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Abstract
A numerical investigation is presented for the feasibility of determining material 
parameters of cancellous bone by acoustic interrogation in two dimensions. A 
mathematical formulation is proposed for the in vitro experiment where a bone 
sample is immersed in a rectangular water tank. Modified Biot’s equations for 
cancellous bone are coupled with a boundary integral equation for the water 
pressure. Cancellous bone is described as an isotropic and homogeneous 
medium with constant material parameters. An explicit expression for the 
Green’s function is derived in the form of a double series. Well-posedness 
is established for a variational formulation of this nonlocal boundary value 
problem. Sensitivity and recovery tests are performed for frequencies in the 
ultrasonic range, and the results show that such parameters as bone porosity 
can be determined with reasonable accuracy. The inversion procedure is based 
on direct minimization of an objective function involving the pressure field 
measured at locations near the bone sample.

Keywords: Biot model, boundary integral method, cancellous bone, 
minimization procedure, ultrasound

(Some figures may appear in colour only in the online journal)

1.  Introduction

Osteoporosis is characterized by a decrease in the strength of the bone matrix [15, 16]. This is 
a serious disease affecting an increasing number of the aged and it is also a threat for potential 
astronauts. Since only 70% of the variance of bone strength is accounted for by bone density, 
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quantitative ultrasound techniques could provide a new diagnostic tool for determining more 
accurately the actual rigidity [19, 20, 34]. In contrast to x-ray densitometry, ultrasound tech-
nology does not ionize the tissue and its implementation is relatively inexpensive. However, it 
is limited to only a few skeletal sites compared to radiographic methods. Since the loss of bone 
density and the destruction of the bone microstructure is most evident in osteoporotic cancel-
lous bone, which consists of trabeculae and marrow, it is natural to consider the possibility of 
developing accurate ultrasound models for the sonification of cancellous bone. It would be of 
enormous clinical advantage if accurate methods could be developed using ultrasonic inter-
rogation to diagnose osteoporosis and bone fractures.

Cancellous bone is a two-component material consisting of a calcified bone matrix with 
interspinal fatty marrow. Therefore, mathematical models of poro-elastic media may be appli-
cable [2–5, 7, 8, 17, 21, 33, 37, 38, 40]. In particular, McKelvie and Palmer [35], Williams 
[41] and Hosokawa and Otani [30] discussed the application of Biot’s model for a poro-elastic 
medium to the case of cancellous bone. Use of this model requires determination of the physi-
cal parameters upon which it depends. This can be an expensive process. In this article, we 
investigate whether these parameters can be ascertained by acoustic interrogation.

Earlier work on this inverse problem includes Buchanan et al’s [11] who used the finite-
element method to solve Biot’s equations for a two-dimensional bone specimen immersed in 
a finite water tank. This numerical approach is rather intensive as it requires discretizing the 
entire domain. The geometric aspect ratio is such that the region of interest (i.e. the bone spec-
imen) is significantly smaller than the water tank, hence a large portion of the discretization 
is not used to resolve the bone itself. Finite-size effects in the water tank also pose numerical 
difficulties as a number of eigenvalues need to be resolved for accurate computation. Partly for 
this reason, Buchanan et al [11] performed acoustic interrogation with relatively low frequen-
cies, in the 5–15 kHz range. This was accomplished by placing an illuminating source in the 
tank near one side of the bone specimen. They attempted to recover several Biot parameters 
via direct minimization of an objective function on the pressure field measured at locations 
on the opposite side to the source. Lacking experimental data, the ‘measured’ values were 
artificially generated based on a highly resolved numerical solution of Biot’s model. In doing 
so, their algorithm was most successful at determining the bone porosity, with errors of less 
than 3%.

Recently, Gilbert et al [22, 27] examined the same inverse problem but, in an effort to 
reduce the computational cost, they adopted a boundary integral approach to solve for the fluid 
domain. More specifically, the pressure field at any point in the water is given by a boundary 
integral equation in terms of the Green’s function for Helmholtz’s equation. However, they 
considered the idealized situation where the water tank is of infinite extent in all directions. 
As a result, the Green’s function reduces to a simple Hankel’s function and the boundary 
integral equation for the pressure field is simply defined along the boundary of the bone speci-
men. This implies that only the region occupied by the bone sample needs to be discretized. 
Besides computational considerations, Gilbert et  al [27] also implemented a more refined 
Biot’s model featuring a new variable to compensate for the shortage of transmission condi-
tions, together with a more realistic representation of viscous friction due to pore tortuosity, 
as compared to [11].

If the geometry is further simplified to be one-dimensional, so that the bone sample reduces 
to a segment and water extends to infinity on both sides, then explicit analytical expressions 
for the exterior pressure field can be derived. This direction of inquiry was pursued by e.g. 
Sebaa et al [39] and Buchanan et al [12] to tackle the inverse problem, yielding good results. 
Sebaa et al [39] used actual measurements from laboratory experiments in their recovery pro-
cess, while Buchanan et al [12] proposed a numerical algorithm to help improve convergence 
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in the minimization procedure by refining the choice of initial guesses. In addition to this 
body of work, another major line of investigation seeks to estimate and use wave parameters 
from ultrasonic echoes as a possible tool for the diagnosis of osteoporosis [1, 29]. A review on 
inverse problems in elasticity can be found in [6].

In the present paper, we extend the results of Gilbert et al [27] to the more physical setting 
of a finite water tank with an upper free surface. For computational purposes, Helmholtz’s 
equation is again reduced to a boundary integral equation defined along the interface between 
bone and water. This is made possible by devising a Green’s function that satisfies the various 
conditions imposed at the exterior boundaries of the tank. For a two-dimensional rectangular 
geometry, this Green’s function is explicitly derived via the method of images and is expressed 
as a double series in terms of Hankel’s functions. The resulting boundary value problem is 
thus nonlocal, and its well-posedness is established via a variational formulation. An asymp-
totic analysis is also carried out to estimate the convergence rate of the series expansion for 
the Green’s function. Having the parameter recovery problem in mind, a finite-difference 
scheme is developed to solve the equations numerically. Sensitivity and recovery tests are 
performed with an emphasis on the bone porosity. Two distinct frequencies in the ultrasonic 
range are used for the acoustic interrogation (250 and 500 kHz), and parameter recovery is 
accomplished via error minimization on the pressure field.

The remainder of this paper is organized as follows. Section 2 introduces Biot’s model for 
cancellous bone in the time-harmonic isotropic case. Section 3 describes the nonlocal bound-
ary value problem for a two-dimensional bone sample immersed in a water tank. This includes 
a discussion on the variational formulation and its well-posedness, as well as a derivation of 
the Green’s function. Section 4 examines the convergence rate of the series expansion for the 
Green’s function, as this is relevant for its numerical approximation. Section 5 presents the 
finite-difference scheme to solve the boundary value problem numerically. Section 6 discusses 
the sensitivity and recovery tests based on this numerical model. The minimization procedure 
for trial values relative to measured values of the pressure field is explained in detail. Both 
cases of univariate and multivariate minimization are considered in an effort to recover the 
bone porosity and additional parameters. Finally, concluding remarks are given in section 7.

