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Recovery of parameters of cancellous bone by acoustic interrogation
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The parameter recovery problem for cancellous bone by acoustic interrogation
is investigated numerically. Biot’s equations coupled with boundary integral
equations are used to model ultrasound propagation through a bone sample
immersed in a water tank. The mathematical formulation for two-dimensional
orthotropic bone is presented, but numerical results are only discussed in the
isotropic case. The inversion procedure consists in minimizing some error on the
pressure at measurement points located outside the bone sample. For this purpose,
two different minimization algorithms are considered. A number of numerical
tests are performed for a range of frequencies, which demonstrate the model’s
ability to recover some bone parameters with satisfactory accuracy.
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1. Introduction

Since 70% of the variance of bone strength is accounted for by bone density, quantitative
ultrasound techniques could provide an important new diagnostic tool.[1–26] Moreover,
in contrast to X-ray densitometry, ultrasound which also measures bone density does not
ionize the tissue, and its implementation is relatively inexpensive. Since the loss of bone
density and the destruction of bone microstructure is most evident in osteoporotic cancellous
bone, which consists of trabeculae and marrow, it is natural to consider the possibility of
developing accurate ultrasound models for the insonification of cancellous bone. It would be
of enormous clinical advantages if accurate methods could be developed using ultrasound
interrogation to diagnose osteoporosis and bone fractures.

Cancellous bone is a two-component material consisting of a calcified bone matrix with
interstitial fatty marrow. Hence, mathematical models such as Biot’s model for poroplastic
media are applicable.[18,27–32] One particular ultrasonic technique for assessing bone
mineral density is by measuring the calcaneal broadband ultrasonic attenuation (BUA) and
speed of sound, which are highly correlated with calcaneal bone mineral density.[25,33] This
method uses the travel time of sound between two transducers with a bone sample between
them and the travel time in the absence of the specimen to determine the compressional
wave velocity in the bone.
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Another experiment involves measuring the spectra of the phase velocity c(ω) and of
the attenuation rate α(ω), where ω is the frequency of the sound wave. Many investigations
reported that the attenuation is linear from 200 to 600 kHz and also from 600 kHz to
1 MHz,[16,17,19] i.e. α(ω) is assumed to be a linear function as α(ω) = BUAω+ K with
K being a constant. The BUA coefficient is the gradient in dB/MHz evaluated by linear
regression and is thought relevant to the evaluation of osteoporosis.[7] Hoffmeister et al. [34]
found that, in the range 0.5–1 MHz, BUAexhibits a significant correlation with the anterior–
posterior and medial–lateral directions but not in the superior–inferior orientation. A break
point in the slopes was observed at about 1 MHz, whereas other researchers observed one
at about 400 kHz. Others observed measurable nonlinear attenuation at frequencies below
400 kHz for unfatted bone from human cadavers.[23] Langton et al. [17] found that the BUA
value of the ultrasonic spectrum measured on the calcaneus is significantly lower in older
women with osteoporotic fracture compared to younger women without these fractures.
However, Chaffai et al. [4] found that attenuation varies in terms of frequency roughly as
ω1.1±0.3.

Hodgskinson et al. [35] found that density is a good predictor of stiffness of cancellous
bone and as there is also a good correlation between strength and stiffness, it is also a good
predictor of strength. In that paper, the authors investigated the ability of ultrasound to
predict the mechanical properties of cancellous bone. They found that the speed of sound in
cubes of cancellous bone can give structure-specific information and that indeed knowledge
of both density and velocity allows for a better prediction of stiffness than either density or
velocity alone.Ashman et al. [1],Ashman and Rho [2] used ultrasound to measure the elastic
properties of cancellous bone, whereas Fry and Barger [9] used ultrasound to characterize
both cortical and cancellous bone.

Moreover, bone rigidity depends to a large extent not only on bone density but also
on the trabecular microstructure. This microstructure determines the Biot bone parameters,
i.e. they may be determined using homogenization theory.[36–38] Use of Biot’s model
requires determination of the parameters upon which it depends. This can be an expensive
process if done experimentally. In the present paper, we investigate whether these param-
eters can be ascertained by acoustic interrogation. We revisit the parameter identification
problem for two-dimensional bone samples, which we have previously investigated in
simplified cases,[27–30,39] the understanding being that this is a predecessor to the full
three-dimensional problem.

In Buchanan and Gilbert [27], Buchanan et al. [28], the bone sample was situated in a
water tank and we used a boundary element method to model the direct problem and the
inversion procedure. The direct problem was solved using a finer mesh size than in the
inversion procedure. Some noise was also added to the solution of the direct problem. In
these works, simulations were performed for bone specimens of relatively high porosities,
and five Biot parameters (porosityβ, permeability k, pore size a and real parts of the bulk and
shear moduli, Re Kb and Re μ) were determined. The algorithm was uniformly successful
in finding the porosity to within 3%. Errors for the remaining parameters were often higher,
but the target values of these parameters varied over at least one order of magnitude. The
procedure took much CPU time because of the eigenvalues introduced by a finite water
tank. The papers [29,30] were an attempt to do away with the water tank and we modelled
the problem by replacing the bone sample by an infinite slab. In this case, we were able to
numerically compute, to great accuracy, the Green’s function for the source in the water
using residue calculus. The results were for the most part reasonable; however, inversion
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286 R.P. Gilbert et al.

Table 1. Summary of the average and worst errors made by five variants of the inversion algorithm
for Problems 71w, …, 91w in Buchanan and Gilbert [30]: Two-phase algorithm with univariate
Phase 1; Two-phase algorithm with alternative Phase 1; Three-phase algorithm using the result with
the lowest objective function value; Three-phase algorithm using the midpoint of the lowest and
highest values; Three-phase algorithm using the mean. See [30] for more details.

Variant Error β (%) k (%) a (%) Re Kb (%) Reμ (%)

Phase 2 Avg. 0.36 10.33 12.13 5.41 7.62
Worst 1.13 25.75 28.94 17.59 28.59

Phase 2 Alt Avg. 0.58 15.47 17.54 3.50 4.77
Worst 2.41 26.09 29.46 6.92 12.42

Phase 3 Obj Avg. 0.53 13.99 15.50 6.11 7.58
Worst 2.02 30.24 34.10 17.59 28.59

Phase 3 Mid Avg. 0.30 12.52 15.87 9.57 9.60
Worst 0.77 23.41 27.44 23.06 21.86

Phase 3 Mean Avg. 0.30 12.27 13.31 7.60 8.88
Worst 0.94 23.52 25.94 21.12 34.73

times were long, ranging from six to nine hours. Table 1 summarizes the results of the
various inversion schemes used in Buchanan and Gilbert [30]. More recently, Buchanan
et al. [40] investigated an indirect inversion approach based on the numerical solution for a
set of effective velocities and transmission coefficients in order to ameliorate the difficulties
posed by a direct minimization.

In the present paper, we consider an improved Biot model for orthotropic bone,
accounting for dissipation due to tortuosity (i.e. due to the presence of pores of arbitrary
size). The bone sample is taken to be a square, and an efficient numerical scheme is
devised by adopting a boundary integral formulation for the water tank, so that we need not
solve for the entire domain. Only the region occupied by the bone sample is discretized
as in Buchanan and Gilbert [27], Buchanan et al. [28], Gilbert et al. [39]. Section 2
presents Biot’s model for cancellous bone in the orthotropic and isotropic cases. Section 3
describes the boundary integral formulation for a two-dimensional bone sample immersed
in a water tank. Section 4 outlines the numerical scheme to solve the governing equations.
Section 5 discusses the inversion results, including convergence and sensitivity tests. Three
Biot parameters are examined (porosity, and real parts of the bulk and shear moduli). Finally,
concluding remarks are given in Section 6.

