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a b s t r a c t

A two-dimensional continuum model is proposed for linear gravity waves propagating across ice-
covered seas. It is based on a two-layer formulation where the floating sea ice is described as
a homogeneous isotropic poroelastic material and the underlying ocean is viewed as a weakly
compressible fluid. Dissipative effects are taken into account by including viscosity in rheological
properties of the ice layer. An exact dispersion relation is derived for traveling wave solutions of
this coupled system and numerical estimates are obtained for its complex roots. Extensive tests are
conducted to examine the dependence of results on various parameters in both the porous and non-
porous cases. Detailed comparison with existing viscoelastic models is provided, and good agreement
on both wave dispersion and attenuation is found. In the porous case with friction, a non-monotonic
behavior is observed for the attenuation rate as a function of frequency, which is reminiscent of the
roll-over phenomenon that has been reported in field observations.

© 2019 ElsevierMasson SAS. All rights reserved.

1. Introduction

1.1. Background

Major changes that have occurred in the polar regions over
recent years such as the rapid decline of summer ice extent in
the Arctic Ocean, have not been correctly predicted by modern
climate models, suggesting that important physical components
are missing. This has prompted a surge of research activity, and
it is now recognized that ocean waves play an important role in
controlling sea-ice morphology and in turn the presence of sea ice
affects wave dynamics. These interactions are especially apparent
in the marginal ice zone (MIZ), which is the fragmented part of
the ice cover closest to the open ocean. As such, the MIZ is a
highly heterogeneous and dynamic region, strongly affected by
incoming waves. By breaking up the sea ice, waves cause it to
become more fragmented, which in turn increases their capacity
to further penetrate and damage the ice cover.

It is only recently that wave forecasting models have begun
to be tested with parameterizations for wave-ice interactions.
Of particular interest is the description of wave attenuation in
the MIZ. Therefore, much effort has been devoted to developing
parameterizations for the decay of wave energy due to sea ice,
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assuming an exponential behavior. Based on linear theory, two
different approaches have been adopted: (i) separate-floe models
where the ice cover is composed of individual floes with possibly
different characteristics [1–3], and (ii) continuum models for
waves propagating through a heterogeneous ice field described as
a uniform material with effective rheological properties including
viscosity or viscoelasticity [4–6]. Models of type (i) focus on
wave attenuation by scattering, hence they are also referred to as
wave-scattering models. Indeed, measurements from Wadhams
et al. [7] provided evidence that wave scattering by ice floes
is a dominant mechanism for energy attenuation in the MIZ.
Predictions by this approach have recently been incorporated into
operational wave forecasting models [8,9].

Models of type (ii) enable the direct (albeit tedious) calculation
of an algebraic dispersion relation for traveling waves in the
continuous medium. Wave scattering and other possible dissipa-
tive effects are encoded in the complex roots of this dispersion
relation, and their relative importance is controlled by constant
rheological parameters. These do not necessarily correspond to
specific properties of sea ice but rather they are meant to rep-
resent effective properties of the ice field, similar to the way
homogenized models characterize wave evolution in complex
media [10,11]. While continuum models have been used for some
time now, based mostly on thin-plate theory, to describe wave
propagation in pack ice [12–14], it is only recently that they have
been considered for application to the MIZ and for parameter-
ization in operational wave forecasting models [15,16]. Recent
popular models of type (ii) possess a high degree of sophistication
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and do not rely on the thin-plate assumption [6,17]. A more
detailed review of this approach is given in the next section.

In this paper, we propose a two-dimensional continuum
model for linear wave propagation in a coupled ice-ocean system,
where the ice cover is viewed as a homogeneous isotropic poroe-
lastic material. Viscosity can also be included in this formulation
by allowing elasticity parameters to be complex numbers. A
motivation for introducing such a model is that the porosity
parameter may serve to provide a measure of ice concentration,
which is an important quantity in sea-ice characterization. Using
Biot’s theory without the thin-plate assumption, we describe
the heterogeneous ice field as a mixed layer with a solid phase
and a fluid phase as the two limiting configurations. Aside from
featuring porosity and viscoelasticity, our new model considers
the fluid in both the floating ice layer and underlying ocean to be
weakly compressible. The present work builds upon our ample
experience with Biot’s theory in the context of bone acoustics and
ocean acoustics [18–22].

There is a large literature on the mathematical modeling and
numerical simulation of ocean waves interacting with porous
structures. In view are applications to coastal engineering where
such structures are often used to dissipate wave energy for
coastal protection. Examples include vertical breakwaters and
floating or submerged horizontal plates; in particular the latter
have drawn much attention recently because they do not block
currents and do not hamper the seascape. Studies in this case
often use the thin-plate approximation and focus on analyzing
the performance of these structures in attenuating waves via
scattering [23,24]. To our knowledge however, it is the first time
here that a continuum model with porous viscoelastic features
is introduced to describe wave propagation and attenuation in
various types of ice cover, as possibly encountered in the MIZ.