2.  Biot–Johnson model for cancellous bone

The Biot–Johnson model treats a poro-elastic medium as an elastic frame with interspinal 
pore fluid [3–5, 40]. Cancellous bone is anisotropic; however, as pointed out by Williams [41], 
if the acoustic waves passing through the bone specimen travel in the trabecular direction, 
then an isotropic model may be acceptable. We also assume that the medium is homogeneous 
and accordingly all the parameters are constant throughout the bone specimen. We will simu-
late a two-dimensional version of the experiments described in [30, 35]. The motions of the 
frame and fluid within the bone are tracked by position vectors u = (u1, u2) and U = (U1, U2), 
respectively. In Cartesian coordinates x = (x1, x2), the constitutive equations are those for a 
linear isotropic elastic material with terms added to account for the interaction between the 
frame and interstitial fluid,

σ11 = 2µ e11 + λ e + Q ε,
σ22 = 2µ e22 + λ e + Q ε,
σ12 = µ e12,
σ21 = µ e21,

� (1)

where the solid and fluid dilatations are given by
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e = ∇ · u =
∂u1

∂x1
+

∂u2

∂x2
, ε = ∇ · U =

∂U1

∂x1
+

∂U2

∂x2
,� (2)

respectively. The strains are defined by

e11 =
∂u1

∂x1
, e12 = e21 =

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
, e22 =

∂u2

∂x2
.� (3)

The complex frame shear modulus μ is a measured quantity. The other parameters λ, Q and 
R in the constitutive equations are calculated from the measured or estimated values of the 
parameters given in table 1 using the Biot–Stoll formulas

λ = Kb −
2
3
µ+

(Kr − Kb)
2 − 2βKr(Kr − Kb) + β2K2

r

D − Kb
,

Q =
βKr

[
(1 − β)Kr − Kb

]
D − Kb

,

R =
β2K2

r

D − Kb
,

� (4)

where

D = Kr

[
1 + β

(
Kr

Kf
− 1

)]
.

The bulk and shear moduli Kb and μ are often given imaginary parts to account for viscoelas-
ticity. As a reference, the porosity takes the limiting value β = 0 if cancellous bone is purely 
solid and β = 1 if it is purely fluid.

Assuming that the bone system oscillates harmonically, i.e.

u(x1, x2, t) = û(x1, x2) eiωt, U(x1, x2, t) = Û(x1, x2) eiωt,

and using an improvement over the Biot–Stoll model, as proposed by Johnson et al [32] to 
replace the Biot assumption of circular/cylindrical pores by a more accurate dissipation term 
allowing for pore tortuosity, we arrive at the equations

Table 1.  Parameters in the Biot–Johnson model for cancellous bone.

Symbol Parameter Units

ρf Density of pore fluid kg m−3

ρr Density of frame material kg m−3

Kb Complex frame bulk modulus Pa
μ Complex frame shear modulus Pa
Kf Fluid bulk modulus Pa
Kr Frame material bulk modulus Pa
k Permeability m2

a Pore size m
η Viscosity of pore fluid kg m−1 s−1

Λ Viscous characteristic length m

ω Frequency s−1

β Porosity
α∞ Asymptotic tortuosity
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µ∇2u +∇
[
(λ+ µ) e + Q ε

]
+ p11 u + p12 U = 0,

∇(Q e + R ε) + p12 u + p22 U = 0,
� (5)

where

p11 = ω2
[
(1 − β)ρr + βρf

(
α(ω)− 1

)]
,

p12 = −ω2βρf
(
α(ω)− 1

)
,

p22 = ω2βρfα(ω),

and

α(ω) = α∞


1 +

iηβ
ωα∞ρf k

√
1 +

4α2
∞k2ρfω

iηΛ2β2


 .

For convenience, we have dropped the hats from û and Û in (5). The permeability is given by 
the Kozeny–Carman formula

k =
βa2

4K
,

where K  =  5 is an empirical constant. The pore size a is approximately a linear function of 
porosity [11].

3.  Boundary value problem

Under consideration is the typical setup of an in vitro experiment [30, 35]. A bone specimen 
is placed in an open rectangular water tank of width W and height H. The regions occupied by 
the bone specimen and the water are denoted by Ωb and Ωw, respectively (figure 1). In Ωw, the 
fluid pressure P and fluid displacement Uw = (Uw

1 , Uw
2 ) satisfy

−∇2P − κ2
0P = f ,� (6)

∇P − ρwω2Uw = 0, x �= x0,� (7)

where ρw is the water density, f (x, x0) = −q δ(x, x0;κ0) represents a point source of strength 
q located at x = x0, and κ0 is the wavenumber of the emitted signal. Reflecting boundary con-
ditions for the pressure are specified on the sides and base of the tank. On the top free surface, 
a pressure release condition is imposed. Using the method of images, it is possible to construct 
the Green’s function for the pressure in a tank that does not contain any submerged object. 
We shall use this Green’s function in a boundary integral method to calculate the solution for 
a bone sample immersed in the tank. We next indicate how to calculate the Green’s function.

3.1.  Green’s function for the tank

We assume there is a positive source at x0 = (x0, y0) ∈ Ωw. In order to have reflecting lat-
eral boundaries at x1  =  0 and x1  =  W, we place a positive source at (−x0, y0) and another 
at (2W − x0, y0). However, the source at (−x0, y0) changes the reflection at x1  =  W and the 
source at (2W − x0, y0) changes the reflection at x1  =  0. This leads us to using reflection to 
place positive sources at (−2W + x0, y0) and (2W + x0, y0). Proceeding in this manner to 
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correct the non-reflecting property posed by adding another source leads to positive sources 
being placed at the infinite sequence of points

(2�W − x0, y0) and (2�W + x0, y0), � = 0,±1,±2, . . . .

These charges will effect the potentials on the upper layer and the bottom of the tank, and we 
will have to add further charges to counterbalance these; i.e. each reflected charge changes 
the potentials on the horizontal surfaces, which in turn require extra charges to keep these sur-
faces as reflecting boundaries. In order to have a zero boundary condition at x2  =  H, we place 
a negative charge at (x0, 2H + y0). To retain the reflecting bottom boundary, a positive charge 
is placed at (x0,−y0). This procedure is continued by changing the charge sign each time we 
reflect through x2  =  H while maintaining the same charge when we reflect through x2  =  0. 
This leads to placing charges at the points

(x0, 2mH − y0) and (x0, 2mH + y0), m = 0,±1,±2, . . . .

On the other hand, the charge associated with reflections through the pressure release surface 
follows a different rule: if m/2 is an integer, the charge is to be positive otherwise it is nega-
tive. These sources also disturb the potentials on the vertical sides and we have to make a 
correction for this. Hence each correctional source we made to the vertical sides will need to 
be reflected in the x2-direction, and each correctional source we added to maintain the reflect-
ing bottom and pressure release surface must be reflected in the horizontal x1-direction. The 
way we construct our Green’s function is similar to that described in [14] although we deal 
with Helmholtz’s equation rather than Laplace’s equation, and the boundary conditions are 
different. The reflection method also works for Helmholtz’s equation because it is translation-
invariant. In arranging these source points, we arrive at the array

(x0 + 2�W,−y0 + 2mH), (−x0 + 2�W,−y0 + 2mH),

(x0 + 2�W, y0 + 2mH), (−x0 + 2�W, y0 + 2mH), �, m = 0,±1,±2, . . . .

Figure 1.  Sketch of the experimental setup for the acoustic interrogation of a bone 
specimen Ωb in a water tank Ωw.
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This permits us to find an infinite series representation of the Green’s function for Helmholtz’s 
equation in an open water tank,

G(x, x0;κ0) = iπ
∞∑

�=−∞

∞∑
m=−∞

(−1)m
[
H(1)

0

(
κ0

√
(x1 − x0 − 2�W)2 + (x2 + y0 − 2mH)2

)

+ H(1)
0

(
κ0

√
(x1 + x0 − 2�W)2 + (x2 + y0 − 2mH)2

)

+ H(1)
0

(
κ0

√
(x1 − x0 − 2�W)2 + (x2 − y0 − 2mH)2

)

+ H(1)
0

(
κ0

√
(x1 + x0 − 2�W)2 + (x2 − y0 − 2mH)2

)]
,

�
(8)

where H(1)
0 (z) denotes the Hankel’s function of the first kind [18].