2. Biot model for cancellous bone

2.1. Orthotropic case

The Biot–Stoll model treats a poroplastic medium as an elastic frame with interspinal pore
fluid.[41–43] Cancellous bone is anisotropic; however, as pointed out by Williams [32], if the
acoustic waves passing through it travel in the trabecular direction, then an isotropic model
may be acceptable. We will simulate a two-dimensional version of the experiments described
in McKelvie and Palmer [18] and Hosokawa and Otani [31]. The motions of the frame and
fluid within the bone are tracked by position vectors u = (u1, u2) and U = (U1,U2),
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respectively. In Cartesian coordinates (x1, x2), the two-dimensional constitutive equations
relating strain to stress, for an orthotropic material,[44] read

σ11 = E1e11 + ν1 E2e22

(1 − ν1ν2)
+ Qε,

σ22 = ν2 E1e11 + E2e22

(1 − ν1ν2)
+ Qε,

σ12 = μe12, σ21 = μe21,

s = Qe + Rε,

where the solid and fluid dilatations are given by

e = ∇ · u = ∂u1

∂x1
+ ∂u2

∂x2
, ε = ∇ · U = ∂U1

∂x1
+ ∂U2

∂x2
, (1)

and the strains are defined by

e11 = ∂u1

∂x1
, e12 = e21 = ∂u1

∂x2
+ ∂u2

∂x1
, e22 = ∂u2

∂x2
. (2)

The parameters E1 and E2 denote the Young moduli, and ν1 and ν2 denote the Poisson
ratios, in the x1- and x2-directions, respectively. In compliance form, Equations (1) and (2)
become

e11 = −ν2 Q2σ22ν1 − ν2 Q2ν1σ11 + σ22ν1 E2 R − Qν1 E2s − Q2σ22 − E2 Rσ11 + E2s Q + Q2σ11

−Q2 E1 + RE2 E1 + ν1 E2s Q2 + Q2ν2 E1 E2 − E2 Q2
,

e22 = −ν2 Q2ν1σ11 + ν2 Q2σ22ν1 E1 + Q2σ11 − Q2σ22 + sν2 E1 Q − s E1 Q − Rν2ν1 E1σ11 + RE1σ22ν2

−Q2 E1 + RE2 E1 + ν1 E2 Q2 + Q2ν2 E1 − E2 Q2
,

e12 = σ12

μ
,

ε = −E2 Qσ11 + ν2 E1 Qσ11σ12 + ν1 E2 Qσ22 + E1 E2s − E1 Qσ22

−Q2 E1 + RE2 E1 + ν1 E2 Q2 + Q2ν2 E1 − E2e11 Q2
.

Assuming no body forces, an argument based upon Lagrangian dynamics [41,45] leads to
the following equations of motion for the displacements and dilatations,(

μH
� + 1

1 − ν1ν2
EH

)
u + QHU = ∂2

∂t2
(ρ11u + ρ12U)+ b

∂

∂t
(u − U), (3)

∇(Qe + Rε) = ∂2

∂t2
(ρ12u + ρ22U)− b

∂

∂t
(u − U),

where

H :=
⎛⎜⎝ ∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x1∂x2

∂2

∂x2
2

⎞⎟⎠ ,
is the Hessian matrix operator, H

� is its transpose and

E :=
(

E1 ν2 E1
ν1 E2 E2

)
.
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288 R.P. Gilbert et al.

Table 2. Parameters in Biot’s model for cancellous bone.

Symbol Parameter

ρ f Density of the pore fluid
ρr Density of frame material
Kb Complex frame bulk modulus
μ Complex frame shear modulus
K f Fluid bulk modulus
Kr Frame material bulk modulus
β Porosity
η Viscosity of pore fluid
� Viscous characteristic length
α∞ Asymptotic tortuosity
k Permeability

Here, ρ11 and ρ22 are density parameters for the solid and fluid, respectively, ρ12 is a density
coupling parameter, and b is a dissipation parameter. These are calculated from the inputs
of Table 2 using the formulas

ρ11 = (1 − β)ρr − β(ρ f − Tβ),

ρ12 = β(ρ f − Tβ),

ρ22 = Tβ2,

where T is the tortuosity. In the time-harmonic case,

u(x1, x2, t) = û(x1, x2)e
iωt , U(x1, x2, t) = Û(x1, x2)e

iωt .

Substituting these representations into (3) and dropping, the hats give(
μH

� + 1

1 − ν1ν2
EH

)
u + QHU + p̃11u + p̃12U = 0,

∇(Qe + Rε)+ p̃12u + p̃22U = 0,

where

p̃11 := ω2ρ11 − iωb, p̃12 := ω2ρ12 + iωb, p̃22 := ω2ρ22 − iωb.

Following Fellah et al. [7,8], an improvement over the standard Biot–Stoll model is obtained
by replacing the assumption of cylindrical pores in the dissipation term by a more realistic
configuration.[46] This yields(

μH
� + 1

1 − ν1ν2
EH

)
u + QHU + p11u + p12U = 0,

∇(Qe + Rε)+ p12u + p22U = 0,

where

p11 := ω2
[
(1−β)ρr +βρ f (α(ω)−1)

]
, p12 := −ω2βρ f (α(ω)−1), p22 := ω2βρ f α(ω),
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Inverse Problems in Science and Engineering 289

and

α(ω) = α∞

⎛⎝1 + iηβ

ωα∞ρ f k

√
1 + 4α2∞k2ρ f ω

iη�2β2

⎞⎠ .
It is inconvenient to use both the solid displacement u and the fluid displacement U as
unknowns. A more convenient set of unknowns are the solid displacement and the pressure
s = Qe + Rε. To this end, we make the substitutions

U = − 1

p22
(∇s + p12u) , ε = 1

R
(s − Q e) , (4)

to obtain(
μH

� + 1

1 − ν1ν2
EH − p12

p22
QH

)
u +

(
p11 − p2

12

p22

)
u −

(
p12 + QH

p22

)
∇s = 0,

and

∇2s + p22

R
s +

(
p12 − p22 Q

R

)
e = 0.

This system is well posed under traction boundary conditions. For further details, see the
Appendices 1–3.

2.2. Isotropic case

Bone is orthotropic; hence, our eventual goal is to investigate parameter retrieval in this
case. However, as the problem increases in difficulty with the number of parameters, we
first test our procedure on isotropic bone. By assuming isotropy, the constitutive equations
simplify to

σ11 = 2μe11 + λe + Qε, (5)

σ22 = 2μe22 + λe + Qε,

σ12 = μe12, σ21 = μe21.

It is this case we shall investigate the undetermined coefficient problem for and leave the
orthotropic inverse problem for a subsequent publication. The parameter μ, the complex
frame shear modulus, is a measured quantity. The other parameters λ, R and Q occurring
in the constitutive equations are calculated from the measured or estimated values of the
parameters given in Table 2, using the formulas

λ = Kb − 2

3
μ+ (Kr − Kb)

2 − 2βKr (Kr − Kb)+ β2 K 2
r

D − Kb
,

R = β2 K 2
r

D − Kb
,

Q = βKr
[
(1 − β) Kr − Kb

]
D − Kb

,

where
D = Kr

[
1 + β(Kr/K f − 1)

]
.
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290 R.P. Gilbert et al.

