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ABSTRACT

In the predecessor to this work, we undertook a derivation of the time-harmonic, acoustic
equations, idealizing the bone as a periodic arrangement of a Kelvin-Voigt viscoelastic porous
matrix containing a viscous fluid, where we assumed that the fluid was slightly compress-
ible. The effective equations for the monophasic vibrations were obtained, and existence and
uniqueness was proved. In the current article, we perform numerical experiments, assuming
that the trabeculae are isotropic.
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1. INTRODUCTION

In [1] we developed a theory for the harmonic exci-
tation of cancellous bone where the bone fluid and
the elastic matrix move together: the monophasic
case.!

Using the method of homogenization, we de-
scribed the microstructure of the composite mate-
rial, bone plus blood-marrow, in terms of a cell prob-
lem, where all ingredients exist in equilibrium. The
two phases of material are assumed to have the fol-
lowing constitutive equations:

o = 0%c"¢ + (1 —0%)0*" (1.1)
The viscoelastic behavior of the trabeculae is mod-
eled by a Kelvin-Voigt constitutive equation

= (A® + iwB*);ke(u) (1.2)

t:f
Here w is the wave frequency and e(u*) is the strain
tensor defined by

e(u)iy = (0§ +Oyuf) 65 =1,2,3
The constants A%, are the elasticity coefficients of
the solid and are assumed to have the classical sym-
metry and positivity conditions. The constants B},
describe viscosity of the solid, with the classical
symmetry and positivity conditions.

The marrow was modeled as a slightly compress-
ible viscous barotropic fluid with the constitutive
equations

ol = (Af +iwB)ipe(u)x

i (1.3)

In (1.3),

Al = Posbiidu

Bl = mbidji + £8i8u (1.4)
Here, c is the sound speed, py > 0 is a constant den-
sity of the marrow at rest, and 7, £ are constant vis-
cosities, which are subject to the following condi-
tions:

! We are currently studying the biphasic case.
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whose physical justification is to be found in [2].
From (1.4), one can obtain more explicit constitutive
equations:

of¢ = PpsV - ut I + 2iwme(u®) + iwEV - u°I (1.5)

The equations of motion for the trabeculae (solid
part) are given by

—w?p,uf —div(c®?) =Fp, in Qf (1.6)
Here the trabeculae stress is defined in (1.2), and
ps > 0 is the constant density of the trabeculae at
rest.

In the marrow part,
(1.7)

The transition conditions between fluid and solid
parts are given by the continuity of displacement

—w?ps u —div(eh*) =Fpy in  Qf

[]=0 on I, (1.8)

where [-] indicates the jump across the boundary of
e =002;n {)‘Q}, and the continuity of the traction

o .v=0/*-v on T (1.9)

At the exterior boundary, we imposed the zero
Dirichlet condition:

u*=0 on 99 (1.10)

This led to a weak formulation of the slightly com-
pressible problem as

/ $(z)+ / 0 (A +iwB*)e(u®) : e(d)

Q

+n/(1—e£)(A8+sts) uf) : e(d :9/

Vo € HH Q)" 1.11)

where an over bar denotes the complex conjugate.
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2. TWO-SCALE CONVERGENCE

The main convergence results of [1] were obtained
by using the method of two-scale convergence®. We
passed to the limit in the two-scale sense using the
weak formulation (1.11), first using a test function
@(z), and then a test function P (£), where (y)
was assumed to be Y-periodic with zero average.
This yielded the following equations for u°,u', the
first two terms in the asymptotic expansion of the
displacement:

U(I!ya E) = uU(I! U‘) ot eul (Ia y) + €2u2($$ y) e ¢

namely,

pr-¢=—w2/pu°-®

Q 3]
+ [ [ o)A +iwB?) (ex (u°) + ey () : ex()
Qy

+ //(1—9(y})(A3+in”)(eI (u®) +ey (') :e2(®)
Qy

Vo € Hy ()" .1)

and
0= //B(y)(AwaBf) (e (u®)+ey (u')) :ey(ﬁ)).
Qy

+//(1—9(y))(A“’+ins)(em (u®) +ey (u')) ey (W)
Qy

Y € Hper(V)")/C

In [1] we constructed the cell problem by substi-
tution of u! given in the special form

ul(z,y) = NP (y)eg (u’)pq(2)