After presenting the mathematical formulation, we derive an
exact dispersion relation for surface wave solutions traveling in
the horizontal direction. Given the complicated nature of this
problem, involving a large number of physical parameters, we
perform extensive tests of our Biot model in comparison with
existing models in their respective limits. We solve this disper-
sion relation numerically and examine its predictions in both the
porous and non-porous cases. As a byproduct of this study, we
find that simpler viscoelastic models perform well overall, even in
comparison with our predictions for nonzero porosity, displaying
qualitatively similar properties of wave dispersion and attenu-
ation. On the other hand, our Biot model is able to reproduce
a non-monotonic behavior of the attenuation rate as a function
of frequency, similar to the roll-over phenomenon that has been
reported in field observations [7] but which has eluded linear
scattering or viscoelastic models. In the context of our poroelastic
formulation, this intriguing result is attributed to friction caused
by the relative motion between the solid and fluid components,
and thus is directly connected to the porous nature of the ice
cover. Finally, exploiting the fact that porosity is represented by
a small dimensionless parameter, we also propose an alternate
version of the dispersion relation, based on a first-order Taylor
expansion, which exhibits a more explicit dependence on this
parameter.

1.2. Existing models

Recent reviews on continuum models for linear wave propa-
gation across ice-infested seas can be found in [14,16,25,26]. We
present here a brief overview of some of these models as they
are relevant to our discussion in Section 3. They usually describe
the underlying ocean by potential-flow theory for an ideal fluid
(i.e. incompressible, inviscid and irrotational) [27]. In the absence

of sea ice, the dispersion relation for surface traveling waves is
given by

ω2
= gk tanh(kH) , (1)

where ω ∈ R+ is the angular frequency, k ∈ R+ is the wavenum-
ber, H is the (uniform) ocean depth and g is the acceleration due
to gravity.

The simplest way to introduce sea-ice effects is by incorporat-
ing the added mass of ice at the water surface, which is known
as the mass-loading (ML) model [25]. This changes (1) to

ω2

g − Aω2 = k tanh(kH) , (2)

where A = θρsh/ρf represents ice inertia, θ is the fraction of
surface area covered by ice, h is ice thickness, ρs and ρf are
the densities of sea ice and water respectively. Because inertia
appears as a negative term in the denominator of (2), mass
loading tends to increase the wavenumber, i.e. it shortens the
wavelength as compared to the ice-free case (1). It is suitable
when the wavelength is much longer than the typical size of ice
floes.

The mass-loading model ignores the elastic response of the ice
cover. To overcome this deficiency, an alternate form

ω2

g − Aω2 + L k4/ρf
= k tanh(kH) , (3)

can be derived following Kirchhoff–Love plate theory [12]. The
additional term depending on

L =
µ h3

6(1 − ν)
,

represents the flexural rigidity of sea ice, with µ and ν being
the corresponding shear modulus and Poisson’s ratio respectively.
The relative contributions of inertial and elastic terms in the
denominator of (3) determines whether the wavelength is shorter
or longer. Unlike inertia, flexural rigidity (i.e. elasticity) tends to
increase the wavelength. We will refer to (3) as the FS model.

As proposed in [5], a different approach treats the ice cover
as a suspension of solid particles in water. Interaction among
these ice particles and the associated friction lead to wave energy
dissipation. Accordingly, the problem is described in terms of a
two-layer system with a viscous fluid lying on top of an ideal
fluid. This coupled system gives a dispersion relation for complex
modes κ = k + i q where q ∈ R+ denotes the attenuation
rate. More specifically, k refers to propagation modes while q is a
measure of dissipation as the wave travels across the ice field.

Wang and Shen [6], hereafter referred to as WS, extended this
approach to include elasticity in the upper layer. The ice cover
is viewed as a homogeneous incompressible viscoelastic material
according to Voigt’s model. Via the effective viscosity parameter

ηc = η + i
µ

ρsω
,

the corresponding dispersion relation can be expressed as

ω2
= Wgκ tanh(κH) , (4)

where

W = 1 +
ρsN3

ρfN4
, N1 =

√
κ2 − i

ω

ηc
, N2 = ω + 2i ηcκ2 ,

and

N3 = (g2κ2
− N4

2 − 16κ6N2
1η

4
c ) sinh(κh) sinh(N1h)

− 8κ3N1η
2
cN

2
2

[
cosh(κh) cosh(N1h) − 1

]
,

N4 = gκ
[
4κ3N1η

2
c sinh(κh) cosh(N1h) + N2

2 cosh(κh) cosh(N1h)
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− gκ sinh(κh) sinh(N1h)
]
.

The parameter η denotes a kinematic viscosity associated with
sea ice. Eq. (4) synthesizes the effects of an elastic plate and a vis-
cous layer, and converges to their respective dispersion relations
in appropriate limits.