The bulk and shear moduli Kb and μ are often given imaginary parts to account for
frame viscoelasticity. Assuming that the bone system oscillates harmonically, Equations
(3) become

μ∇2u + ∇
[
(λ+ μ)e + Qε

]
+ (p11u + p12U) = 0, (6)

∇(Qe + Rε)+ (p12u + p22U) = 0.

3. Boundary value problem

In a typical in vitro experiment, a bone specimen is placed in a water tank. The regions
occupied by the bone specimen and the water are denoted byb andw, respectively. Inw ,
the two-dimensional equations for fluid pressure P and fluid displacement Uw = (Uw

1 ,U
w
2 )

read

−∇2 P − k2
0 P = −q δ(x; x0; k0), (7)

∇ P − ρwω2Uw = 0, (8)

where ρw is the water density, x0 is the location of the point source, q and k0 are the
amplitude and wavenumber of the emitted signal, respectively. As stated above, in order
to formulate a well-posed boundary value problem, one must modify the present form of
Biot’s Equation (6), since there are not enough transmission conditions for the components
of displacements fields u and U. Using s as defined in (4), we obtain

∇2 s + p22

R
s +

(
p12 − p22 Q

R

)
e = 0, (9)

together with

μ∇2u + ∇
[(
λ+ μ− Q2

R

)
e +

(Q

R
− p12

p22

)
s
]

+
(

p11 − p2
12

p22

)
u = 0. (10)

Equations (9) and (10) then form the modified Biot equations for u and s in the bone specimen
b. These equations should be satisfied by u and s together with boundary conditions on
the interface between bone and water. These are:

• Continuity of the flux: from (8), we have

ρwω2
[
βn · U + (1 − β)n · u

]
= ρwω2n · Uw ≡ 0,

and thus

ρwω2
([

1 − β
(

1 + p12

p22

)]
n · u − β

p22

∂s

∂n

)
= 0, (11)

where n is the exterior unit normal to b, pointing into the water.
• Continuity of the aggregate pressure:

σ�j n j + s n� = −Pn�, (12)

since an expansion of the bone induces a compression in the water.
• Continuity of the pore pressure:

s = −βP. (13)
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Inverse Problems in Science and Engineering 291

• Vanishing of the tangential frame stress: σ12 ≡ σ21 = 0 which is equivalent to

∂u1

∂x2
+ ∂u2

∂x1
= 0. (14)

In addition, it is understood that the pressure P is also required to satisfy the two-dimensional
Sommerfeld radiation condition at infinity. We have so far given the precise formulation of
the exterior transmission problem (ETP) consisting of Equations (9), (10) for the unknowns
u, s inb and Equation (7) for the unknown P inw, together with transmission conditions
(11)–(14) and the radiation condition at infinity.

From the computational point of view, it is more convenient to reduce the ETP to a
nonlocal problem in a finite computational domain such as b.[39] For this purpose, we
now reduce the Helmholtz Equation (7) to a boundary integral equation using the Green
representation of P in w. More precisely, we seek a solution of (7) in the form of a
single-layer potential in terms of the unknown density function ϕ,

P(x, x0) = −q G(x, x0; k0) −
∫
∂b

G(x, ζ ; k0)ϕ(x0, ζ ) d Sζ , x ∈ w,

where G(x, x0, k0) is free-space Helmholtz Green’s function given by

G(x, x0, k0) := i

4
H (1)

0 (k0‖x − x0‖),

and H (1)
0 is a Hankel function of the first kind. Clearly, the density function ϕ is related to

the unknowns u and U via the transmission conditions (11)–(14).
If the boundary ∂ b of the bone sample has positive orientation, then letting x → X ∈

∂ b, we obtain from condition (12) that

λ∇ · u + 2μ
∂u1

∂x1
+ Qε + s = q G(X, x0; k0) +

∫
∂b

G(X, ζ ; k0)ϕ(x0, ζ ) dsζ , (15)

and

λ∇ · u + 2μ
∂u2

∂x2
+ Qε + s = q G(X, x0; k0) +

∫
∂b

G(X, ζ ; k0)ϕ(x0, ζ ) dsζ . (16)

Note that in deriving these equations, we have tacitly employed condition (14). In view
of the similarity between (15) and (16), a subtraction of these two equations leads to the
simple relation

∂u1

∂x1
− ∂u2

∂x2
= 0. (17)

Hence in computation, we may use (17) and either (15) or (16), but not both. Here, the term
ε should be replaced by ε = (s − Q e)/R from (4).

Next, the flux continuity condition (11) leads to the natural boundary condition for s,

ρwω2
([

1 − β
(

1 + p12

p22

)]
n · u − β

p22

∂s

∂n

)
+ q

∂G

∂n
(X, x0; k0)

= 1

2
ϕ(x0,X) −

∫
∂ b

ϕ(x0, ζ )
∂G

∂n
(X, ζ ; k0) dsζ . (18)
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292 R.P. Gilbert et al.

Note that the normal derivatives of G in (18) are taken with respect to X. Finally, from the
representation formula for P , condition (13) leads to a boundary integral equation for ϕ,

β

∫
∂b

G(X, ζ ; k0)ϕ(x0, ζ ) dsζ − s + β q G(X, x0; k0) = 0. (19)

It is worth mentioning that the right-hand sides of (15), (16), (18) and (19) contain no
singularities since, for the first three equations, the source point x0 is in b whereas, for
(18), the singularity is cancelled because of the last term on the right-hand side.

Before we formulate what is called the nonlocal problem for the ETP, some observations
are in order. We observe that the transmission conditions (15) and (16) can be considered as
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Figure 1. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 250 kHz and β = 0.7.
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Inverse Problems in Science and Engineering 293

natural boundary conditions for the displacement field u for given s andϕ, whereas condition
(18) is a natural condition for the stress s if u and ϕ are known. From the variational point
of view, both equations define the relevant Dirichlet–Neumann maps. On the other hand,
condition (19) only relates the trace of the stress s and the density function ϕ, which may be
considered as a boundary integral equation for ϕ given the stress s. With these observations,
we are now in a position to state the nonlocal problem for the ETP:

Find the four unknowns u1, u2, s, ϕ. The first three unknowns are required to satisfy
the Biot Equations (9) and (10) and the boundary conditions (or rather the transmission
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Figure 2. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 250 kHz and β = 0.83.
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conditions) either (15) or (16), (17) and (18), where the density functionϕmay be considered
as an unknown parameter subject to the constraint (19).

We note that if ϕ is given, then we have an uncoupled system for the displacement
components u1, u2 and stress s. On the other hand, if u1, u2 and s are given, then the
unknown density function ϕ is required to satisfy the standard Fredholm boundary integral
equation of the first kind (19). In general, this is a coupled system for the four unknowns,
and can only be treated by numerical methods, which is the content of the next section.
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Figure 3. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 250 kHz and β = 0.9.
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4. Numerical approximation

In this section, we will assume that the bone specimen is a square of dimension L × L . We
discretize the domain into a uniform mesh consisting of N × N points. In order to solve the
coupled system of Equations (9), (10), (15) or (16)–(19), we use a finite-difference method.

