ogam, Caractéisation ultrasonore et vibroacoustique de la santé mécanique des os humains,
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