A drawback of the WS model and its predecessor [5], the pure
viscous layer model, is that multiple wave modes of complicated
physical nature exist [28]. This has prompted Mosig et al. [26]
to modify the FS model by introducing the complex Voigt shear
modulus

µc = −i ρsωηc = µ− iωρsη . (5)

The resulting dispersion relation (hereafter referred to as EFS)
takes the form

ω2

g − Aω2 + (B − i C)κ4 = κ tanh(κH) , (6)

where

B =
L
ρf
, C =

ωρsη(1 − ν)h3

6ρf
.

This simpler viscoelastic model predicts fewer wave modes than
(4), nonetheless it has been found to produce similar results for a
wide range of parameter values, which also compare well to field
observations.

It should be emphasized that Eqs. (3) and (6) represent thin-
plate models while Eq. (4) corresponds to a layer model. The
thin-plate approximation is typically valid when the wavelength
is much longer than the ice thickness. This greatly simplifies the
modeling in the sense that the ice cover is simply viewed as a
boundary coinciding with the water surface, and sea-ice effects
are taken into account via pressure terms there. By contrast, the
present poroelastic model is based on a two-layer formulation in
the spirit of WS.

The remainder of this paper is organized as follows. Section 2
presents the mathematical formulation of the coupled ice-ocean
system, including the governing equations in each region as well
as the coupling boundary conditions. Section 3 establishes the
linear dispersion relation for surface traveling waves and provides
a detailed parametric assessment in both the porous and non-
porous cases, including comparisons with existing viscoelastic
models. Finally, concluding remarks are given in Section 4.

2. Mathematical model

We describe here in detail our mathematical model for the
coupled ice-ocean system. We restrict our attention to the two-
dimensional case where the Cartesian coordinates (x, z) represent
the horizontal and vertical directions, respectively. The z-axis
points upward and the z = 0 level corresponds to the ice–water
interface at rest (see Fig. 1). We assume all disturbances are small
enough so that linear equations can be used for both the ice and
water motions.

2.1. Equations for the underlying ocean

We consider an ocean of infinite extent in the x-direction and
of constant depth H in the z-direction. The fluid (i.e. water) is
assumed to be inviscid and weakly compressible, and the flow is
irrotational. The fluid density ρ = ρf + ρ̃ is viewed as the sum of
a constant background density ρf and a perturbation ρ̃(x, z, t) ≪

ρf , where t denotes time. Taking the fluid to be barotropic [29],
its pressure field can be Taylor expanded as

P(ρ) = P(ρf ) + c2ρ̃ , (7)

Fig. 1. Sketch of the coupled ice-ocean system.

where higher-order terms in ρ̃ are neglected, and

c2 =
∂P
∂ρ

⏐⏐⏐⏐
ρ=ρf

,

defines the speed c of sound in water. The small compressibility
of water is assumed here in order to be consistent with Biot’s
equations for the floating sea ice, as described in the next section.
Flow irrotationality implies that there exists a velocity potential
Φ(x, z, t) such that the fluid velocity v(x, z, t) satisfies v = ∇Φ ,
where ∇ = (∂x, ∂z) is the spatial gradient. Similar to (7), inclusion
of v should be viewed as a perturbation to the quiescent state.

To leading order, the equations for mass and momentum
conservation read

∂t ρ̃ + ρf ∇
2Φ = 0 , (8)

and

∂tΦ +
P
ρf

+ g z = 0 , (9)

respectively. Combining (9) with (7) and (8) yields the wave
equation

∂2t Φ − c2∇2Φ = 0 , for x ∈ R ,−H < z < 0 . (10)

There are two natural boundary conditions at the ocean surface,
namely the kinematic condition

∂zΦ = ∂tη1 , at z = 0 , (11)

and the dynamic (Bernoulli’s) condition

P = −ρf (∂tΦ + g η1) , at z = 0 , (12)

where η1(x, t) represents the vertical displacement of the ocean
surface relative to z = 0. At the ocean floor, the impermeability
condition amounts to

∂zΦ = 0 , at z = −H.

2.2. Equations for the floating sea ice

We consider an ice layer of infinite extent in the x-direction
and of constant thickness h in the z-direction, lying on top of
the ocean. Having the MIZ in mind, this ice layer is modeled by
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Table 1
Parameters in Biot’s equations: Notation, definition, typical value and SI units.
Symbol Parameter Value Units

c Sound speed in fluid part 1449 m s−1

ρf Density of fluid part 1025 kg m−3

ρs Density of solid part 917 kg m−3

Kf Bulk modulus of fluid part 1.1 × 105 Pa
Ks Bulk modulus of solid part 4.3 × 105 Pa
µ Shear modulus 2 × 105 Pa
Kc Complex bulk modulus Pa
µc Complex shear modulus Pa
η Kinematic viscosity 0.01 m2 s−1

Kp Permeability m2

a Pore size m
b Friction kg m−3 s−1

ω Angular frequency s−1

ν Poisson’s ratio 0.3
α Pore tortuosity 5
β Porosity

Biot’s equations for a homogeneous isotropic poroelastic material
with constant effective parameters, which is meant to represent a
heterogeneous ice field composed of icy and wet areas in various
states, with pack ice (solid phase) and near-open water (fluid
phase) being the two limiting configurations. Assumptions of
homogeneity and isotropy have commonly been used in con-
tinuum models and are reasonable for the MIZ. Unlike several
existing models in the literature, we a priori make no smallness
assumption on the ice thickness. More details are provided below.