The discretization of derivatives is carried out in the following way: second-order
central difference schemes are used for the bulk equations, and either backward or forward
second-order schemes are used for the boundary conditions depending on the node location.
Tangential derivatives along the boundary are discretized using only first-order backward
schemes. The reason for this is to avoid special treatment of boundary nodes in order to keep
implementation of the finite-difference method relatively simple. Finally, the quadrature of
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Figure 4. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 500 kHz and β = 0.7.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
12

 0
4 

Ja
nu

ar
y 

20
16

 



296 R.P. Gilbert et al.

the boundary integrals in (15) or (16), (18) and (19) is based on constant interpolation of the
solution between grid points. The resulting system is then solved by Gaussian elimination.
For instance, following this scheme and using the appropriate standard finite-difference
formulas

∂ f

∂x
(xi , y j ) ≈ −3 fi, j + 4 fi+1, j − fi+2, j

2h
, (forward)

∂ f

∂x
(xi , y j ) ≈ fi−2, j − 4 fi−1, j + 3 fi, j

2h
, (backward)
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Figure 5. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 500 kHz and β = 0.83.
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∂2 f

∂x2
(xi , y j ) ≈ fi−1, j − 2 fi, j + fi+1, j

h2
,

∂2 f

∂x∂y
(xi , y j ) ≈ fi+1, j+1 − fi+1, j−1 + fi−1, j−1 − fi−1, j+1

4h2
,

Equation (16) on the left side of the square away from the corners becomes(
λ+ 2μ− Q2

R

)(
− 3u1(i, j) + 4u1(i+1, j) − u1(i+2, j)

)
+ 2

(
λ− Q2

R

)(
u2(i, j) − u2(i, j−1)

)
+ 2h

(
1 + Q

R

)
s(i, j) − 2h2

∑
ζ(m,n)∈∂b

G(X(i, j), ζ(m,n); k0)ϕ(x0, ζ(m,n)) = 2h q G(X(i, j), x0; k0).
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Figure 6. Profiles of u1, u2, s, ϕ and −P for N = 90, ω = 500 kHz and β = 0.9.
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Table 3. Convergence test on β with the NM algorithm for varying resolutions and η = η1.

ω low/high β fmin % error

Guess/Target 0.7
250 kHz 25/90 0.6945 0.3671 0.7857

45/90 0.6940 0.1654 0.8571
65/90 0.6971 0.0697 0.4142

Guess/Target 0.7
500 kHz 25/90 0.7345 0.2366 4.929

45/90 0.7172 0.1171 2.443
65/90 0.7081 0.0486 1.157

Guess/Target 0.83
250 kHz 25/90 0.8350 0.3014 0.6024

45/90 0.8304 0.1178 0.0602
65/90 0.8298 0.0439 0.0241

Guess/Target 0.83
500 kHz 25/90 0.8581 0.4467 3.389

45/90 0.8406 0.2174 1.277
65/90 0.8343 0.0865 0.5181

Guess/Target 0.9
250 kHz 25/90 0.8844 0.7037 1.733

45/90 0.8993 0.3412 0.0778
65/90 0.9015 0.1162 0.1667

Guess/Target 0.9
500 kHz 25/90 0.9437 0.2791 4.855

45/90 0.9040 0.0992 0.4444
65/90 0.9020 0.0799 0.2222

Here,

G(X, ζ ; k0) =

⎧⎪⎨⎪⎩
i

4
H (1)

0 (k0‖X − ζ‖), X �= ζ,

i

8π
h

[
log

(
2

h

)
+ 1

]
, X = ζ,

and h is the mesh spacing.
Before proceeding with numerical tests for this model, as an illustration, Figures 1–6

show dimensionless profiles of u1, u2, s (inb), ϕ (on ∂b) and −P (inw), using L = 1
and N = 90, for various frequencies ω and porosities β. Values of physical parameters
used in these numerical simulations are given in the next section. We restrict ourselves to
relatively low ultrasonic frequencies, 250 and 500 kHz, where Biot’s model is supposed to
be applicable. Moreover, in view of applications to quantitative ultrasound techniques for
the diagnosis of osteoporosis, we pay particular attention to relatively high bone porosities.

5. Numerical experiments

5.1. Convergence/accuracy tests

To validate our model, we perform several tests using different optimization procedures.
These are the Nelder–Mead (NM) simplex algorithm and the Differential Evolution (DE)
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Table 4. Convergence test on β with the NM algorithm for varying resolutions and η = η2.

ω low/high β fmin % error

Guess/Target 0.7
250 kHz 25/90 0.6944 0.1879 0.800

45/90 0.6944 0.0871 0.800
65/90 0.6973 0.0374 0.3857

Guess/Target 0.7
500 kHz 25/90 0.7711 0.2949 10.157

45/90 0.7405 0.1284 5.786
65/90 0.7201 0.0485 2.871

Guess/Target 0.83
250 kHz 25/90 0.9019 0.9753 8.663

45/90 0.9054 0.9556 9.084
65/90 0.8276 0.2619 0.2891

Guess/Target 0.83
500 kHz 25/90 0.8476 0.4707 2.120

45/90 0.8389 0.2729 1.072
65/90 0.8338 0.1327 0.4578

Guess/Target 0.9
250 kHz 25/90 0.9030 0.3626 0.333

45/90 0.9031 0.1363 0.3444
65/90 0.9020 0.0514 0.2222

Guess/Target 0.9
500 kHz 25/90 0.8990 0.2912 0.1111

45/90 0.8998 0.1329 0.0222
65/90 0.8999 0.0567 0.0111

scheme. As in Buchanan and Gilbert [30], to implement the NM algorithm, we use the
MATLAB command fminsearch. A MATLAB code for the DE scheme can be found at
http://www1.icsi.berkeley.edu/~storn/code.html. To our knowledge, this is the first time
that DE is applied to the present context.

Before we discuss our numerical experiments, let us briefly describe these two derivative-
free optimization methods. The fact that there is no derivative data needed to use these
algorithms makes them applicable to a wide variety of problems. However, this type of
optimization methods also has significant drawbacks. The DE scheme is an example of a
population-based stochastic search method that is used for global optimization. One very
appealing feature of this scheme is that very little user input is required. For instance,
unlike the NM algorithm, no initial guess is needed to start the search with DE. This is a
particularly salient feature since it has the effect of being able to stimulate some level of
uncertainty in determining the parameters of cancellous bone. More specifically, to find an
accurate minimum using the NM algorithm, one must have an accurate guess in the first
place, otherwise it may converge to a local minimum. The DE scheme eliminates any bias
in this regard. The main drawback of evolutionary algorithms is that, depending on the cost
function, convergence may be slow.[47] For more information regarding the DE scheme,
see [48]. The NM algorithm is another example of a direct search method, which can be
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Table 5. Comparison test on β between RN = 11 and RN = 100 for η = η1. Here N = 50 for the
high resolution and N = 25 for the low resolution.

ω β fmin % error

Guess/Target 0.7
250 kHz
11 Receiving nodes 0.7032 0.2692 0.4571
100 Receiving nodes 0.7035 0.2690 0.5000
Guess/Target 0.7
500 kHz
11 Receiving nodes 0.7252 0.1318 3.600
100 Receiving nodes 0.7252 0.1290 3.600
Guess/Target 0.83
250 kHz
11 Receiving nodes 0.8345 0.2124 0.5422
100 Receiving nodes 0.8345 0.2164 0.5422
Guess/Target 0.83
500 kHz
11 Receiving nodes 0.8504 0.3870 2.458
100 Receiving nodes 0.8504 0.3865 2.458
Guess/Target 0.9
250 kHz
11 Receiving nodes 0.8898 0.5700 1.133
100 Receiving nodes 0.8897 0.5645 1.144
Guess/Target 0.9
500 kHz
11 Receiving nodes 0.9033 0.1118 0.3667
100 Receiving nodes 0.9034 0.1142 0.3777

applied to a wide variety of cost functions, just as with DE. Since a starting guess must
be supplied to initiate the algorithm, convergence to a global minimum may not occur,
especially if the cost function has many minima. It is for this reason that we compare the
NM and DE results, since the latter may be more successful at finding the global minimum.
Moreover, the NM algorithm may not be desirable to use for problems with many variables
to be determined (as shown in Nelder and Mead [49]) and, in higher dimensions, there
is a large number of function evaluations needed for convergence. This can be very time
intensive especially when the cost function is complicated. For further details on the NM
algorithm and its convergence properties, we refer the reader to [49,50].