+ MP(y, w)es (u)pg(z)  (23)
into the equation (2.2). The above summation is
over p and g; moreover, as ul(z,y) is a vector, the
matrices NP4 and MP? have vector components, i.e.,
the right-hand side is a linear combination of these

vectors, with scalar coefficients (ez (1)), -

2 Two-scaled convergence was first introduced in [3] and devel-
oped further in [4,5].
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Integration by parts of the variational formula-
tion showed that the strong form of the variation
formulation for INP? seeks a solution such that

div (Kn (EP? + €,(NP9))) =0 in Yy (24)
BI (670 + ¢, (NPO))y = A*(E77 + €, (NP))v
on dYfNaYs

[NP9) =0, on 30Y;NaYs

where

Ky =iwbB/ 4 (1-0)A° (2.5)

Similarly, the strong form of the variation equation
for M4 is to find a solution of

div(K nr (€79 + ¢y (MP2)))=—div(K e, (NP2)) in Y
(Af +iwB!)(EP + e, (MPT) + e, (NP9))v (2.6)
—(A® + iwB?)(EM + ey (MP?) + e, (NP9))v
on Y5 N OYs
[MP9] =0, on Yy NOYs

where

Ky = 0(Af +iwBf) + (1 -0)(4° +iwB®) (2.7)

The problems (2.5) and (2.7) are uniquely solv-
able for each w > 0. To show this, observe that A,
B¢, and B/ (but not A/) are strongly elliptic. There-
fore Ky and K given by, respectively, (2.5), (2.7)
are strongly elliptic for each w > 0. Now apply
the complex version of the Lax-Milgram theorem to
conclude.

3. ISOTROPIC CASE

In this section we write out explicit forms of the so-
lutions assuming that the trabeculae are isotropic,
i.e., we assume that in ), (see Fig. 1),

(A%ey)ij = apient = (A8y;8k + 2u8ikdji) er

= Aﬁijekk + 2}1€§j (3.1
(B%ey)ij = bijriert = Abijekk + 2Hei; (3.2)
(Afey)ij = Ppgbijerk (3.3)
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trabeculae

el

marrow

FIGURE 1. Sketch of the unit cell consisting of the mar-
row (Yy) and the trabeculae ()

(B Gy)?;-‘ (E‘ng E’kl + 2115:.‘;53!) €kl

= &djjexk + 2neq; (3.4)

Therefore, from (2.5), in ), we obtain the differ-
ential equation for the matrices N* (p,g=1,2):

)
g7 (ABigems(NP0)+2pe (N)) =0 in %, (3.5)
J

3%(aal-jekk(NNmneﬁ(NW))=o in Y, (36)
i

where on the boundary Y, (] )y we have

V3 [A (exk (NP9)+85)8:5+21 (5 (NP9) +E79)]
— VI (exk (NPI)+8pq)8i5+2n (€55 (NP9) +EET)(3.7)

where —vj = "".L on YVs;()Ys. Since another trans-
mission condition is needed, we set [N??] = 0 on
Vs n y f also.

We recall that the components of NP9 are vectors;
hence we designate the vector components by

NP = (N7, 1)

The system of partial differential equations then
takes the form

2 nTPa

0*N,
A2 E
( H) OyrOyr

2 nrPa

02N
+2 E
(n+2¢) Jon0m

in Vs

+2p AN =0

+MANPY =0 in Yy (38)
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We may express these as matrix equations:

(A+20)HNP? + 20 ANP =0 in Vs (3.9)

(n+26)HN™ + 2 ANP =0 in Vs

where H is the Hessian operator, i.e.,

(3.10)

92 0%

oy Oyidy

H:= 321 :,:}2 4
Oy10ys 0yl

We now turn to determining the matrix solutions
MP4. To this end, we introduce QP¢ = M?9 4+ NP9,
solve the problems for Q%, and then obtain the
solutions for MP4. First we compute the terms
(47 + iwBY) £P4 and (Af + iwBf) e(MP9):

(A7 +iwB!) ., EF =bpq (o +iw]) 8is+ 2iamELy
(Af+awBJ) e(MP?) (02 P +z‘w£,) exr(MPIR;;
+ 2iwne;; (MP?) (3.11)

This leads to the following equation holding in V¢

iwnAQP (Pps+iwkt+ian)HQP =0 in Yy (3.12)
On the other hand, in the solid part )V, we have