2.2.1. Stress–strain relations
Following Biot [30,31], the poroelastic medium is viewed as

a mixture of an elastic material with an interstitial fluid. Let
u(x, z, t) = (u, v) and U(x, z, t) = (U, V ) denote respectively the
solid and fluid displacement vectors at any point in this medium.
We introduce the strain tensor

exx = ∂xu ,

exz = ezx =
1
2
(∂zu + ∂xv) ,

ezz = ∂zv ,

together with the solid and fluid dilatations

e = ∇ · u = ∂xu + ∂zv ,

ϵ = ∇ · U = ∂xU + ∂zV .

These two quantities gauge the medium’s compressibility in each
of the two phases. Under isotropic and plane-strain conditions,
the constitutive laws relating stresses (σij, s) to strains (eij, e, ϵ)
are given by

σij = (λ e + Q ϵ) δij + 2µc eij , i, j = {x, z} , (13)

s = Q e + R ϵ , (14)

for the solid and fluid parts respectively, where δij is the Kro-
necker delta. The interstitial fluid is defined in such a way that it
is only subject to normal (scalar) stress s. These equations involve
a number of parameters: β is a measure of the medium’s porosity
(i.e. the fluid fraction in a representative area of the porous
medium), λ together with the shear modulus µc are also called
Lamé’s coefficients and represent elasticity (or viscoelasticity), Q
is of the nature of a coupling between the volume change of
the solid part and that of the fluid part, and R is a measure of
the pressure required to force a certain volume of fluid into the
aggregate. For a vast fragmented ice cover such as the MIZ, it is
reasonable to assume that areas of open water (as seen on surface
images) contribute to the medium’s porosity.

Given β , µ and other quantities as described in Table 1, these
parameters may be estimated by the following formulas

λ = Kc −
2
3
µc +

[
(1 − β)Ks − Kc

]2
D − Kc

,

Q =
βKs

[
(1 − β)Ks − Kc

]
D − Kc

,

R =
β2K 2

s

D − Kc
,

where

D = Ks

[
1 + β

(
Ks

Kf
− 1

)]
,

Ks =
2µ (1 + ν)
3 (1 − 2ν)

.

The bulk and shear moduli, Kc and µc , often admit imaginary
parts to account for viscous dissipation in the bulk of each of the
two phases. The bulk modulus may be estimated by

Kc =
2µc (1 + ν)
3 (1 − 2ν)

(1 − β)n ,

where µc would be given by (5) and n = 1.4 [20,22]. Therefore, if
µc is complex, so is Kc (and so are λ, Q , R since they all depend on
Kc). Note that the porosity β is a dimensionless parameter whose
range is 0 ≤ β ≤ 1. For reasons explained below, its limiting
values β = 0 and β = 1 correspond to two different states
that we refer to as ‘‘solid’’ and ‘‘fluid’’ respectively. In the present
context, its complement 1 − β may be viewed as a measure of
ice concentration in the ice field (i.e. the fraction of ice-covered
surface), and thus may be connected to the level of heterogeneity
of the ice cover. Such a parameter is not present in existing
viscoelastic models for wave propagation across ice-infested seas.

The total effective stress acting at any point in this poroelastic
material can thus be expressed as

τij = σij + s δij , (15)

or more explicitly

τij = (M e + N ϵ) δij + 2µc eij,

where

M =
Kc

[
Kf (3Ks − 2µc ) − 3K 2

s β
]
+ Ks

[
Kf (−1 + β)(3Ks − 2µc ) + 2Ksβµc

]
3KcKf − 3Ks

[
Kf (1 − β) + Ksβ

] ,

N =
Kf (Kc − Ks)Ksβ

KcKf − Ks
[
Kf (1 − β) + Ksβ

] ,
by virtue of (13) and (14).

It can be checked that, as β → 0 (assuming Kc and µc are
real),

Kc → Ks , M → Ks −
2
3
µ , N → 0,

and Eq. (15) simplifies to

τij =

(
Ks −

2
3
µ

)
e δij + 2µ eij,

which is the typical stress–strain relation for an isotropic elastic
material. Note that it only involves the solid strain tensor together
with µ and Ks while Kf is absent. Having the MIZ in mind, this
limiting case would correspond to a solid ice pack. Compression
and stretching of the ice layer are still allowed in this limit via the
solid dilatation e, which contrasts with the EFS and WS models
where such effects are neglected.