We now discuss our numerical experiments. For a given value of β, we may calculate the
pressure at a certain number RN of receiving nodes outside of the bone specimen. We do this
for two different resolutions to compare the results. For our tests, we assume that the centre
of the square is located at (5L/2, 5L/2), and that the source is positioned at x0 = (L , 5L/2)
outside of the square. The physical parameters we specify are (in dimensional SI units):
L = 0.01, ρ f = 950, ρr = 1960, K f = 2 × 109, Kr = 2 × 1010, a∞ = 1.13 and
� = 5 × 10−6. In order to see if the model can handle changes in physical parameters, we
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Table 6. Comparison test on β between RN = 11 and RN = 100 for η = η2. Here, N = 50 for the
high resolution and N = 25 for the low resolution.

ω β fmin % error

Guess/Target 0.7
250 kHz
11 Receiving nodes 0.6983 0.1096 0.2429
100 Receiving nodes 0.6989 0.1118 0.1571
Guess/Target 0.7
500 kHz
11 Receiving nodes 0.7513 0.1542 7.329
100 Receiving nodes 0.7514 0.1555 7.343
Guess/Target 0.83
250 kHz
11 Receiving nodes 0.9044 0.985 8.964
100 Receiving nodes 0.9043 0.9845 8.952
Guess/Target 0.83
500 kHz
11 Receiving nodes 0.8407 0.3091 1.289
100 Receiving nodes 0.8407 0.3098 1.289
Guess/Target 0.9
250 kHz
11 Receiving nodes 0.9029 0.2592 0.3222
100 Receiving nodes 0.9029 0.2551 0.3222
Guess/Target 0.9
500 kHz
11 Receiving nodes 0.8998 0.1911 0.0222
100 Receiving nodes 0.8999 0.1980 0.0111

use two different values for η, η1 = 1.5 (blood marrow) and η2 = 0.001 (water), thus each
set of numerical tests is performed twice.

To begin our numerical testing, let P∗
� represent the pressure at point x� = (xi , y j ).

Trial values P� produced by a set of Biot parameters are compared to the values P∗
� using

the objective function

f (P�, P∗
� ) =

[
RN∑
�=1

(P∗
� − P�)

2

]1/2

[
RN∑
�=1

(P∗
� )

2

]1/2
. (20)

For our first test, we compare varying sets of resolutions. We are interested in determining
the value of β that minimizes the objective function (20), with fmin denoting this minimum.
The minimization procedure is done using the NM simplex algorithm. We use the lower
resolutions N = (25, 45, 65) to produce the trial values, and compare these to the higher
resolution N = 90. Due to limitations in computing resources, simulations with resolutions
higher than N = 90 were prohibitive. For this test, the pressure is calculated at RN = 11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
D

el
aw

ar
e]

 a
t 1

3:
12

 0
4 

Ja
nu

ar
y 

20
16

 



302 R.P. Gilbert et al.

Table 7. Comparison test on β between RN = 11 and RN = 100 for η = η1. Here, N = 50 for the
high resolution and N = 25 for the low resolution. Receiving nodes are placed near the top, bottom
and to the right of the bone sample.

ω β fmin % error

Guess/Target 0.7
250 kHz
11 Receiving nodes 0.6998 0.2555 0.0286
100 Receiving nodes 0.6999 0.2554 0.0143
Guess/Target 0.7
500 kHz
11 Receiving nodes 0.7269 0.1739 3.840
100 Receiving nodes 0.7269 0.1735 3.840
Guess/Target 0.83
250 kHz
11 Receiving nodes 0.8342 0.1323 0.5060
100 Receiving nodes 0.8342 0.1323 0.5060
Guess/Target 0.83
500 kHz
11 Receiving nodes 0.8500 0.3708 2.4096
100 Receiving nodes 0.8499 0.3698 2.4000
Guess/Target 0.9
250 kHz
11 Receiving nodes 0.8928 0.5111 0.8000
100 Receiving nodes 0.8929 0.5077 0.7889
Guess/Target 0.9
500 kHz
11 Receiving nodes 0.9040 0.0912 0.4444
100 Receiving nodes 0.9041 0.0903 0.4560

receiving points outside the square, opposite to the source. These points are evenly spaced
in the interval x1 = 4L and L ≤ x2 ≤ 4L . The stopping criterion that we imposed in
the minimization depends on the scheme. For the NM algorithm, we typically used the
default criterion in fminsearch. For the stopping criterion in the DE scheme as discussed
later, we specified a maximum of 150 iterations. Our choice of 150 iterations was based on
experimental observations. We can see from the results in Tables 3 and 4 that the numerical
scheme does appear to converge and that, in most cases, our guess for β is quite accurate.
We also mention that there does appear to be good frequencies and bad frequencies to use
for the purpose of obtaining numerical data.

For our next test, we determine if increasing the number of measurement points RN
will make our results more accurate. We compare the results for RN = 11 to those for
RN = 100 (distributed over the same interval x1 = 4L , L ≤ x2 ≤ 4L). Due to the larger
number of constraints for RN = 100, computations were found to be more demanding in
CPU time. Therefore, to carry out this test, we use N = 50 for the high resolution and
N = 25 for the low resolution. From Tables 5 to 6, we can see that there is no significant
change in results when we take more receiving nodes. However, placement of nodes may
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Table 8. Comparison test on β between RN = 11 and RN = 100 for η = η2. Here, N = 50 for the
high resolution and N = 25 for the low resolution. Receiving nodes are placed near the top, bottom
and to the right of the bone sample.

ω β fmin % error

Guess/Target 0.7
250 kHz
11 Receiving nodes 0.6884 0.0618 1.657
100 Receiving nodes 0.6885 0.0620 1.643
Guess/Target 0.7
500 kHz
11 Receiving nodes 0.7465 0.1699 6.643
100 Receiving nodes 0.7464 0.1716 6.629
Guess/Target 0.83
250 kHz
11 Receiving nodes 0.9076 0.9937 9.350
100 Receiving nodes 0.9076 0.9937 9.350
Guess/Target 0.83
500 kHz
11 Receiving nodes 0.8396 0.2685 1.157
100 Receiving nodes 0.8396 0.2679 1.157
Guess/Target 0.9
250 kHz
11 Receiving nodes 0.9046 0.2252 0.5111
100 Receiving nodes 0.9046 0.2234 0.5111
Guess/Target 0.9
500 kHz
11 Receiving nodes 0.8979 0.0842 0.2333
100 Receiving nodes 0.8980 0.0854 0.2222

have an effect on numerical data. As an additional test, we place evenly spaced receiving
nodes at 5L/2 ≤ x1 ≤ 4L , x2 = 4L near the top of the square, at 5L/2 ≤ x1 ≤ 4L ,
x2 = L near the bottom of the square and nodes to the right of the square at x1 = 4L ,
2L ≤ x2 ≤ 3L . Both cases RN = 11 and RN = 100 are examined. Again, from Tables 7
to 8, we see that there is no much difference when we alter the placement of the measurement
points. Therefore, for convenience in the following tests, we will use RN = 11 receiving
nodes evenly placed to the right of the bone sample, at x1 = 4L and L ≤ x2 ≤ 4L .