(A%e(MP7));; = Abjerk (MP) + 2uei; (MPY)
(A%e(EP9))ij = ABijbpq + 2uEL
(B*e(MPY));; = Abijerk(MP?) + 2Tie;; (M)
(B®e(EP9))i; = Ab;idpg + 2&‘,‘39
which yields

(R+iWTE) AQPI+ A+ p+iw(A+T)) HQP = 0
in Y, (3.13)

together with the following transmission conditions

V3 [ A+ iwA) (exk (QP?) + bpq) 8ij

+ 2(p + iw) (:;(QP7) + E) ]

= V] [(Ppy + iwE) (exk(QPT) + Bpq) i

+ 2t (@) + £3)] an
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4. THE EFFECTIVE EQUATIONS

To obtain the effective equations, we substitute (2.3)
into (2.1) and collect terms containing the same com-
ponents of e(u°):

pF-@ = ]pu
/Q 0(Al+ iwB’)( Spq%e(Np%Mm)) U)p ce(P)
Q

( / 1—0)( A3+awB’)(8Pq+e(Nm+Mpq)))
y
0

b (@), Vo€ Hs(@Q)" (4.1)

In (4.1), consider separately integrals over ) and re-
call that N?¢ are independent of w. This allows us to
separate the following three groups of terms: terms
independent of w, terms that are linear in w, and
the rest of the terms. This yields

/G(Af + inf)f;jH (EP9 4 e(NPI + MP?)),,

y

+/(1 —9) (A° +iLUB8)ijk{ (Em—i—e(NpAq—l—Mm))M
by

=Aijpq + 1WBijpg + Cijpe(w) (4.2)

where the effective materials tensors A, B, and C.are
defined by

o= [ (OA+ (1 — 0)A) 51 (EP+e(NPY)),,  (43)

Bipe= (0B +(1 = 0)B) sl E7+e(N")), (49
y

Cispa = / [6(47 +iwB )+ (1 OXA° +iwB*)
y

X (EP1+e(MP)) (4.5)

Combining (4.1) and (4.5) we obtain the weak for-
mulation of the effective equation
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/pF-f{)=—w2/pu”-tﬁ

Q Q
+/[A+iw8+6(w}]e(u°):e(@) (4.6)

The preceding can be summarized as the following.

Theorem 1. Let u® be the unique solution in Hj(Q)
of

Lsut

uf =0 on

= Fp® in Q

B) @.7)

where L. denotes the second order partial differential op-
erator

Leu=—div (((1—6‘)03“-!-950"“)6(1;5D —w?pu’

Bt =0 (E) is the characteristic function of the marrow
I
part Qf and

pe =0%ps +ps(1—6%)

Then, there exists a subsequence {u®}, not relabeled,
such that {u®} converges weakly in Hg(S) to a limit
u® € H}(R), and p* converges weakly in L>=(S2) to p.
The pair {u®,p} is a weak solution of the homogenized
equation

Lu=Fp in Q

u=0 on N (4.8)

where L denotes the homogenized operator such that

Lu= —divx{.Ae(uU) +iwBe(u°) +C(w)e(u°)} —w?pu

The effective constant tensors A and B are defined, in
(4.3), (4.4), respectively. The effective frequency de-
pendent tensor C(w) is defined in (4.5). The wvectors
NP9, MP? that appear in (4.3)—(4.5) ure solutions of the
auxiliary cell problems (2.5), (2.7), respegtively.

The homogenized behavior of the slightly com-
pressible viscous fluid in the elastic porous medium
is described by the equations (4.8), which are the
equations of linear viscoelasticity, i.e., our mixture
of a slightly compressible viscous fluid and an elas-
tic solid behaves on average as a single-phase vis-
coelastic material. The effective tensors A, B, and
C characterize, respectively, elastic moduli, viscous
moduli, and long-time relaxation moduli of the ef-
fective material.
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5. NUMERICAL EXPERIMENTS

Using the physical values given in Table 1 and the
value for A, which is computed by the formula be-
low:

AN=Kp— gu (5.1)
. (K~ Ky)* — 2BK, (K, — K) + B2K?
D-K,
where
D =K,(1+B(K./Kf—-1)) (5.2)

we were able to compute the coefficients in the ef-
fective equations from the cell problem solutions
N?? and MP (p,q = 1,2). The equations for N??
and MP? were discretized using a second-order fi-
nite difference scheme, and the resulting linear sys-
tems were solved numerically by a direct method.
The numerical model was tested in simple cases.
We show two typical coefficients N' and N'2? in
Fig. 2 and Fig. 3 respectively. These numerical re-
sults were then used to compute the effective coeffi-
cients Ajjpg, Bijpe, and C;jpq. Numerical quadrature,
such as the trapezoidal rule, was used for these com-
putations. Typically, in our simulations, the unit cell
was specified of length L = 1 in each direction, the
trabeculae frame was 2/5 of the total length of the
unit cell in each direction, and the spatial resolution

FIGURE 2. Plot of N{! and Nj*.
length L = 1 in each direction, the trabeculae frame is
2/5 of the total length of the unit cell in each direction,
and 3 = 0.76

The unit cell is of

FANG ET AL.

TABLE 1. Parameters used in our medel

Symbol Parameter

ps = 10° density of the pore fluid

Ky = 2.76 x 10° | complex frame bulk modulus
p=1.15 x 10 | frame shear modulus
K;=2x10° fluid bulk modulus

K, =2 x 10" frame material bulk modulus
B =0.76 porosity

n=15 first viscosity of pore fluid
£E=0 second viscosity of pore fluid
w =7 x 108 sound frequency

c = 1483 speed of sound

FIGURE 3. Plot of N{? and N32. The unit cell is of
length L = 1 in each direction, the trabeculae frame is
2/5 of the total length of the unit cell in each direction,
and f = 0.76

was Ay; = Ay, = 0.0154. It is important to realize
that these coefficients are in themselves only used
to compute the effective constant coefficients appear-
ing in the effective Eq. (4.8).

If we introduce the notation

Eijkt = Aijir + WBijit + Cijrr(w)

then the effective equations, in the original z- coor-
dinates, take the form

52
dﬂ.k 2

ikl — wWu; =0
o 31!.';;33{ &

which in component form becomes

International Journal for Multiscale Computational Engineering
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0%uy 0%uy 0%uy 0%,y
el BT & e |
111 22 + 2116:.:13:52+ 212 522 +lian 522
321L1 82151 9
Eirog——— + Eipoo—— = 2wy, i=1,2
+E&i122 5,0, + Eioao 922 TW u;, @

Using MAPLE output, we list below these equa-
tions for the porosities of normal, osteoporotic,
and severely osteoporotic bone, namely, B =
0.76, 0.83,0.90, respectively. For § = 0.76, we have

2.189433292+ (diff (u(x, y},%x,x))+(0.8033696226e-1+1I)
s (diff(v(x,y), X, x))+1.284543528%10" (-10)*«E[1121]
t(diff(v(x,y),x,x})+1.294543523&10“{—lO]*E[ll21]
t{diff(utx,y},x,x))+O.96143?2843e—1*(diff(v{x,y},x,x})
+(.2368914469=I) x (diff(u(x,y),y,¥) ) +(1.470789632+1)
*{diff{v{x,y),y,x]]+1.370591?59t{diff(v(x,y},y,x})
—(0.2891357240e-3+I) « (diff (v (x, ¥}, ¥.¥)}
-0.3221249804e-4* (diff (u(x,y) ¥, x)}+(1.899325828+1I)
e (diff(u(x,y),X,x))+ 1.284543528+107 (-10) »E[1221]
»(diff(v(x,y),y,%x))+1.284543528+107 (-10) * E[1221)
x[diff(u{x,y},y,y)}+.23644?7255r{difflu(x,y),y,y))
~(0.1738102475e—4+1) = (dLEE (U (X, ¥), ¥, X))
-0.4034931056e-3* {(diff(v(x,y),¥,¥))

- .9999999998+u(x,y)=0

~0.3221249804e-4« (diff (ulx,y),x,x)}+(.2368914469+1)

» (diff(v(x,y), %, x))+1.284543528+107 (-10) »E[1221]
w(diff(v(x,y), %, x))+1.284543528+10" (-10) » E[1221]

e (diff(ulx,y) .y, x))+.2364477255+ (diff (v (X, y),x, %))
+(0.7992352755e-1+I) * (diff (u(x,y), ¥, ¥y))+1.379624669
w(diff(u(x,y),¥, %)) +(0.7963439184e-1+I) (diff(v(x,¥),
v, x))+0.9608269463e-1x (diff (V(X,¥),V,X))
+(2.184662236+I) » (diff(v(x,y),y,y))—(0.1738102475e-4+1)
w(diff(u(x,y) X, %))+ 1.284543528+10" (-10) *E[2221]
+(diff(v(X,y),y,x))+1.284543528+10" (-10) » E[2221]
w(diff{ulx,y), v, y))+(1.104265223x1)

« (Aiff(u(x,y), y,x))+0.964861877de~1+ (diff (ulx, y).y.¥))
+2.086150070% (Aiff (v (%, ¥) s ¥rY))—-99999999985u(x,y)=0.