3.2.  Modified Biot equations for the bone

In order to formulate a well-posed boundary value problem, we must modify the Biot equa-
tion (5) since there are not enough transmission conditions for the components of displace-
ments fields u1, u2, U1 and U2. The main idea here is to replace the unknowns U1 and U2 by 
the single variable s = Q e + R ε in the equations. To accomplish this, we first express ε and 
U in terms of s from (1) and (5),

ε =
1
R
(s − Q e), U = − 1

p22
(∇s + p12 u).� (9)

Then, by taking the divergence of the second equation in (5), we obtain

∇2s + p12 e + p22 ε = 0,

which reduces to

∇2s +
p22

R
s +

(
p12 −

p22Q
R

)
e = 0,� (10)

after using (9). Similarly, the first equation of (5) can be written in the form

µ∇2u +∇
[(

λ+ µ− Q2

R

)
e +

(
Q
R

− p12

p22

)
s
]
+

(
p11 −

p2
12

p22

)
u = 0.

�

(11)

3.3. Transmission conditions

Equations (10) and (11) represent the modified Biot equations for u and s in the bone speci-
men Ωb. These equations should be satisfied by u and s together with transmission conditions 
at the interface between bone and water. These are:

	 •	�Continuity of the aggregate pressure:

σ�j nj + s n� = −P n�,� (12)

		 since an expansion of the bone induces a compression in the water. Here σ�j denotes the 
components of the stress tensor as defined in (1) and n� denotes the components of the 
exterior unit normal n to Ωb (which points into the water).
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	 •	�Continuity of the flux: from (7), we have

ρwω2
[
β n · U + (1 − β) n · u

]
= ρwω2 n · Uw,

		 and thus

ρwω2
([

1 − β

(
1 +

p12

p22

)]
n · u − β

p22

∂s
∂n

)
=

∂P
∂n

.� (13)

	 •	�Continuity of the pore pressure:

s = −β P.� (14)

	 •	�Vanishing of the tangential frame stress: σ12 ≡ σ21 = 0 which is equivalent to

∂u1

∂x2
+

∂u2

∂x1
= 0.� (15)

We have so far given the precise formulation of the bounded transmission problem (BTP) 
consisting of the bulk equations  (10) and (11) for the unknowns u and s in Ωb as well as 
the bulk equation  (6) for the unknown P in Ωw together with the transmission conditions 
(12)–(15).

From a computational point of view, it is more convenient to reduce this BTP to a nonlocal 
problem posed in a small domain such as Ωb. By doing so, unlike [11], we avoid having to 
discretize the entire water tank, which thus saves in memory and CPU time. For this purpose, 
we reduce Helmholtz’s equation (6) to a boundary integral equation via the Green’s repre-
sentation of P in Ωw. More precisely, we seek a solution of (6) in the form of a single-layer 
potential for the unknown density function ϕ,

P(x, x0) = Pf (x, x0)−
∫

∂Ωb
G(x, ζ;κ0)ϕ(x0, ζ) dSζ , x ∈ Ωw,� (16)

where

Pf (x, x0) =

∫

supp( f )
G(x, y;κ0) f (y, x0) dy = −q G(x, x0;κ0),

and G(x, x0;κ0) is given by (8). Clearly, the unknown density function ϕ is related to the 
unknowns u and U via the transmission conditions (12)–(15).

If the bone boundary ∂Ωb has positive orientation, then letting x → X ∈ ∂Ωb, we obtain 
from (12) that

λ∇ · u + 2µ
∂u1

∂x1
+ Q ε+ s = q G(X, x0;κ0) +

∫

∂Ωb
G(X, ζ;κ0)ϕ(x0, ζ) dSζ ,

�

(17)

and

λ∇ · u + 2µ
∂u2

∂x2
+ Q ε+ s = q G(X, x0;κ0) +

∫

∂Ωb
G(X, ζ;κ0)ϕ(x0, ζ) dSζ ,

�

(18)

where ε is given by (9). Note that, in deriving these equations, we have tacitly employed (15). 
In view of the similarity between (17) and (18), a subtraction of these two equations leads to 
the simple relation

∂u1

∂x1
− ∂u2

∂x2
= 0.� (19)
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Hence, in numerical computation, we may use (19) and either (17) or (18), but not both.
Next, the flux continuity condition (13) leads to a natural boundary condition for s,

ρwω2
([

1 − β

(
1 +

p12

p22

)]
n · u − β

p22

∂s
∂n

)
+ q

∂G
∂n

(X, x0;κ0)

=
1
2
ϕ(x0, X)−

∫

∂Ωb
ϕ(x0, ζ)

∂G
∂n

(X, ζ;κ0) dSζ .
� (20)

Finally, from the representation formula for P, applying the trace operator on ∂Ωb to (16) and 
using (14) leads to a boundary integral equation for ϕ,

β Vϕ− s + β γ0 q G(X, x0;κ0) = 0,� (21)

where

Vϕ = γ0

∫

∂Ωb
G(X, ζ;κ0)ϕ(x0, ζ) dSζ ,

and γ0 is the trace operator from H1(Ωb) to L2(∂Ωb). The right-hand sides of (17) and (18) 
and left-hand sides of (20) and (21) contain no singularity, since the source point x0 is in Ωw.

3.4.  Well-posedness of the variational formulation

Before we formulate what is called the nonlocal problem for this BTP, some observations are 
in order. We observe that the transmission conditions (17) and (18) can be considered as natu-
ral boundary conditions for the displacement field u given s and ϕ, whereas condition (20) is a 
natural condition for the stress s, if u and ϕ are known. From a variational point of view, both 
equations define the relevant Dirichlet-to-Neumann maps. On the other hand, condition (21) 
only relates the trace of the stress s and the known density function ϕ, which may be consid-
ered as a boundary integral equation for ϕ given the stress s.

By construction of the Green’s function, the fluid pressure is here expressed in terms of a 
boundary integral equation defined on ∂Ωb alone, which is similar to the case of an infinite 
water tank as treated in [22, 27, 28]. By mirroring the arguments of Gilbert et al [28], we can 
define the nonlocal problem, propose a variational formulation and show its well-posedness. 
For convenience, we only outline the main steps in this analysis and refer the reader to [28] 
for more details.

Definition 1 (Nonlocal boundary value problem).  The transmission problem TPf is 
termed a nonlocal boundary value problem for the triplet (u, s,ϕ) if the latter satisfies the bulk 
equations (10) and (11) and the boundary integral equation (16) together with the transmission 
conditions

(
σ(u) + Q∇ · U + s

)
n = −P n, on ∂Ωb,� (22)

and

ρwω2
([

1 − β

(
1 +

p12

p22

)]
u · n − β

p22

∂s
∂n

)
=

∂P
∂n

, on ∂Ωb,� (23)

where

P = −Vϕ+ γ0Pf ,
∂P
∂n

=
1
2
ϕ− K′ϕ+

∂Pf

∂n
.
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The boundary integral operator K′ is defined by

K′ϕ(x0, X) = 〈ϕ,
∂G
∂n

〉∂Ωb ,

=

∫

∂Ωb
ϕ(x0, ζ)

∂G
∂n

(X, ζ;κ0) dSζ , X ∈ ∂Ωb,

and

σ(u) = λ∇ · u + 2µ e(u), e(u) =
1
2
(
∇u +∇u�),

represent the stress and strain tensors, respectively. We note that condition (23) can be explic-
itly written in terms of ϕ as

∂s
∂n

=
p22

β

{[
1 − β

(
1 +

p12

p22

)]
u · n − 1

ρwω2

(
1
2
ϕ− K′ϕ

)}
− p22

βρwω2

∂Pf

∂n
.

Definition 2 (Traction-free problem).  The traction-free problem consists in finding the 
pair (u, s) that satisfies the bulk equations (10) and (11) in Ωb, together with the homogeneous 
boundary conditions

(
σ(u) + Q∇ · U + s

)
n = 0, on ∂Ωb,

ρwω2
([

1 − β

(
1 +

p12

p22

)]
u · n − β

p22

∂s
∂n

)
= 0, on ∂Ωb,

s = 0, on ∂Ωb.

The corresponding nontrivial solutions are referred to as the traction-free solutions.