Next, we minimize the objective function (20) using the DE scheme and compare these
results to the values obtained by minimizing with the NM algorithm. Here again, we take
N = 25 for the low resolution and N = 50 for the high resolution. Tables 9 and 10 indicate
that the NM minimum agrees with the DE one in most cases, which suggests that our model
is robust in particular with respect to the minimization procedure.

Finally, we perform a sensitivity test on the determination of β. In this case, a target
high-resolution (N = 90) simulation is performed for a given value of β and compared
with trial low-resolution (N = 65) simulations for a range of values of β. The comparison
is based on a direct evaluation of the objective function (20) without minimization. These
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Table 9. Comparison between the NM and DE minima for η = η1. Here, N = 50 for the high
resolution and N = 25 for the low resolution.

ω β fmin % error

Guess/Target 0.7
250 kHz
NM 0.7032 0.2692 0.4571
DE 0.7032 0.2692 0.4571
Guess/Target 0.7
500 kHz
NM 0.7252 0.1318 3.600
DE 0.7252 0.1318 3.600
Guess/Target 0.83
250 kHz
NM 0.8345 0.2124 0.5422
DE 0.8345 0.2124 0.5422
Guess/Target 0.83
500 kHz
NM 0.8504 0.3870 2.458
DE 0.8504 0.3870 2.458
Guess/Target 0.9
250 kHz
NM 0.8898 0.5700 1.133
DE 0.8898 0.5700 1.133
Guess/Target 0.9
500 kHz
NM 0.9033 0.1118 0.3667
DE 0.9033 0.1118 0.3667

results are presented in Figures 7 and 8 and show that the minimum of the objective function
occurs near the target value of β in all cases. This is consistent with the findings from our
previous tests, and further supports the robustness of our model.

These preliminary results are encouraging in regards to trying to recover other parame-
ters by this approach, and suggest that we may have some success at recovering additional
parameters. After the minimization procedure is carried out, we can use our guess for β to
determine guesses for other parameters. In particular, this value allows us to calculate guess
values for the following parameters: Re Kb, and Re μ. We can obtain these guesses using
the following formulas in terms of β:

• The real parts of Kb and μ are calculated by the formulas of Williams [32],

Re Kb = E

3(1 − 2ν)
V n

f ,

Reμ = E

2(1 + ν)
V n

f , (21)
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Figure 7. Sensitivity test on β for η = η1. Here, N = 90 for the high resolution and N = 65
for the low resolution. The vertical dashed line corresponds to the target value of β specified in the
high-resolution simulation. Both frequencies 250 and 500 kHz are considered.

where V f = 1−β is the bone volume fraction. Following Hosokawa and Otani [31],
we use n = 1.46, E = 2.2 × 1010 and ν = 0.32 for the exponent, Young modulus
and Poisson ratio of solid (cortical) bone, respectively.
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Table 10. Comparison between the NM and DE minima for η = η2. Here, N = 50 for the high
resolution and N = 25 for the low resolution.

ω β fmin % error

Guess/Target 0.7
250 kHz
NM 0.6983 0.1096 0.2429
DE 0.6983 0.1096 0.2429
Guess/Target 0.7
500 kHz
NM 0.7513 0.1542 7.329
DE 0.7513 0.1542 7.329
Guess/Target 0.83
250 kHz
NM 0.9044 0.9850 8.964
DE 0.9044 0.9850 8.964
Guess/Target 0.83
500 kHz
NM 0.8407 0.3091 1.289
DE 0.8407 0.3091 1.289
Guess/Target 0.9
250 kHz
NM 0.9029 0.2582 0.3222
DE 0.9029 0.2582 0.3222
Guess/Target 0.9
500 kHz
NM 0.8998 0.1911 0.0222
DE 0.9571 0.4379 6.344

• The imaginary parts of Kb and μ are calculated assuming a log decrement �, i.e.
Im K ∗

b = �Re K ∗
b /π and Imμ = �Reμ∗/π with � = 0.1, as typically used in

underwater acoustics.[45]

These guesses have errors that are compounded mainly by two things: the error in our guess
on β and the fact that these formulas are approximations to begin with. This leads us to
question whether an alternative method to obtain guesses for Re Kb and Re μmay be more
suitable. In the following section, we would like to obtain guesses for Re Kb and Re μ
without considering them to be explicit functions of β.

5.2. Multivariate minimization

Having found guesses for the parameter β alone, we would like to determine if accurate
guesses for Re Kb and Re μ can also be obtained. To produce these guesses, we use the DE
algorithm. The reason for this choice is that it does not require a starting value. We use the
same objective function (20) as previously. Bone porosity is fixed using the average of the
guess values for β as given by the NM and DE schemes in Tables 9 and 10. By doing so,
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Figure 8. Sensitivity test on β for η = η2. Here, N = 90 for the high resolution and N = 65
for the low resolution. The vertical dashed line corresponds to the target value of β specified in the
high-resolution simulation. Both frequencies 250 and 500 kHz are considered.

we try to avoid some bias in the selection of β, although the average is not different from
the guess values in most cases.

It can be seen from Tables 11 to 14 that we have varying degrees of success depending on
the value of β, and we are able to recover the real part ofμwith better accuracy. Importantly,
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Table 11. Guesses for Biot parameters produced by the DE scheme in the case η = η1.

ω fmin β Re Kb Re μ

Guess/Target 0.7 3.5123e + 9 1.4369e + 9
250 kHz 0.2681 0.7032 4.5593e + 9 1.4151e + 9
500 kHz 0.1099 0.7251 9.5275e + 8 1.2933e + 9
Guess/Target 0.83 1.5327e + 9 6.2701e + 8
250 kHz 0.1988 0.8345 2.5792e + 9 5.9996e + 8
500 kHz 0.3866 0.8504 9.8725e + 8 5.1853e + 8
Guess/Target 0.9 7.0631e + 8 2.8895e + 8
250 kHz 0.5696 0.8898 5.7437e + 8 3.3229e + 8
500 kHz 0.1109 0.9033 7.6595e + 8 2.7407e + 8

Table 12. Guesses for Biot parameters produced by the DE scheme in the case η = η2.

ω fmin β Re Kb Re μ

Guess/Target 0.7 3.5123e + 9 1.4369e + 9
250 kHz 0.0903 0.6983 8.8536e + 8 1.4431e + 9
500 kHz 0.1309 0.7513 1.1369e + 9 1.0909e + 9
Guess/Target 0.83 1.5327e + 9 6.2701e + 8
250 kHz 0.9850 0.9044 1.6535e + 8 2.7056e + 8
500 kHz 0.3073 0.8407 1.0459e + 9 5.6728e + 8
Guess/Target 0.9 7.0631e + 8 2.8895e + 8
250 kHz 0.2537 0.9029 2.2512e + 8 2.7667e + 8
500 kHz 0.1655 0.9285 6.5012e + 8 2.7932e + 8

Table 13. Errors on the guesses obtained by the DE scheme for η = η1.