On the other hand, as β → 1,

Kc → 0 , M → −
2
3
µ , N → Kf ,
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and Eq. (15) reduces to

τij =

(
Kf ϵ −

2
3
µ e

)
δij + 2µ eij,

which involves the fluid dilatation ϵ together with Kf while Ks is
absent. Although it is tempting to interpret this ‘‘fluid’’ limit as
equivalent to the open ocean, the presence of additional terms
containing the solid strain tensor (associated with the parameter
µ) suggests a slightly different situation. According to Biot’s the-
ory, a porous material in this limit is viewed as an elastic frame
that is fully saturated with fluid. In the present context, this may
be interpreted as an ice cover that has reached an advanced stage
of melting.

2.2.2. Equations of motion
Including gravity g = (0,−g) as an external body force, Biot’s

equations for the ice-layer dynamics read

µc ∇
2u + ∇

[
(λ+ µc) e + Q ϵ

]
+ Fs

= ∂2t (ρ11u + ρ12U) + b ∂t (u − U) , (16)
∇(Q e + R ϵ) + Ff

= ∂2t (ρ12u + ρ22U) − b ∂t (u − U) , (17)

where

Fs = (1 − β)ρsg = (0, Fs) =
(
0,−(1 − β)ρsg

)
,

Ff = βρf g = (0, Ff ) = (0,−βρf g) .

Terms involving the parameter b account for friction due to the
relative motion between the fluid and solid parts. This parameter
is related to Darcy’s coefficient of permeability Kp by

b =
ρsηβ

2

Kp
. (18)

The coefficients ρ11 and ρ22 are density parameters associated
with the solid and fluid parts respectively, while ρ12 is a density
coupling parameter with a negative value. These are calculated
from the following formulas

ρ11 = (1 − β)ρs − ρ12 ,

ρ22 = βρf − ρ12 ,

ρ12 = β(1 − α)ρf ,

where the dimensionless parameter α is a measure of pore tor-
tuosity in the ice layer [32].

Following Stoll and Kan [33], we now introduce the displace-
ment potentials (Φs,Ψs) and (Φf ,Ψf ) such that u and U are
decomposed into

u = ∂xΦs − ∂zΨs , v = ∂zΦs + ∂xΨs,

U = ∂xΦf − ∂zΨf , V = ∂zΦf + ∂xΨf ,

with an irrotational part involving (Φs,Φf ) and a rotational part
involving (Ψs,Ψf ). Eqs. (16) and (17) then become

(λ+ 2µc)∇2Φs + Q ∇
2Φf = ∂2t (ρ11Φs + ρ12Φf ) + b ∂t (Φs −Φf ) ,

Q ∇
2Φs + R∇

2Φf = ∂2t (ρ12Φs + ρ22Φf ) − b ∂t (Φs −Φf ) ,

and

µc ∇
2Ψs = ∂2t (ρ11Ψs + ρ12Ψf ) + b ∂t (Ψs − Ψf ) ,
0 = ∂2t (ρ12Ψs + ρ22Ψf ) − b ∂t (Ψs − Ψf ) .

Note that the gravity terms in (16)–(17) are constants and thus
may be ignored because they may be absorbed into the definition
of the displacement potentials, as commonly done in potential-
flow theory. These gravity terms however appear explicitly in
boundary conditions as described below.

2.2.3. Traveling wave solutions
We restrict our attention to wave solutions of the form

(Φs,Φf ,Ψs,Ψf ) =
[
φs(z), φf (z), ψs(z), ψf (z)

]
ei(κx−ωt) , (19)

traveling steadily in the x-direction. Under this assumption, the
above equations reduce to

∇
2[(λ+ 2µc)φs + Q φf

]
+ p11φs + p12φf = 0 ,

∇
2(Q φs + Rφf ) + p12φs + p22φf = 0 ,

and

µc ∇
2ψs + p11ψs + p12ψf = 0 , (20)

p12ψs + p22ψf = 0 , (21)

where

p11 = ω2ρ11 + iω b , p12 = ω2ρ12 − iω b , p22 = ω2ρ22 + iω b.

Then making the change of variables

τ = (λ+ 2µc)φs + Q φf , σ = Q φs + Rφf , (22)

as in [19], such that

φs = a11τ − a12σ , φf = −a12τ + a22σ , (23)

with

a11 =
R
d
, a12 =

Q
d
, a22 =

λ+ 2µc

d
,

and

d = (λ+ 2µc)R − Q 2,

yields

∇
2τ + B11τ + B12σ = 0 , (24)

∇
2σ + B21τ + B22σ = 0 , (25)

where

B11 = a11p11 − a12p12 , B12 = −a12p11 + a22p12,

B21 = a11p12 − a12p22 , B22 = −a12p12 + a22p22.
Taking the Laplacian of (24) and (25), we obtain the two decou-
pled equations

∆2τ + (B11 + B22)∆τ + (B11B22 − B12B21) τ = 0 ,
∆2σ + (B11 + B22)∆σ + (B11B22 − B12B21) σ = 0 ,

and substituting the biharmonic operator ∆2 with

∆2
= (∇2)2 = (−κ2

+ ∂2z )
2

= κ4
− 2κ2∂2z + ∂4z ,

by virtue of (19), we arrive at the fourth-order ordinary differen-
tial equation