Definition 3 (Variational formulation).  Find the triplet

(u, s,ϕ) ∈
(
H1(Ωb)

)2 × H1(Ωb)× H−1/2(∂Ωb),

such that

A
{
(u, s,ϕ), (v, τ ,ψ)

}
= Lf (v, τ ,ψ),� (24)

for all

(v, τ ,ψ) ∈
(
H1(Ωb)

)2 × H1(Ωb)× H−1/2(∂Ωb),

where A and Lf  are respectively the sesquilinear form and linear functional defined by

A
{
(u, s,ϕ), (v, τ ,ψ)

}
= a(u, v) + b(s, τ) +

p22

2ρwω2 〈Vϕ,ψ〉∂Ωb

+

(
Q
R

− p12

p22

)(∫

Ωb
s∇ · v dx + p22

∫

Ωb
(∇ · u) τ dx

)

−
(

p11 −
p2

12

p22

)∫

Ωb
u · v dx − p22

R

∫

Ωb
s τ dx

−
[

1 − β

(
1 +

p12

p22

)](
〈Vϕ n, v〉∂Ωb +

p22

β
〈u · n, τ〉∂Ωb

)

+
p22

βρwω2

(
〈1

2
ϕ− K′ϕ, τ〉∂Ωb − 1

2
〈s,ψ〉∂Ωb

)
,

�

(25)
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and

Lf (v, τ ,ψ) = −
[

1 − β

(
1 +

p12

p22

)]
〈γ0Pf n, v〉∂Ωb − p22

βρwω2 〈
∂Pf

∂n
, τ〉∂Ωb

+
p22

2ρwω2 〈γ0Pf ,ψ〉∂Ωb .

�

(26)

In the above, the sesquilinear forms a(u, v) and b(s, τ) are defined as

a(u, v) =
∫

Ωb

[(
λ− Q2

R

)
(∇ · u)(∇ · v) + 2µ e(u) : e(v)

]
dx,� (27)

and

b(s, τ) =
∫

Ωb
∇s · ∇τ dx.� (28)

The variational equation (24) is obtained after multiplying (10), (11) and (21) by the conju-
gates of τ, v, ψ respectively, then integrating by parts over their domains of definition and 
finally combining their expressions. The triplet (v, τ ,ψ) represents test functions in this varia-
tional formulation.

From the definition (25) of A, it follows that

ReA
{
(u, s,ϕ), (u, s,ϕ)

}
= a(u, u) + b(s, s) +

p22

2ρwω2 〈Vϕ,ϕ〉∂Ωb

+ C
{
(u, s,ϕ), (u, s,ϕ)

}
,

where C is compact on 
(
H1(Ωb)

)
2 × H1(Ωb)× H−1/2(∂Ωb). Consequently, it is not difficult 

to prove the following result.

Theorem 1.  The sesquilinear form A satisfies Gårding’s inequality in the form

ReA
{
(u, s,ϕ), (u, s,ϕ)

}
� α

(
‖u‖2

(H1(Ωb))2 + ‖s‖2
H1(Ωb) + ‖s‖2

H− 1
2 (∂Ωb)

)

− δ

(
‖u‖2

(H1−ε(Ωb))2 + ‖s‖2
H1−ε(Ωb) + ‖s‖2

H− 1
2 −ε(∂Ωb)

)
,

where α > 0 and δ � 0 are constants, and ε > 0 is a small parameter.

As is well known, Gårding’s inequality implies the validity of Fredholm’s alternative. 
Hence, uniqueness implies existence. For this purpose, we now consider the homogeneous 
transmission problem TPf with f  =  0, since uniqueness of the solution to the variational equa-
tion (24) depends upon that of TPf.

Theorem 2.  If the triplet (u, s, P) is a classical solution of the homogeneous transmission 
problem TP0 with Imκ0 = 0, then P  =  0.

The proof follows the standard uniqueness approach for the scattering transmission prob-
lem [28]. Theorem 2 does not imply that components (u, s) of the triplet (u, s, P) in the TP0 
are trivial solutions, since they may be solutions of the traction-free problem. In order to 
ensure the existence of a solution to the variational equation  (24), we make the following 
assumptions.
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	 (i)	�There is no traction-free solution.
	(ii)	�The square κ2

0 of the wavenumber is not an eigenvalue of the Dirichlet problem for the 
negative Laplacian in Ωb.

Assumption 2 is a guarantee for invertibility of the single-layer operator V [31]. The last 
theorem summarizes these results.

Theorem 3.  Under assumptions 1 and 2, there exists a unique solution of the TPf in (
H1(Ωb)

)
2 × H1(Ωb)× H−1/2(∂Ωb).

4.  Approximating the Green’s function

In practice, the series representation of the Green’s function is approximated by a finite num-
ber of terms and so to decide how many of them should be included, we need to consider 
asymptotic approximations of the Hankel’s functions appearing in the higher-order reflective 
sources. The Green’s function is given here by a double series, which reflects the two-dimen-
sional geometry of the problem, but the horizontal and vertical directions are not equiva-
lent since they correspond to different boundary conditions in the tank. Accordingly, we will 
examine different cases depending on the index of summation � or m.

To this end, we introduce the notation

x(1)
�m = (x0 + 2�W,−y0 + 2mH), x(2)

�m = (−x0 + 2�W,−y0 + 2mH),

x(3)
�m = (x0 + 2�W, y0 + 2mH), x(4)

�m = (−x0 + 2�W, y0 + 2mH),

and rewrite the Green’s function as

G(x, x0;κ0) = iπ
∞∑

�=−∞

∞∑
m=−∞

(−1)m
[
H(1)

0

(
κ0‖x − x(1)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(2)

�m ‖
)

+ H(1)
0

(
κ0‖x − x(3)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(4)

�m ‖
) ]

.

As |�|, |m| → ∞, we have the estimates

‖x − x(1)
�m ‖ → 2

√
m2H2 + �2W2

[
1 − 1

2

(
(x1 − x0)�W + (x2 + y0)mH

m2H2 + �2W2

)]
,

‖x − x(2)
�m ‖ → 2

√
m2H2 + �2W2

[
1 − 1

2

(
(x1 + x0)�W + (x2 + y0)mH

m2H2 + �2W2

)]
,

‖x − x(3)
�m ‖ → 2

√
m2H2 + �2W2

[
1 − 1

2

(
(x1 − x0)�W + (x2 − y0)mH

m2H2 + �2W2

)]
,

‖x − x(4)
�m ‖ → 2

√
m2H2 + �2W2

[
1 − 1

2

(
(x1 + x0)�W + (x2 − y0)mH

m2H2 + �2W2

)]
,

provided 4�2W + 4m2H � (x1 − x0)
2 + (x2 − y0)

2. Now following Morse and Feshbach 
[36], we approximate the Hankel’s functions by
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H(1)
0

(
κ0‖x − x(1)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(3)

�m ‖
)

� 2√
iπκ0

√
m2H2 + �2W2

e
−iκ0

x1�W+x2mH√
m2H2+�2W2 cos

[
κ0(x0�W − y0mH)√

m2H2 + �2W2

]
,

H(1)
0

(
κ0‖x − x(2)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(4)

�m ‖
)

� 2√
iπκ0

√
m2H2 + �2W2

e
−iκ0

x1�W+x2mH√
m2H2+�2W2 cos

[
κ0(x0�W + y0mH)√

m2H2 + �2W2

]
.

Using such estimates gives precise information on the accuracy of the Green’s function 
approximation.