ω fmin β Re Kb Re μ

Guess/Target 0.7 3.5123e + 9 1.4369e + 9
250 kHz 0.2681 0.4571% 29.81% 1.52%
500 kHz 0.1099 3.600% 72.87% 9.99%
Guess/Target 0.83 1.5327e + 9 6.2701e + 8
250 kHz 0.1988 0.5422% 68.28% 4.31%
500 kHz 0.3866 2.4578% 35.39% 17.30%
Guess/Target 0.9 7.0631e + 8 2.8895e + 8
250 kHz 0.5696 1.1333% 18.68% 15.00%
500 kHz 0.1109 0.3667% 8.44% 5.15%

the orders of magnitude are well recovered in all cases. Based on this numerical evidence,
it seems reasonable to use this model and scheme for producing guesses for the parameters
of cancellous bone in the range of frequencies 250–500 kHz.
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Table 14. Errors on the guesses obtained by the DE scheme for η = η2.

ω fmin β Re Kb Re μ

Guess/Target 0.7 3.5123e + 9 1.4369e + 9
250 kHz 0.0903 0.2429% 74.793% 0.4315%
500 kHz 0.1309 7.329% 67.631% 24.079%
Guess/Target 0.83 1.5327e + 9 6.2701e + 8
250 kHz 0.9844 8.964% 76.59% 6.364%
500 kHz 0.3073 1.289% 31.758% 9.526%
Guess/Target 0.9 7.0631e + 8 2.8895e + 8
250 kHz 0.2537 0.3222% 85.312% 55.874%
500 kHz 0.1654 6.344% 7.956% 3.331%

6. Conclusions

Upon comparison with Phase 1 tests in Buchanan and Gilbert [30], our numerical results in
the present paper may be viewed as being successful. Except in one case, errors made on the
guess for β were well under 10%. Recovery of Re Kb still proves troublesome; however,
guesses here are more stable. Another success is the recovery of the parameter Reμ. Except
in the extreme case where β = 0.9, we observe errors well below 34% on this guess, which
is the lowest error obtained in Buchanan and Gilbert [30]. We would like to point out again
that Buchanan and Gilbert [30] considered a simplified situation where the bone sample
is an infinite slab, and they did not include effects of tortuosity in their model. The nicest
feature of the present method of parameter recovery is that it does not require large sets of
trial data, since the DE scheme requires no starting value.

If we compare with Table 1, our guesses for β and Re μ may be viewed again as
successful. While errors may be slightly higher, we must note that our method of determining
these guesses is significantly simpler, and does not require multiple initial guesses. Finally,
we note that the change in viscosity does not significantly alter the error ranges on our
results. With the experience gained from the present study, we plan to tackle the parameter
recovery problem for the orthotropic case in the near future.
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Appendix 1. Well posedness of the formulation
In the isotropic case,[51] it was shown using a variational approach that the Biot transmission problem
is well posed. A variation of the same arguments may be used in the orthotropic case. We outline the
procedure below on how this may be done by listing a sequence of theorems by which one may
establish this result. The theorems are straightforward to establish by emulating the arguments of [51]
(see also [52,53]). We begin by introducing several useful definitions.

Definition A.1 (Nonhomogeneous transmission problem (TP f )) The problem consists of finding
the triplet (u, s, P) such that(

μH
� + 1

1 − ν1ν2
EH − p12

p22
QH + p11 − p2

12
p22

)
u −

(
p12 + QH

p22

)
∇s = 0 in b,

and

∇2 s + p22

R
s +

(
p12 − p22 Q

R

)
e = 0 in b, (A1)

−
(
∇2 P + k2

0 P
)

= f in w, (A2)

where f := −∇ · f , having compact support in w , together with the transmission conditions[
σ(u)+ Q∇ · U + s

]
n = −P n on � = ∂b, (A3)

ρwω2
[

1 − β

(
1 + p12

p22

)]
u · n − βρwω2

p22

∂s

∂n
= ∂P

∂n
− n · f on �, (A4)

s = −βP on �, (A5)

where σ(u) and ε(u) denote the stress and strain tensors,

σ(u) =
( E1e11+ν1 E2e22

1−ν1ν2
μe12

μe12
E2e22+ν2 E1e11

1−ν1ν2

)
,

ε(u) = 1

2

(
∇u + ∇u�) ,

and the fluid dilatation is given by

∇ · U = 1

R
(s − Q e) .

In addition, we impose vanishing of the tangential frame stress σ12 = σ21 = 0 on � and assume that
the Sommerfeld radiation condition holds for P . In this formulation, transmission conditions (A3)
and (A4) represent, respectively, the continuity of the flux and continuity of the aggregate pressure,
while condition (A5) expresses the continuity of pore pressure.

For the uniqueness proof, we now introduce the traction-free solution for the bone as in fluid–
structure interaction problems.[52]
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Definition A.2 (Traction-free problem) The problem for (u, s) in b consists of the partial differ-
ential Equations (A1) and (A2) together with the homogeneous boundary conditions[

σ(u)+ Q∇ · U + s
]

n = 0 on �,

ρwω2
[

1 − β

(
1 + p12

p22

)]
u · n − βρwω2

p22

∂s

∂n
= ∂P

∂n
on �,

s = 0 on �,

which is called the traction-free problem for (u, s), and the corresponding nontrivial solutions are
referred to as the traction-free solutions.

For the variational formulation, we now reduce the partial differential Equation (A2) for P to a
boundary integral equation on �. We use the indirect approach for the reduction of partial differential
equations by seeking a solution P in the form of a single-layer potential

P = −Sφ + P f in w, (A6)

where φ is an unknown density function and Sφ is the single-layer potential

Sφ(x) := i

4

∫
�

H (1)
0 (k0‖x − y‖)φ(y) dsy, x ∈ w,

where −i H (1)
0 /4 denotes the fundamental solution of the Helmholtz operator ∇2 + k2

0, and

P f (x) := i

4

∫
supp( f )

H (1)
0 (k0‖x − y‖) f (y) dy, x ∈ w,

is a particular solution of (A2), which is known. Hence, if P|� is given, by applying the trace operator
γ0 to (A6), we obtain a boundary integral equation for the known density φ,

P|� = −Vφ + γ0 P f , (A7)

where V = γ0S is the single-layer boundary integral operator. Then from the transmission condition
(B3), we arrive at the boundary integral equation

Vφ − 1

β
s = γ0 P f . (A8)

Definition A.3 (Nonlocal boundary value problem) The TP f is termed a nonlocal boundary value
problem for the triplet (u, s, φ) if the latter satisfies (A1), (A2) and the boundary integral Equation
(A8), together with the transmission conditions (A3), (A7) and (A4) where

∂P

∂n
= 1

2
φ − Kφ + ∂P f

∂n
.