For B = 0.83 we have

{2.08+l.7823*1)*(diff(u(x,y},x,x)}+(ﬂ.94e—1
—0.73e-2+I) = (diff(u(x,y),vy,x})+(0.941le-1
+0.77e~2+1)» (diff(vix,¥), ¥, ¥)}+(1.6066
+1.3043#T) » (diff(V(X,¥) ¥y, x))+(.4732+.4736+1)
e (diff(u (X, ¥) ¥, ¥))+{0.7e-4+0.1le-4+1)
w(diff(vix, y), %, x))-1.%u(x,y)=0,

(0.941e-1-0.73e-2+1) * (diff (u(x,¥), %,
®))+(1.5157+41.3209«T) = (diff (u{x,y),¥,%))
4+(1.9929+1,7959+1) « (diff (v (X, ¥y}, ¥.¥))
+(0.9411e-1-0.76e-2+I) = (diff (v(x,¥),¥, %))
+(.4736+.4732+T) « (diff(v(x, V), %, %))
+{0.5e-4+0.Te-4+I)» (diff (u (X, ¥) ¥, ¥))-1.*u(x,y).

For B = 0.90 we have

(2.08+1.7823+1) « (diff (u(x,y) . %, %))
+(0.94e-1-0.73e-2+1) * (diff (u(x,¥) . ¥,%))
+(0.941e~-1+0.77e-2+I) * (diff (v (x, ¥}, ¥, ¥))
+{1.6066+1.3043«1)» (diff(vix,y), ¥, %))
+(.4732+.4736+1)+ (diff(u (X, ), ¥ ¥))
+(0.7e-440.1le-4+I) » (diff(v(x,¥), %X, X)) -1l.*u{x,y)=0,

(0.941e-1-0.73e-2+«I) * (diff (u(x,y) s X, %)) +(1.5157
+1.3209+«T) # (diff(ulx,y),y,x))+(1.9929+1.7359+I)
*(diff(vix,¥),¥,y¥))+(0.%9411le-1-0.76e-2+T)

*(difE (v (X, ¥), ¥, x) )+ (. 4T36+.4732+1) * (difE(v X, ¥), %,
%))+ (0.5e=-4+0.Te-4*I) » (diff (u(x,¥), ¥, ¥))-1.*ulx,y)=0.
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To interpret the meaning of our bone coefficients,
it is useful to compare these with those introduced
by [6,7]. The Biot equations for the propagation
of acoustic disturbances in a porous media were
obtained using mixture theory. Identification of
some our parameters with Biot’s physical parame-
ters would give a hint as to which will play a sig-
nificant role for the inverse problem. However, we
must add the disclaimer that the Biot model was
not meant for uniphasic vibrations, and our com-
parison becomes specious as it reduces to an elliptic
system having only a principal part. Nevertheless, a
comparison shows that we obtain coefficients of the
same order of magnitude. For simplicity, we con-
sider the case where all parameters are constant in
the Biot model. This leads to the system (5.3) below:

62
uV2u 4 V[(A + ple + Qe] = @(Pu“ + p12U)

+ b%(u ~U) (63

2

0 a
V[Qe + Re] = 55(91211 + p22U) — ba(u -U)

where the coefficients A and p are Lamé coefficients
and wheree:=V-u,e:=V-U.