Simpler estimates are available when |�| � L, |m| � M and when |�| � L, |m| � M for 
some large integers L and M. Accordingly, we distinguish the various cases

‖x − x(1)
�m ‖ �

{
2|m|H − (x2 + y0) for |m| � 1, |�| � L,
2|�|W − (x1 − x0) for |�| � 1, |m| � M,

‖x − x(2)
�m ‖ �

{
2|m|H − (x2 + y0) for |m| � 1, |�| � L,
2|�|W − (x1 + x0) for |�| � 1, |m| � M,

‖x − x(3)
�m ‖ �

{
2|m|H − (x2 − y0) for |m| � 1, |�| � L,
2|�|W − (x1 + x0) for |�| � 1, |m| � M,

‖x − x(4)
�m ‖ �

{
2|m|H − (x2 − y0) for |m| � 1, |�| � L,
2|�|W − (x1 − x0) for |�| � 1, |m| � M.

This leads to the approximation

H(1)
0

(
κ0‖x − x(1)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(3)

�m ‖
)

�

√
1

iπκ0|m|H

[
eiκ0(2|m|H−(x2+y0)) + eiκ0(2|m|H−(x2−y0))

]
, |m| � 1.

Hence the sum of the remaining terms in the segments |�| � L, |m| � M is given by

R13
m � 2√

iπκ0H
cos(κ0y0) e−iκ0x2

∞∑
|m|=M

e2iκ0|m|H
√

|m|
, |m| � 1,

and similarly

H(1)
0

(
κ0‖x − x(1)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(3)

�m ‖
)

�

√
1

iπκ0|�|W

[
eiκ0(2|�|W−(x1−x0)) + eiκ0(2|�|W−(x1+x0))

]
, |�| � 1,

with the sum of the remaining terms in the segments |�| � L, |m| � M being given by

R13
� � 2√

iπκ0W
cos(κ0x0) e−iκ0x1

∞∑
|�|=L

e2iκ0|�|W
√
|�|

, |�| � 1.
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We now consider the terms involving x(2)
�m and x(4)

�m. For |�| � 1, we have

H(1)
0

(
κ0‖x − x(2)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(4)

�m ‖
)

�

√
1

iπκ0|�|W

[
eiκ0(2|�|W−(x1+x0)) + eiκ0(2|�|W−(x1−x0))

]
,

and, for |m| � 1,

H(1)
0

(
κ0‖x − x(2)

�m ‖
)
+ H(1)

0

(
κ0‖x − x(4)

�m ‖
)

�

√
1

iπκ0|m|H

[
eiκ0(2|m|H−(x2+y0)) + eiκ0(2|m|H−(x2−y0))

]
,

which leads to

R24
� � 2√

iπκ0W
cos(κ0x0) e−iκ0x1

∞∑
|�|=L

e2iκ0|�|W
√
|�|

, |�| � 1,

and

R24
m � 2√

iπκ0H
cos(κ0y0) e−iκ0x2

∞∑
|m|=M

e2iκ0|m|H
√

|m|
, |m| � 1,

respectively [36].
Combining these expressions together, we obtain

Rm � 4

√
iπ
κ0H

e−iκ0x2 cos(κ0y0)

∞∑
|m|=M

(−1)me2iκ0|m|H
√

|m|
, |m| � 1, |�| < L,

or

R� � 4

√
iπ
κ0W

e−iκ0x1 cos(κ0x0)

∞∑
|�|=L

e2iκ0|�|W
√

|�|
, |�| � 1, |m| < M,

for the truncation error associated with the series representation of the Green’s function. 
In either case, the series terms decrease like 1/

√
|�| or 1/

√
|m|; hence, the truncation error 

decreases as the truncation order L or M → ∞. We can therefore predict how many terms to 
take so that the series expansion of the Green’s function satisfies its boundary conditions. Note 
that Rm is an alternating series while R� is not, therefore Rm is typically smaller in magnitude 
than R�. In other words, increasing M while fixing L does a better job at reducing the trunca-
tion error than increasing L while fixing M. Since L (resp. M) is associated with the x1- (resp. 
x2-) direction, these estimates are consistent with the fact that M must be large to accurately 
resolve the two different types of boundary conditions in the x2-direction, i.e. the pressure 
release and reflecting boundary conditions at x2  =  H and x2  =  0 respectively.

5.  Numerical approximation

We consider an idealized situation where the bone specimen is a square of dimension B × B. 
Because of this regular geometry, the domain is discretized into a uniform mesh consisting 
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of N × N  points and a finite-difference scheme is used to solve the coupled system of equa-
tions (10), (11), (17) or (18), and (19)–(21).

More specifically, spatial derivatives in the bulk equations are approximated by 2nd-order 
centered difference formulas, while those in the boundary conditions are discretized by either 
backward or forward (2nd-order) formulas depending on the node’s location. An exception is 
made for tangential derivatives along the boundary, which are approximated by the 1st-order 
backward formula. The reason for this is to promote diagonal dominance in the resulting 
linear system so that it is sufficiently well-conditioned to be solved numerically. Use of a 
1st-order scheme involving only the nearest-neighbor nodes also helps keep the implementa-
tion relatively simple, especially near corners where a special treatment would be needed if 
large-stencil difference formulas were used. Because this switch from second to first order is 
restricted to tangential derivatives in the boundary conditions, it does not significantly affect 
the 2nd-order accuracy of the overall numerical scheme.

The quadrature of the boundary integrals in (17) or (18), and (20), (21) is performed via 
the trapezoidal rule. For example, equation (17) at node (i, j) on the left side of the square and 
away from the corners becomes

(
λ+ 2µ− Q2

R

)[
−3u1(i, j) + 4u1(i + 1, j)− u1(i + 2, j)

2h

]

+

(
λ− Q2

R

)[
u2(i, j)− u2(i, j − 1)

h

]
+

(
1 +

Q
R

)
s(i, j)

= q G(Xij, x0;κ0) + h
∑

ζn∈∂Ωb

G(Xij, ζn;κ0)ϕ(x0, ζn),

or equivalently,
(
λ+ 2µ− Q2

R

)[
− 3u1(i, j) + 4u1(i + 1, j)− u1(i + 2, j)

]

+ 2
(
λ− Q2

R

)[
u2(i, j)− u2(i, j − 1)

]
+ 2h

(
1 +

Q
R

)
s(i, j)

− 2h2
∑

ζn∈∂Ωb

G(Xij, ζn;κ0)ϕ(x0, ζn) = 2h q G(Xij, x0;κ0),

where h represents the uniform mesh size in the x1- and x2-directions. Note that the singularity 
at ζn = Xij for � = 0 and m  =  0 in the Green’s function G can be dealt with by approximating 

the Hankel’s function H(1)
0 (z) in the limit z → 0, which then allows for an exact integration 

over the two subintervals adjacent to the singular point, yielding the contribution

4i
π

h
[
log

(
h
2

)
− 1

]
,

in the boundary integrals.
We also point out that, since G is given by a double series (8) in this problem, its multiple 

evaluations for each pair of points (x, x0) in the various boundary integrals take a substantial 
amount of CPU time, especially for large values of L and M. This is aggravated by the mini-
mization procedure used for the recovery task (as discussed in section 6), which requires mul-
tiple evaluations of the equations and thus additional repeated evaluations of G. To overcome 
this difficulty, the Green’s function is precalculated and saved for each pair (x, x0) given L 
and M. In itself, this computation is also quite demanding in memory and CPU time but it is 
performed once for all before the code for parameter recovery is run. The saved values of G 
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are then simply called whenever they are needed in the evaluation of the equations. For the 
simulations presented in this paper, we prescribed terms up to L  =  200 and M  =  200 in the 
series of G. This choice was based on several trials, with L and M being large enough to ensure 
an accurate calculation of the Green’s function.

The linear system resulting from the discretization of the equations is solved by a direct 
method such as Gaussian elimination. Note that the numerical solution includes the values 
of u1, u2, s and ϕ all together. Therefore, with a fine spatial resolution (i.e. large N), the size 
of this system is significant. For this reason, we only specified up to N  =  90 mesh points in 
our simulations as this was deemed to be a good compromise between accuracy and compu-
tational cost. Keep in mind that the precalculation and storage of G also depends on N. Use 
of an iterative solver (e.g. GMRES) may be helpful in dealing with larger values of N but, 
because such a solver is not exact and produces errors that may affect the accuracy of param
eter recovery, we eventually opted for a direct solver. This option is still reasonable in the pre-
sent two-dimensional setting but, for potential three-dimensional applications, we anticipate 
that it would be necessary to consider an iterative solver.