The boundary integral operator K is defined by

Kφ(x) := i

4

∫
�

∂H (1)
0
∂n

(k0‖x − y‖)φ(y) dsy , x ∈ �,

where the normal derivative is taken with respect to x. We note that condition (A4) can be explicitly
written in terms of φ as

∂s

∂n
= p22

β

{[
1 − β

(
1 + p12

p22

)]
u · n − 1

ρwω2

(
1

2
φ − Kφ

)}
+ p22

βρwω2

(
n · f − ∂P f

∂n

)
,

which will be needed for the variational formulation in the next section.
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Appendix 2. Variational formulation
We consider the variational formulation of the nonlocal boundary value problem using the ideas of
[51]. As usual, by multiplying (A8) with the conjugate of a test vector v and integrating by parts, we
obtain∫

b

[
1

1 − ν1ν2

(
E1e11 + ν1 E2e22 0

0 ν2 E1e11 + E2e22

)
: e(v)+ 2με(u) : ε(v)

− Q2

R
(∇ · u) (∇ · v)+

(
Q

R
− p12

p22

)
s ∇ · v −

(
p11 − p2

12
p22

)
u · v

]
dx

−
∫
�

[(
E1e11 + ν1 E2e22 0

0 ν2 E1e11 + E2e22

)
: 2με(u)− Q2

R
∇ · u +

(
Q

R
− p12

p22

)
s

]
× n · v ds = 0. (B1)

We define the sesquilinear bilinear form

a(u, v) :=
∫
b

[
1

1 − ν1ν2

(
E1e11 + ν1 E2e22 0

0 ν2 E1e11 + E2e22

)
: e(v)+ 2με(u) : ε(v)

]
dx,

and by rewriting the boundary term in (B1), we see that

a(u, v)+
∫
b

(
Q

R
− p12

p22

)
s ∇ · v dx −

∫
b

(
p11 − p2

12
p22

)
u · v dx

+
∫
�

(
1 + p12

p22

)
s n · v ds −

∫
�

[
λ∇ · u + 2με(u)+ Q

R
(s − Q ∇ · u)+ s

]
n · v ds = 0.

Hence, the above equation with the transmission condition (A8) leads to the variational equation

a(u, v)+
∫
b

(
Q

R
− p12

p22

)
s ∇ · v dx −

∫
b

(
p11 − p2

12
p22

)
u · v dx (B2)

−
[

1 − β

(
1 + p12

p22

)]
〈Vφ n, v〉� = −

[
1 − β

(
1 + p12

p22

)] 〈
γ0 P f , v

〉
�
, ∀ v ∈

(
H1(b)

)2
.

Repeating this process for the s-equation by multiplying (A1) with the conjugate of a test function τ
and integrating by parts leads to the variational equation

b(s, τ )+ p22

∫
b

(
Q

R
− p12

p22

)
(∇ · u) τ dx −

∫
b

p22

R
s τ dx (B3)

− p22

β

[
1 − β

(
1 + p12

p22

)]
〈u · n, τ 〉� + p22

βρwω2

〈
1

2
φ − Kφ, τ

〉
�

= p22

βρwω2

〈
n · f − ∂P f

∂n
, τ

〉
�

, ∀ τ ∈ H1(b),

where b(s, τ ) is the sesquilinear form

b(s, τ ) =
∫
b

∇s · ∇τ dx.

Following [51], the boundary integral Equation (A8) may be put into variational form as

p22

2ρwω2

〈
Vφ,ψ

〉
�

− p22

2ρwω2β

〈
s, ψ

〉
�

= p22

2ρwω2

〈
γ0 P f , ψ

〉
�
, ∀ψ ∈ H−1/2(�). (B4)

Collecting (B2)–(B4), we have the variational formulation for the nonlocal boundary value problem.
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Definition B.1 (Variational formulation) Given f, find the triplet (u, s, φ) ∈
(

H1(b)
)2×H1(b)×

H−1/2(�) such that
A
{
(u, s, φ), (v, τ, ψ)

}
= L f (v, τ, ψ), (B5)

for all (v, τ, ψ) ∈
(

H1(b)
)2 × H1(b) × H−1/2(�), where A and L f are, respectively, the

sesquilinear form and linear functional defined by

A
{
(u, s, φ), (v, τ, ψ)

}
:= a(u, v)+ b(s, τ )+ p22

2ρwω2

〈
Vφ,ψ

〉
�

+
(

Q

R
− p12

p22

)(∫
b

s ∇ · v dx + p22

∫
b
(∇ · u) τ dx

)
−
(

p11 − p2
12

p22

)∫
b

u · v dx − p22

R

∫
b

s τ dx

−
[

1 − β

(
1 + p12

p22

)](
〈Vφ n, v〉� + p22

β
〈u · n, τ 〉�

)
+ p22

βρwω2

(〈
1

2
φ − Kφ, τ

〉
�

− 1

2

〈
s, ψ

〉
�

)
,

L f (v, τ, ψ) := −
[

1 − β

(
1 + p12

p22

)] 〈
γ0 P f , v

〉
�

+ p22

βρwω2

〈
n · f − ∂P f

∂n
, τ

〉
�

+ p22

2ρwω2

〈
γ0 P f , ψ

〉
�
. (B6)

Appendix 3. Existence and uniqueness
From the definition of the sesquilinear form A(·, ·) in (B6), it is not difficult to see that A(·, ·) satisfies
a Gårding’s inequality. Setting (v, τ, ψ) = (u, s, φ), we obtain

A
{
(u, s, φ), (u, s, φ)

}
:= a(u,u)+ b(s, s)+ p22

2ρwω2

〈
Vφ, φ

〉
�

+
(

Q

R
− p12

p22

)(∫
b

s ∇ · u dx + p22

∫
b
(∇ · u) s dx

)
−
(

p11 − p2
12

p22

)∫
b

‖u‖2dx − p22

R

∫
b

|s|2dx (C1)

−
[

1 − β

(
1 + p12

p22

)](
〈Vφ n, u〉� + p22

β
〈u · n, s〉�

)
+ p22

βρwω2

(〈
1

2
φ − Kφ, s

〉
�

− 1

2

〈
s, φ

〉
�

)
.

We can show that

Re A
{
(u, s, φ), (u, s, φ)

}
= a(u,u)+ b(s, s)+ p22

2ρwω2

〈
Vφ, φ

〉
�

+ C
{
(u, s, φ), (u, s, φ)

}
,

where C is compact on
(

H1(b)
)2 × H1(b)× H−1/2(�). In fact, we have:

Theorem C.1 The sesquilinear form in (C1) satisfies the Gårding’s inequality in the form

Re A
{
(u, s, φ), (u, s, φ)

}
≥ α

(
‖u‖2(

H1(b)
)2 + ‖s‖2

H1(b)
+ ‖φ‖2

H−1/2(�)

)
−δ

(
‖u‖2(

H1−ε (b)
)2 + ‖s‖2

H1−ε (b)
+ ‖φ‖2

H−1/2−ε (�)

)
,
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where α > 0 and δ ≥ 0 are constants, and ε > 0 is a small parameter.

As is well known, Gårding’s inequality implies the validity of the Fredholm alternative. Hence,
uniqueness implies existence. For this purpose, we now consider the homogeneous TP f with f = 0,
since the uniqueness of the solution to the variational Equation (B5) will be depending upon that of
the TP f .

Theorem C.2 If the triplet (u, s, P) is a classical solution of the homogeneous TP0 with Im k0 = 0,
then P = 0.

The proof follows [51] and the reader can supply the details. We remark that this theorem does
imply that the components (u, s) of the triplet (u, s, P) considered in the TP0 are trivial solutions,
since they may be solutions of the traction-free problem. Hence, in order to ensure the existence of a
solution to the variational Equation (B5), we make the following assumptions:

(1) There is no traction-free solution.
(2) The square of the wavenumber, k2

0, is not an eigenvalue of the Dirichlet problem for the
negative Laplacian in b.

We remark that Assumption (2) is a guarantee for the invertibility of the single-layer operator V (see
[53, p.30]). We finally summarize our results in the following theorem.

Theorem C.3 Under Assumptions (1) and (2), there exists a unique solution of the TP f in(
H1(b)

)2 × H1(b)× H−1/2(�).
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