τ ′′′′
+(B11+B22−2κ2)τ ′′

+
[
κ4

−κ2(B11+B22)+B11B22−B12B21
]
τ = 0,

for τ , where the primes denote differentiation with respect to z.
The same equation governs σ and its general solution can be

written as

τ (z) = C1 cosh(D1z)+C2 sinh(D1z)+C3 cosh(D2z)+C4 sinh(D2z) ,
(26)

in terms of

D1 =

√
−

F1 +

√
F 2
1 − 4F2

2
, D2 =

√
−

F1 −

√
F 2
1 − 4F2

2
,

F1 = B11 + B22 − 2κ2 ,
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F2 = κ4
− κ2(B11 + B22) + B11B22 − B12B21 .

It follows from (24) that

σ = −
1
B12

∆τ −
B11

B12
τ =

κ2
− B11

B12
τ −

1
B12
τ ′′ ,

hence

σ (z) = C1F3 cosh(D1z)+C2F3 sinh(D1z)+C3F4 cosh(D2z)+C4F4 sinh(D2z) ,

(27)

where

F3 = −
B11 + D2

1 − κ2

B12
, F4 = −

B11 + D2
2 − κ2

B12
.

We are now in a position to recover the displacement potentials.
Combining (23), (26) and (27) gives

φs(z) = C1F5 cosh(D1z) + C2F5 sinh(D1z) + C3F6 cosh(D2z)
+ C4F6 sinh(D2z) ,

φf (z) = C1F7 cosh(D1z) + C2F7 sinh(D1z) + C3F8 cosh(D2z)
+ C4F8 sinh(D2z) ,

with

F5 = a11 − a12F3 , F6 = a11 − a12F4 ,

F7 = −a12 + a22F3 , F8 = −a12 + a22F4.
From (21), we deduce

ψf = −
p12
p22
ψs,

and substituting it into (20), we find

ψ ′′

s −

(
κ2

−
p11p22 − p212

p22µc

)
ψs = 0.

Solving this equation leads to

ψs(z) = C5 cosh(D3z) + C6 sinh(D3z) ,
ψf (z) = C5F9 cosh(D3z) + C6F9 sinh(D3z) ,

in which

D3 =

√
κ2 −

p11p22 − p212
p22µc

, F9 = −
p12
p22
.

Note that, for traveling wave solutions (19), the displacement and
velocity fields play the same role because their expressions only
differ by a constant factor. Accordingly, consideration of the fluid
dilatation ϵ = ∇ · U ̸= 0 (i.e. the fluid displacement or velocity
field is not divergence-free) together with the underlying linear
approximation implies that the pore fluid is viewed as weakly
compressible.

2.3. Boundary conditions for the coupled system

After presenting the individual models for the underlying
ocean and floating ice layer, we can set up the coupled system
by prescribing its boundary conditions, including the transmis-
sion conditions at the interface between these two regions. We
assume the ocean surface and the bottom boundary of the ice
layer coincide and there is no cavitation. As a consequence, these
two boundaries bend in unison and, if we also look for traveling
wave solutions of the form

Φ(x, z, t) = φ(z) ei(κx−ωt),

in the ocean, the wave equation (10) becomes

φ′′
−

(
κ2

−
ω2

c2

)
φ = 0 , (28)

whose general solution is

φ(z) = C7 cosh(D4z) + C8 sinh(D4z),

with

D4 =

√
κ2 −

ω2

c2
.

Technically speaking, we could possibly treat the ocean as an
incompressible irrotational fluid, in which case the bulk equation
forΦ would simply be Laplace’s equation ∇

2Φ = 0, yielding φ′′
−

κ2φ = 0, rather than (28), for traveling wave solutions. Because
we end up either way with a second-order ordinary differential
equation for φ, it did not cost us much more to consider the
compressible case.

Since the resulting coupled system has eight unknowns Ci
(i = 1, . . . , 8) in total, eight boundary conditions are required.
These boundaries include the air–ice interface at z = h, the ice–
water interface at z = 0 and the ocean floor at z = −H , therefore
various boundary conditions come into play. In particular, be-
cause water in the ocean is taken to be inviscid, it does not exert
any tangential stress on the ice layer. On the other hand, the
dynamic condition at the ice–water interface implies that the ice
normal stress should match the water pressure. The situation is
complicated here by the fact that the ice layer is modeled as a
poroelastic material.