Due to the large disparity in orders of magnitude among the various physical parameters, 
we find it is convenient to non-dimensionalize the equations for computations. This is accom-
plished by using the characteristic scales B (typically B  =  0.01 m) and Kf as unit length and 
unit pressure, respectively. Accordingly, the dimensionless size of the bone sample is B  =  1.

As an illustration, figures 2 and 3 show dimensionless profiles of u1, u2, s and ϕ for W  =  10, 
H  =  10, B  =  1 and β = 0.83. Note that u1, u2 and s are defined in Ωb while ϕ is only defined 
on ∂Ωb. In view of applications to the diagnosis of osteoporosis, we only pay attention to high 
bone porosities. We also restrict ourselves to low ultrasonic frequencies (250 and 500 kHz) 
because this falls within the range of frequencies that are typically used in medical applica-
tions and where Biot’s theory is supposed to be applicable. On the other hand, the inter-
rogating frequency should not be too low because otherwise it would not be able to resolve 
fine structures of cancellous bone. Earlier work by Buchanan et al [11] examined a similar 
problem via a finite-element approach but these authors only considered low frequencies up to 
15 kHz because otherwise spurious resonances would affect their numerical solution. We did 
not experience such resonances in the present study.

6.  Recovery results

6.1.  Sensitivity tests

We first perform sensitivity tests to validate the model in preparation for the recovery task. 
After ϕ is obtained from solving the boundary value problem, the pressure P at any point in 
Ωw can be determined via (16). In the present setup (figure 1), the bone specimen is centered 
at (5B, 5B) and the point source is located at x0 = (2B, 5B). The pressure is measured at 11 
receiving points equally distributed between 2B � x2 � 8B along the vertical axis x1  =  8B. 
We also tried other configurations for the receiving points by varying their number and loca-
tion but similar results were obtained, as already demonstrated in [27].

The objective function that we use for the sensitivity and recovery tests is the (relative) 
root-mean-square error

f (P∗
j , Pj) =

[∑11
j=1(P

∗
j − Pj)

2
]1/2

[∑11
j=1(P

∗
j )

2
]1/2 ,� (29)
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between a reference (or target) value P∗
j  of the pressure field at each receiving point j and 

the corresponding trial value Pj. In laboratory experiments, P∗
j  would refer to actual pres

sure measurements. Other physical parameters in our model are given the following values 
in dimensional SI units (see table  1): ρf = 950, ρr = 1960, Kf = 2 × 109, Kr = 2 × 1010, 
η = 1.5, Λ = 5 × 10−6 and α∞ = 1.05 [23–26].

Focusing our attention on the determination of β, the sensitivity tests are performed by com-
paring a high-resolution (N  =  90) target solution for a given value of β with lower-resolution 
(N  =  65) trial solutions for a range of values of β. This comparison is based on a direct evalu-
ation of the objective function (29), and is shown in figures 4 and 5 for ω = 250 and 500 kHz. 
Such a test may be viewed as a convergence test for β with respect to the spatial resolution N.

Except for β = 0.95 with ω = 500 kHz, the global minimum of (29) is found to occur near 
the target value of β in all cases being considered, as it should be expected. Note that β = 0.95 
corresponds to very porous cancellous bone mostly made of saturated fluid (with a very sparse 
microstructure), therefore if a high frequency is used, the model may require a fine spatial 
resolution (N � 90) in order to produce an accurate computation. This may explain why poor 
results are obtained for β = 0.95 and ω = 500 kHz with N  =  90. The fact that the sensitiv-
ity curves for ω = 500 kHz (figure 5) are more oscillatory in the high-porosity range further 
emphasizes the model’s limitations when dealing with very high frequencies and porosities.

6.2.  Univariate minimization

In view of potential applications to the diagnosis of osteoporosis, we now assess our model’s 
ability to recover such parameters as β. The recovery tests consist in finding the value of β 

Figure 2.  Profiles of ϕ, s, u1 and u2 for β = 0.83, ω = 250 kHz and N  =  90.
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from the trial solution that minimizes the objective function (29) relative to a target solution 
with a prescribed value of β. Again, the target solution is taken to be of high resolution N  =  90 
while the trial solution has a lower resolution; three different trial cases N  =  {25, 45, 65} are 
considered for each target choice.

Our minimization procedure is based on the Nelder–Mead (NM) simplex algorithm, which 
is denoted by the command fminsearch in Matlab. This rather standard method is certainly not 
the best performing one in the current literature, as its convergence may be slow depending 
on the choice of initial guess and there is no guarantee that it can find the global minimum of 
(29) for a given set of parameter values [12]. However, it is applicable to general nonlinear 
optimization problems and is relatively easy to implement as it does not require calculating 
any gradient of the objective function. Because the main goal of this study is to propose a suit-
able acoustic model that can serve as a basis for solving the inverse problem, regardless of any 
specific choice of minimization procedure, it is natural to conduct a preliminary analysis with 
the NM algorithm. As shown in this section and in the next ones, the NM method turned out 
to perform reasonably well in our recovery tests but it is our plan in the future to extend the 
present work by developing more sophisticated minimization strategies.

In this first recovery experiment, we aim to determine β alone, which is thus taken as the 
sole variable in the minimization procedure (hence the terminology ‘univariate minimiza-
tion’). For this purpose, other material parameters such as Kb and μ are approximated by 
explicit formulas in terms of β, namely

Figure 3.  Profiles of ϕ, s, u1 and u2 for β = 0.83, ω = 500 kHz and N  =  90.
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Figure 4.  Sensitivity tests on β at ω = 250 kHz with N  =  65 and 90 for the low and 
high resolutions respectively. The vertical dash line represents the target value of β 
specified in the high-resolution solution. The black dot indicates the global minimum 
of the objective function.
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Figure 5.  Sensitivity tests on β at ω = 500 kHz with N  =  65 and 90 for the low and 
high resolutions respectively. The vertical dash line represents the target value of β 
specified in the high-resolution solution. The black dot indicates the global minimum 
of the objective function.
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	 •	�The real parts of Kb and μ are calculated using Williams’ formulas [41]:

ReKb =
E

3(1 − 2ν)
Vn

f ,

Reµ =
E

2(1 + ν)
Vn

f ,
� (30)

		 where Vf = 1 − β denotes the bone volume fraction. Following Hosokawa and Otani 
[30], we choose n  =  1.46, E = 2.2 × 1010  and ν = 0.32 for the exponent, Young’s 
modulus and Poisson’s ratio of solid bone respectively.

	 •	�The imaginary parts of Kb and μ are calculated using a log decrement �:

ImKb = �ReKb/π, Imµ = �Reµ/π,

		 with � = 0.1 as typically prescribed in underwater acoustics [13].

Tables 2 and 3 show recovery results for the same range of target values of β = {0.72, 
0.75, 0.81, 0.83, 0.90, 0.95} as depicted in figures 4 and 5. Again, both frequencies ω = 250 
and 500 kHz are used for the interrogation. The value fmin denotes the positive minimum of 
(29) that is attained after the NM algorithm has converged (the default stopping criterion was 
selected in fminsearch). As is typical in nonlinear optimization problems, the choice of initial 
guess is crucial for ensuring convergence to a suitable solution. It is usually desirable that the 
initial guess be chosen sufficiently close to a global minimum of (29). In the present case, 
given ‘measured’ data on the pressure field, we first perform sensitivity tests as done in sec-
tion 6.1 (see figures 4 and 5) and then we select an initial guess for β that corresponds to the 
lowest point in the resulting curves. No a priori information on the target value of β is used 

Table 2.  Errors on the recovery of β at ω = 250 kHz for varying resolutions of the trial 
solution.