The form of the dissipation parameter b is com-
plicated but not necessary for the uniphasic case.
When the medium is undergoing time-harmonic os-
cillations of angular frequency w, this becomes

uV2u + V[(A + pe + Qe] = —w?(p11u+ p12U)
+iwbu—U)  (54)
V[Qe+Re]=—w?(p12V +p22U) —biw(u—TU)

For the case of uniphasic oscillations, this system
reduces to a single equation

uV2ut gradé-+ p+Q— %I—gz— (Q+ R)divta =0 (5.5)

In component form, this leads to

A uy + (M—iHQ-—M(Q-%RD
P12t+P22

82u1 82UQ
% ( Eroa Bylaxg) =#
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TABLE 2. Coefficients A;‘jm, Bijki, C,'jm, for B = 0.76

Effective Elasticity
Coefficients

Effective Viscosity
Coefficients

Effective Relaxation
Coefficients

Ai111 = 4.58467e + 09

Bi111 = 1341.05

Ci111 = 3.56332e + 09 + 2.86726e + 09:

Aj211 = —1.0815¢ — 06

B] 211 = —0.0270966

Ci211 = —125385 + 17472

.A2111 = —1.0815e — 06

Ba111 = —0.0270966

Cor11 = —125385 + 174721

A221[ = 2.33171e + 09

Bao11 = 623.405

Ca211 = 2.11803e + 09 + 1.41771e + 09i

A1112 = 1.10921e + 07

Bi112 = 0.0151305

Ci112 = 7.37374e + 08 + 6.25365e + 08i

Ai219 = 1.11852¢ + 09

Bi21z = 356.193

Cio12 = 7.22194e + 08 + 7.25155¢ + 08:

As112 = 1.11852¢ + 09

Ba112 = 356.193

Co112 = 7.22194e + 08 + 7.25155¢ + 08i

A2212 = 1.10921e 4 07

Bas1z = —5.04045¢ — 14

Ca212 = 7.4004¢ + 08 + 6.22194e + 08i

A1122 = 1.90032e¢ + 09

Bi122 = 623.326

Ci122 = 2.51426€ + 09 + 2.84463¢ + 09i

A0 = 1.00583e — 07

Bio2o = 0.109289

Cr222 = —1.57057e + 06 — 7821004

Az129 = 1.00583¢ — 07

Bs1os = 0.109289

Co122 = —1.57057e 4 06 — 782100z

Ag00 = 4.15328¢ + 09

Ba22s = 1340.55

Coz90 = 3.96692¢ + 09 + 4.29219¢ + 094

TABLE 3. Coefficients A:‘jk!; Bg'jk!, C,;jk,[, for B = 0.83

Effective Elasticity Effective Viscosity Effective Relaxation

Coefficients Coefficients Coefficients

Ai111 = 4.57327e + 09 | Byyq1; = 1333.46 Ci111 = 3.61561e + 09 + 2.56873¢ + 09:
Ai211 = —4.475e — 07 | Bja1; = —0.0338359 Ci211 = 66134.7 — 296249;

A2111 = —4.475e — 07

Ba111 = —0.0338359

Co111 = 66134.7 — 296249;

Aaz11 = 2.32038¢e + 09

Baayy = 615.814

Ca211 = 2.16911e + 09 + 1.11889¢ + 09i

Ai112 = 1.7835¢ + 07

Bi112 = 0.0243283

C1112 = —1.1813be + 08 + 8.60127¢ + 073

A1 = 1.11853¢ + 09

812 12 = 356.247

Ci212 = 7.22853¢ + 08 + 7.2481e + 08i

As110 = 1.11853e + 09

321 12 = 356247

Ca112 = 7.22853e + 08 + 7.2481e + 08

Ago1o = 1.7835e + 07

Bao1p = —8.12677e — 13

Caz12 = —1.17765¢ + 08 + 8.65174e + 07i

./4.1132 = 1.88741e + 09

Bi132 = 615.75

C1122 = 2.00175e + 09 + 1.18415e + 097

.A1222 = 3.41516e — 06

Biagz = 0.0522359

Ci920 = —261286 + 80028.9;

.Azlgg = 3.41516e — 06

Ba122 = 0.0522359

Ca122 = —261286 + 80028.9i

Aagooo = 4.14031e + 09

Baags = 1332.93

Caz02 = 3.44738e + 09 + 2.63387e + 091

TABLE 4. Coefﬁcients Aijkb Bt'jk-i: C,;jk:, for B =0.90

Effective Elasticity
Coefficients

Effective Viscosity
Coefficients

Effective Relaxation
Coefficients

Allll = 4.5152¢ + 09

Bii11 = 1333.62

Aj211 = —1.88127e — 07

Bia11 = 0.0353856

Cio11 = 332428 + 1.1014¢ + 064

A2111 = —1.88127¢ — 07

Ba11; = 0.0353856

Ca111 = 332428 + 1.1014e + 06i

Ago11 = 2.2623e + 09

522]1 = 616.051

C2211 = 1.61722e + 09 + 1.33605¢ + 09i

Ai112 = —2.227e + 07

61112 = —-0.030378

Ci112 = —1.97821e + 09 — 1.02599¢ + 09:

Ai212 = 1.11853e + 09

Bia12 = 356.175

Cio12 = 7.21096e + 08 + 7.29656e + 08

Aguz = 1.11853e + 09

Bo112 = 356.175

Ca112 = 7.21096¢ + 08 + 7.29656¢ + 087

Azzlg = —2.227e + 07

Baojo = 4.89682e — 13

Ca212 = —1.98257¢ + 09 — 1.01749¢ + 09

A1120 = 1.98421e + 09

31122 = 616.117

Ci122 = 2.08593e + 09 + 1.11011e + 09:

A1290 = —T7.16595e — 07

Bi22o = 0.00621678

Cia22 = —191283 + 99330;

A2122 = —7.16595¢ — 07

Bo122 = 0.00621678

Ca199 = —191283 + 99330i

A2222 = 4.2371e + 09

Bogos = 1333.17

Cagoo = 3.53124e + 09 + 2.55947¢ + 094
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RA Uy + (J\Jr AW (Q-I-R))

P12+ P22
62‘-'.,&1 621&2
22 =0
X (82':13:172 i 6$% )
or
P11 + P12 %y 0%uy
O O R o P el IR
( Q@ P12 + P22 @ )) oz} paﬂ?%
P11 + P12 8%us
+ H+A+Q - ——(Q+R =0
(ll Q P12 + pa2 (@ )) 011019
P11+ P12 ?ug 8%us
WA+ Q- ———(Q+R) | 5 + 1
( g ¢ P12 + P22 @ )) a3 B oz3
P11 + P12 0%y
+(p+r+Q-1T 204 p =0
(u Q P12 + P22 @ )) Ox10z4

The parameter , the complex frame shear mod-
ulus, is measured. The other parameters A, R, and
@ occurring in the constitutive equations are calcu-
lated from the measured or estimated values of the
parameters given in Table 1 using the formulas

_ PR

= D — K,

Q_ BKr((l_B)Kr—Kb)
o D - K,

In the Biot theory, the bulk and shear moduli K
and p are often given imaginary parts to account for
frame inelasticity. Here p;; and p,; are density pa-
rameters for the solid and fluid, and p» is a density
coupling parameter. These are calculated from the
inputs of Table 5 using the formulas

P11 = (1 —B)pr — B(ps —mP)
p12 = B(py —mB)
p22 = mp?
where
xp
"=
This suggests that we might try to associate, at
least up to orders of magnitude, our coefficients
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E;ijr with the Biot coefficients. The general form of
the coefficients for the Biot uniphasic model are

P11 + P12

By =24Q— BET Wn., g
1111 Q 912+922(Q )
E1222 = 1, &1121 =0
E1121 =0, & =0
P11 + P12
Eiim = pAn@=o2 P ig . R
1122 1t Q D12 F P (Q )
; P11 + P12
€222 =204+ Q - ———(Q+R
& P12 + Pzz(Q )
Eato1 = W, E2111 =0
Ea12 =0, &E21220=0
_I_
Ep11 = pn+A+Q - M(Q‘FR)
P12 + P22

Enr = Ez90 = 6.112071192¢ x 1010
Er190 = E9101 = 2.998535596e x 1010
Ei222 = Ez121 = 1.150000000¢ x 10°

The Biot coefficients above that are zero corre-
spond to our terms that are 10~* smaller than the
remaining terms. These remaining terms have real
parts of the same order of magnitude as the other
Biot coefficients, which, for the uniphasic model, are

real.

6. CONCLUSION

We have shown that the method of two scale con-
vergence may be used to compute effective bone pa-
rameters in the monophasic case that are compara-
ble to those found in the Biot model. We are plan-
ning to use this model for the inverse problem for
determining the bone coefficients. Further work is
planned to complete the biphasic case. The biphasic
is more suitable for comparison with the Biot model.
Homogenization leads to systems similar to the Biot
model but having more coefficients. Changing some
of the physical assumptions about the fluid solid in-
teraction may lead to new models more suitable for
the ultrasound interrogation of bone.
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Symbol Parameter

P11 = 5.304000 x 10* density
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