Let η2(x, t) = η1(x, t) + h denote the vertical displacement of
the top boundary of the ice layer relative to z = 0. We specify
the following boundary conditions:

• at the air–ice interface z = h

1. vanishing of tangential stress (σxz = σzx = 0)

∂zu + ∂xv = 0,

2. vanishing of solid normal stress (σzz − Fsη2 = 0)

λ e + Q ϵ + 2µc ezz + (1 − β)ρsg η2 = 0,

3. vanishing of fluid normal stress (s − Ff η2 = 0)

Q e + R ϵ + βρf g η2 = 0,

• at the ice–water interface z = 0

4. continuity of vertical displacement

(1 − β) v + β V = η1,

5. vanishing of tangential stress (σxz = σzx = 0)

∂zu + ∂xv = 0,

6. continuity of solid normal stress (σzz − Fsη1 = −(1 −

β)P)

λ e + Q ϵ + 2µc ezz + (1 − β)ρsg η1 = −(1 − β)P,

7. continuity of fluid normal stress (s − Ff η1 = −βP)

Q e + R ϵ + βρf g η1 = −βP,

• at the ocean floor z = −H

8. vanishing of fluid flux

∂zΦ = 0.

Information on η1 and η2 as required in conditions 2, 3, 6 and 7
is given by the kinematic condition (11). After η1 has been deter-
mined, η2 readily follows. As for P which is used in conditions 6
and 7, it is given by the dynamic condition (12).

More explicitly, in terms of the potentials for traveling wave
solutions, these boundary conditions read:
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• at the air–ice interface z = h

(i κ φs − ψ ′

s)
′
+ i κ (φ′

s + i κ ψs) = 0 ,
−iω

[
λ∇

2φs + Q ∇
2φf + 2µc (φ′

s + i κ ψs)′
]

+ (1 − β)ρsg φ′
= 0 ,

−iω (Q ∇
2φs + R∇

2φf ) + βρf g φ′
= 0 ,

• at the ice–water interface z = 0

−iω
[
(1 − β)(φ′

s + i κ ψs) + β (φ′

f + i κ ψf )
]
− φ′

= 0 ,
(i κ φs − ψ ′

s)
′
+ i κ (φ′

s + i κ ψs) = 0 ,
−iω

[
λ∇

2φs + Q ∇
2φf + 2µc (φ′

s + i κ ψs)′
]

+ (1 − β)ρsg φ′
− (1 − β)ρf (−ω2φ + g φ′) = 0 ,

−iω (Q ∇
2φs + R∇

2φf ) + βρf g φ′

−βρf (−ω2φ + g φ′) = 0 ,

• at the ocean floor z = −H

φ′
= 0.

Note that any constant term in conditions 1–8 may be eliminated
by taking the time derivative of these equations. This amounts to
multiplying the remaining terms by a common coefficient −iω
which may then be factored and canceled out.

3. Dispersion relation

3.1. Derivation

Inserting the explicit expressions of the potentials in these
boundary conditions leads to an algebraic homogeneous linear
system of equations for constants Ci (i = 1, . . . , 8). Then demand-
ing that the determinant of the associated 8 × 8 coefficient matrix
be zero for nontrivial solutions yields the dispersion relation

ω2
=

(
T1 + g T2

T3

)
D4 tanh(D4H) , (29)

between κ and ω for gravity waves in a poroelastic ice layer. Note
that the right-hand side of (29) also exhibits a dependence on ω.
The coefficients T1, T2 and T3 have lengthy expressions and thus
are relegated to an appendix for the reader’s convenience. Eq. (29)
is derived with help from the software Mathematica.

For a given value of ω and other parameter values, this dis-
persion relation is solved numerically for κ using the root-finding
routine fsolve in Matlab. More specifically, as κ is generally com-
plex, Eq. (29) is split up into its real and imaginary parts. This
leads to a system of two independent equations that are solved
simultaneously for the two unknowns k and q. The fsolve al-
gorithm is basically a quasi-Newton method with a numerical
approximation of the Jacobian matrix. We have successfully used
this Matlab routine in previous work [34,35] to compute solitary
wave solutions of nonlinear partial differential equations. Since
there are very likely multiple possible roots for k and q [28], we
apply the selection criteria proposed in [6] to find a dominant
pair (k, q) that would represent a physically relevant solution.
Accordingly, we choose (k, q) ∈ R2

+
such that k is closest to

the open-water wavenumber k0 and q is the lowest attenuation
rate possible. To do so, we run the root finder fsolve for a range
of initial guesses around k = k0 and q = 0, and select the
converged values for which the error |κ − (k0 + i 0)| is minimum
among all the solutions obtained. As pointed out in [26], alternate
criteria for choosing κ may be needed but these are not explored
in the present study. The WS procedure has the advantage of
being relatively simple and was found to be sufficient for our
purposes, producing nontrivial solutions of (29) in all the cases
we examined and yielding satisfactory results for our poroelastic

model in comparison with existing theories, as shown in the
following tests.

Typical parameter values for sea ice that we specify in the
computations are (in SI units, see Table 1): g = 9.81, ρs = 917,
ρf = 1025, c = 1449, α = 5, ν = 0.3, µ = 2 × 105, and accord-
ingly Ks = 4.3 × 105, Kf = Ks/4 = 1.1 × 105 [36,37]. We choose
H = 100 m (relative to a representative ice thickness h = 1 m) to
fall under deep-water conditions. Because of the large disparity
in orders of magnitude among the various parameters, we find
it convenient to non-dimensionalize the equations by using H as
a characteristic length scale,

√
H/g as a characteristic time scale

and ρfH3 as a characteristic mass. This non-dimensionalization
contributes to the numerical well-conditioning of (29) and thus
helps the root-finding process.