β N β fmin Error

Target Low/High Recovered %
0.72 25/90 0.7014 0.3247 2.5879

45/90 0.7128 0.1849 1.0059
65/90 0.7174 0.0887 0.3613

0.75 25/90 0.7357 0.3627 1.9043
45/90 0.7452 0.2036 0.6348
65/90 0.7484 0.0960 0.2148

0.81 25/90 0.7980 0.9406 1.4844
45/90 0.8109 0.3507 0.1074
65/90 0.8106 0.1242 0.0781

0.83 25/90 0.8888 0.9747 7.0898
45/90 0.8322 0.4804 0.2637
65/90 0.8306 0.1787 0.0684

0.90 25/90 0.9086 0.3982 0.9570
45/90 0.8949 0.2092 0.5664
65/90 0.8981 0.0828 0.2148

0.95 25/90 0.9725 0.7834 2.3730
45/90 0.9482 0.0749 0.1880
65/90 0.9472 0.3623 0.2917
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in this process. We checked that similar results are obtained by specifying slightly different 
values for the initial guess.

Overall, these results are found to be quite satisfactory, with errors on β being all under 
10% and getting as low as 0.07%. This is comparable to the values obtained in [27] for an 
infinite water tank. The convergence with respect to N is clearly indicated for each target 
choice, i.e. both fmin and the errors decrease as N increases. The value of fmin gets below 
unity in all cases. Among the six target choices being considered, convergence is poorest for 
the most porous case β = 0.95, which is consistent with our earlier observations from the 
sensitivity tests. At the opposite end, the least porous case β = 0.72 exhibits significant errors 
for low resolutions but these errors quickly fall as N is refined. Among the two frequencies 
being used, recovery seems to be most accurate with ω = 250 kHz, especially for porosities 
around β = 0.8. These results tend to confirm the expected regime of applicability of Biot’s 
model, namely the interrogating frequency should not be too high and the interrogated mat
erial should be sufficiently porous (i.e. β should not be too low or too high).

6.3.  Multivariate minimization

Motivated by these encouraging results on the single parameter β, we now follow up with an 
attempt to determine multiple parameters simultaneously. We restrict our attention to three 
parameters associated with bone strength, namely porosity β, frame bulk modulus ReKb  and 
frame shear modulus Reµ. Recall that, in the previous situation, ReKb  and Reµ are defined 
as explicit functions of β by virtue of (30), but these formulas are mere approximations. We 
initially attempted to recover all three parameters simultaneously via a direct multivariate 
minimization of (29), but the results turned out to be unsatisfactory.

As an alternative, we first minimize (29) with respect to β alone, as described in the previ-
ous section, and then refine the calculation of ReKb  and Reµ. More specifically, after β has 

Table 3.  Errors on the recovery of β at ω = 500 kHz for varying resolutions of the trial 
solution.

β N β fmin Error

Target Low/High Recovered %

0.72 25/90 0.6527 0.3396 9.3457
45/90 0.7055 0.3490 2.0117
65/90 0.7147 0.1646 0.7422

0.75 25/90 0.8084 1.0147 7.7832
45/90 0.7247 0.2692 3.3789
65/90 0.7386 0.1210 1.5234

0.81 25/90 0.8186 0.6968 1.0645
45/90 0.8052 0.6411 0.5957
65/90 0.8053 0.3363 0.5762

0.83 25/90 0.8179 0.3300 1.4557
45/90 0.8214 0.5398 1.0312
65/90 0.8268 0.2998 0.3809

0.90 25/90 0.9448 0.3884 4.9756
45/90 0.8880 0.1331 1.3381
65/90 0.8947 0.0573 0.5884

0.95 25/90 0.9798 0.0948 3.1396
45/90 0.9879 0.3298 3.9896
65/90 0.9363 0.3155 1.4416
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been pinned down, only the other two parameters ReKb  and Reµ are searched simultaneously, 
in which case both are taken as variables in fminsearch. Their initial guesses are given by (30) 
using the converged value of β to start the bivariate minimization procedure.

Table 4 shows the recovery results for target values corresponding to β = {0.72, 0.75, 0.81, 
0.83, 0.90} under illumination with frequencies ω = 250 and 500 kHz. As an illustration, 
we take N  =  65 and 90 for the low and high resolutions respectively, since their comparison 
yields the lowest errors on β among all the resolutions that we tested (see tables 2 and 3). The 
high-porosity case β = 0.95 is no longer considered given the rather poor results from the uni-
variate minimization as indicated earlier. The multivariate computation would likely perform 
even worse in that situation. It is clear that accurate determination of additional parameters in 
this problem is dependent on a good guess for β, and therefore we should expect the corre
sponding errors to be higher than those on β.

The third column of table 4 reprints previous results on β as shown in tables 2 and 3; the 
fourth and fifth columns report the outcome of the bivariate minimization. It can be seen that 
we have some success at recovering ReKb  and Reµ. The recovery of Reµ is especially good 
with errors of less than 8% in most cases, while the results for ReKb  are mixed depending on 
the frequency and porosity. Errors on Reµ are uniformly small over the range of target values 
being considered, but they still indicate a slight preference for ω = 250 kHz. On the other 
hand, using ω = 500 kHz seems more adequate for retrieving ReKb . Indeed, errors on ReKb  
are found to be less than 70% for all estimates at ω = 500 kHz, while they get over 100% 
in some cases at ω = 250 kHz. It is pointed out however that, unlike β, both ReKb  and Reµ 
are characterized by very large absolute values. Therefore, despite the large errors found on 
ReKb , we are able to estimate this parameter within the typical range of orders of magnitude 
as spanned by its target values (∼10−9–10−8).

In addition to the NM algorithm, we also applied more sophisticated gradient-based optim
ization methods such as the interior-point (IP) and quasi-Newton (QN) algorithms (denoted 
respectively by the commands fmincon and fminunc in Matlab). In this case, the gradient of the 
objective function (29) was approximated numerically by finite differences. For convenience, 

Table 4.  Errors on the recovery of ReKb  and Reµ with N  =  65 and 90 for the low and 
high resolutions respectively.

ω fmin β ReKb Reµ

Target 0.72 3.18  ×  109 1.30  ×  109

250 kHz 0.0886 0.3613 % 3.4325 % 1.0033 %
500 kHz 0.1627 0.7422 % 15.0210 % 2.2596 %
Target 0.75 2.69  ×  109 1.10  ×  109

250 kHz 0.0960 0.2148 % 2.2365 % 0.8190 %
500 kHz 0.0818 1.5234 % 65.8171 % 5.9967 %
Target 0.81 1.80  ×  109 7.38  ×  108

250 kHz 0.1149 0.0781 % 159.6636 % 1.2445 %
500 kHz 0.0161 0.5762 % 13.6029 % 6.4212 %
Target 0.83 1.55  ×  109 6.27  ×  108

250 kHz 0.0811 0.0684 % 107.0513 % 2.0313 %
500 kHz 0.0544 0.3809 % 29.7124 % 12.1551 %
Target 0.90 7.06  ×  108 2.89  ×  108

250 kHz 0.0167 0.2148 % 35.8351 % 2.6764 %
500 kHz 0.0554 0.5884 % 17.7986 % 7.6404 %

H Chen et alInverse Problems 34 (2018) 085009



24

these results are not shown here because, despite the faster convergence, they turned out to be 
similar to those obtained with the NM algorithm.

6.4.  Comparison with semi-analytical solution

We further test the recovering ability of our approach by specifying independent target data 
generated by an explicit semi-analytical solution for the pressure P* in (29). In the simplified 
case where both the bone sample and water tank are of infinite extent in the vertical direc-
tion, the exterior pressure field for a time-harmonic point source can be expressed in a series 
form as derived by Buchanan and Gilbert [10] (see their equation 32). These authors solved 
Helmholtz’s equation via contour integration of the Green’s function and application of the 
residue theorem, producing a solution valid for high frequencies. The reader is referred to that 
paper for more details. This solution however requires finding the many complex-valued roots 
of ∆ = 0 where Δ is the determinant of an 8 × 8 matrix. This is an intensive computation that 
we performed numerically and validated against results in [10]. Note that the simpler Stoll 
approximation (rather than the Johnson approximation) was used for pore friction in [10]. 
However, this is not viewed as detrimental because it further contributes to independence of 
the two data sets being compared.

Table 5 lists the corresponding errors on the recovery of β alone. We again apply the NM 
algorithm to the minimization of (29) and use a high resolution N  =  90 for the trial solution. 
In this test, to ensure a certain level of similarity in the geometric conditions while retaining 
the specificities of our numerical model, we only collect and compare data at a single loca-
tion on the right side of the bone sample. This location is chosen to be at x = (8B, 5B) along 
the axis of vertical symmetry of the bone sample so as to minimize potential corner effects. 
As expected, errors are found to be overall larger than those obtained in the previous tests 
(see tables 2 and 3). However, most of them remain under 9%, which is quite acceptable. It is 
plausible that using a higher resolution in the numerical model would lead to more accurate 
results. As noted earlier, the largest errors occur for β near 0.95 with ω = 500 kHz.

Following the procedure described in section 6.3, we also attempted to recover ReKb  and 
Reµ via multivariate minimization of (29) relative to the semi-analytical solution for P*. 
However, this investigation turned out to be rather unsuccessful as shown in table 6. Errors 

Table 5.  Errors on the recovery of β with N  =  90 for the trial solution. The target 
pressure is given by a semi-analytical solution [10].

ω β β fmin Error

kHz Target Recovered %
250 0.72 0.7824 0.1616 8.6621

0.75 0.7843 0.2127 4.5703
0.81 0.7860 0.3544 2.9590
0.83 0.8283 0.2079 0.2051
0.90 0.8228 0.6415 8.5742
0.95 0.9072 0.9914 4.5047

500 0.72 0.6999 1.2827 2.7917
0.75 0.7326 1.1866 2.3200
0.81 0.8303 0.0025 2.5095
0.83 0.8274 0.5064 0.3109
0.90 0.7984 0.4422 11.2876
0.95 0.8059 0.9401 15.1684
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on β are significantly amplified through the estimation of ReKb  and Reµ and, although the 
results on Reµ may still be deemed as acceptable, those on ReKb  are largely not. We did not 
see any improvement by employing the IP or QN algorithm, and we suspect this issue has 
more to do with our acoustic model due to its discontinuous dependence on Kb as suggested 
by the definitions of λ, Q and R in (4). Extension of our acoustic model is part of ongo-
ing research and will be reported in a future publication. Alternatively, instead of directly 
estimating ReKb  and Reµ, one might simply use the approximate formulas (30) after β has 
been determined.

7.  Conclusions

We have proposed a numerical model to recover material parameters of cancellous bone from 
acoustic measurements. This model is based on Biot’s theory where cancellous bone is viewed 
as a poro-elastic material. A bone sample is illuminated by a signal of frequency ω from a 
point source located near one side and pressure measurements are taken at an array of receiv-
ing points located near the opposite side.

Compared to previous work [11, 22, 27], the present study considers conditions closer to 
an actual in vitro experiment. The bone sample is immersed in a finite water tank bounded 
above by a free surface, and high frequencies in the ultrasonic range (ω = 250 and 500 kHz) 
are used for its acoustic interrogation. Biot’s equations for cancellous bone are enriched with 
a more realistic dissipative term to allow for pore tortuosity. In view of potential application in 
the laboratory and potential extension as a diagnostic tool in clinical examinations, care is also 
taken to obtain an efficient and accurate numerical solution of the acoustic problem.

More specifically, to reduce the computational cost, a boundary integral approach was 
adopted to solve for the bounded fluid domain. This implies finding the corresponding Green’s 
function and, for a two-dimensional rectangular tank, it can be written as an infinite double 
series in terms of Hankel’s functions. Analytical results were established for the variational 
formulation of this nonlocal boundary value problem and its well-posedness, as well as for 
the asymptotic behavior of the series expansion of the Green’s function to justify its trun-
cation in numerical simulations. A finite-difference scheme was developed to solve Biot’s 

Table 6.  Errors on the recovery of ReKb  and Reµ with N  =  90 for the trial solution. The 
target pressure is given by a semi-analytical solution [10].

ω fmin β ReKb ReKb Reµ Reµ

kHz Target Target Error % Target Error %
250 0.0500 0.72 3.18  ×  109 500.06 1.30  ×  109 31.42

0.1095 0.75 2.69  ×  109 598.91 1.10  ×  109 19.86
0.5754 0.81 1.80  ×  109 37.72 7.38  ×  108 61.93
0.5670 0.83 1.55  ×  109 112.37 6.27  ×  108 55.45
0.6237 0.90 7.06  ×  108 2.85  ×  103 2.89  ×  108 116.41

5.85  ×  10−9 0.95 2.57  ×  108 34.17 1.05  ×  108 110.98
500 1.2794 0.72 3.18  ×  109 43.52 1.30  ×  109 10.90

1.1663 0.75 2.69  ×  109 85.23 1.10  ×  109 4.53
0.1614 0.81 1.80  ×  109 34.56 7.38  ×  108 19.21

6.36  ×  10−13 0.83 1.55  ×  109 14.39 6.27  ×  108 16.92
0.7891 0.90 7.06  ×  108 680.97 2.89  ×  108 11.36
0.9773 0.95 2.57  ×  108 3.87  ×  103 1.05  ×  108 3.98
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equations for the bone region, including boundary conditions that involve boundary integral 
equations defined along the boundary of the bone sample.

Numerical tests were conducted to assess our model’s ability at recovering a number of 
Biot parameters. This is accomplished by minimizing an objective function representing the 
root-mean-square error between trial and target values of the pressure field. Target values 
were taken to be numerical values based on a well-resolved solution of our model, while trial 
values were obtained by using coarser resolutions. We were able to recover up to three Biot 
parameters (β, ReKb , Reµ) with satisfactory accuracy. Based on the univariate tests, we can 
determine bone porosity β to within 2% in most cases and within 0.07% in the best case. For 
the multivariate tests, we propose a simple recovery procedure where the objective function 
is minimized with respect to both ReKb  and Reµ simultaneously, after first estimating β. This 
procedure was especially successful at determining Reµ, with errors as low as 0.8%, while the 
recovery of ReKb  turned out to be more highly dependent on the choice of ω. In the best case, 
ReKb  was found with 2% accuracy.

We have also performed a more careful assessment by using independent target data gener-
ated from a semi-analytical expression of the pressure field. In this case, the univariate and 
multivariate tests suggest that β and Reµ may still be recovered with acceptable accuracy, 
yielding errors as low as 0.2% and 4% respectively. On the other hand, estimation of ReKb  
proves again to be difficult with errors larger than 14%.

Overall, these results may be viewed as successful and support the potential use of this 
model as a theoretical basis in the development of acoustic techniques for assessing bone 
strength. The boundary integral formulation plays a central role in reducing the computational 
cost, thus making this model suitable for practical applications. Such an approach would be 
especially helpful in dealing with the three-dimensional problem as computations get even 
more intensive in this situation. On the other hand, our study also highlights limitations of 
Biot’s theory and/or the recovery strategy. We have experienced difficulties in estimating 
ReKb  in general as well as β in the fluid limit (i.e. β � 1). Ideally, we would like to test our 
model against actual laboratory measurements. We may also consider applying more sophisti-
cated minimization methods than the NM, IP or QN algorithm, together with a better strategy 
to select initial guesses, in order to improve the calculations’ accuracy or possibly be able to 
recover more than three Biot parameters. Another possible extension of this study would be 
to examine the inverse problem with heterogeneous Biot parameters [9]. These directions of 
inquiry are envisioned for future work.
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