3.2. Limiting cases

Given the rather complicated nature of this poroelastic model
and the large number of physical parameters, it is of interest
to compare predictions from (29) with those from simpler ex-
isting models in their respective limits. This is accomplished by
switching parameters off in (29). Because these existing models
are for non-porous materials, we start with β and then switch
more parameters off as the system is simplified.

3.2.1. Viscoelastic case
Setting β = 0, and allowing the bulk and shear moduli to be

complex with imaginary parts, Eq. (29) reduces to a viscoelastic
model for traveling waves in an ice layer. To compare with other
such models [6,26], we define µc to be the complex Voigt shear
modulus as given in (5). Eq. (29) then reads

ω2
=

[
g

(
1 −

ρs

ρf

)
+

T4
T5

]
D4 tanh(D4H) , (30)

where

T4 = gρsD9
[
D7 sinh(D5h) + D8 sinh(D6h)

]
+ 2D7D8

[
1 − cosh(D5h) cosh(D6h)

]
− (D2

7 + D2
8) sinh(D5h) sinh(D6h) ,

T5 = ρfD9
[
D7 cosh(D6h) sinh(D5h) + D8 cosh(D5h) sinh(D6h)

]
,

and

D5 =

√
κ2 −

ρsω2

2µc + λ
,

D6 =

√
κ2 −

ρsω2

µc
,

D7 = 4D5D6κ
2µc ,

D8 = (D2
6 + κ2)

[
κ2λ− D2

5(λ+ 2µc)
]
,

D9 = D5(D2
6 − κ2) .

Note that, as h → 0 (shrinking ice thickness), T4/T5 → gρs/ρf
and Eq. (30) reduces to

ω2
= gD4 tanh(D4H) , (31)

which is the dispersion relation for gravity waves on open water
in the weakly compressible case.

As stated above, WS criteria are used to select κ as a function
of ω among all the possible solutions of (30), with k0 denoting
hereafter the solution of (31). This open-water wavenumber is
also determined numerically and was found to be similar to that
in the incompressible case (1) for the range of ω being considered.
In either case, the dispersion relation is relatively simple and can
be easily solved, with only real roots k0. Fig. 2 shows individual
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Fig. 2. Normalized wavenumber k/k0 and attenuation rate q vs. frequency f for (a)–(b) varying ice thickness h and (c)–(d) varying viscosity η, in the non-porous
viscoelastic case. Open-water, EFS and WS predictions are shown for comparison.

graphs of k and q as functions of frequency f = 2πω for varying
ice thickness h and viscosity η. As a reference, curves representing
k0 for open water and (k, q) from both EFS and WS models are
also included in this figure. The same WS rule is applied to
selecting solutions for these models. Although our computations
were performed in terms of dimensionless quantities, our results
are presented here in dimensional units to give the reader a better
sense of actual physical scales.

Fig. 2(a)–(b) plot the normalized wavenumber k/k0 and at-
tenuation rate q versus frequency f for η = 10−2 m2 s−1 and
h = {0.01, . . . , 4.00} m. We see that k/k0 < 1 and decreases as f
increases, except for a small range of frequencies near zero where
this ratio is slightly larger than unity. Expectedly, k/k0 → 1 as
h → 0 (open-water limit). Our k-values compare well with EFS
and WS predictions and, as an illustration (to avoid cluttering
these figures), we only show the comparison for h = 1 m which is
representative of first-year sea ice [26]. The q-curves on the other
hand exhibit a more monotonic trend, continuously increasing
with f . This increase is quite steep for low frequencies but is then
much slower for higher frequencies. The larger h, the steeper this
increase at low frequencies but the trend is reversed at higher
frequencies where the larger h, the smaller the q-values. Although
good agreement with WS predictions is again found for the entire
range of frequencies considered, appreciable discrepancy with
EFS results is observed at high frequencies. This may be expected
considering that damping effects certainly depend strongly on
h in the context of layer models while they likely do not for
thin-plate models.

Recall that compressibility is allowed here, with both the
floating ice layer and underlying ocean taken to be compress-
ible media, while this is absent from the EFS and WS formu-
lations. Therefore, given the same parameters h, µ and η, it
is not surprising that small discrepancies are noticeable even
in this non-porous viscoelastic case. Closer match is obtained
between WS and our model because these describe two-layer
systems while the EFS model is based on thin-plate theory. These
small discrepancies tend to support the common assumption that
compressional/stretching effects may be neglected for compact
sea ice.

Fig. 2(c)–(d) depict k/k0 and q versus f for h = 1 m and η =

{10−3, . . . , 102
} m2 s−1. Overall, these graphs look similar to the

previous ones. They suggest however that viscosity has no effect
on k, only on q. The k-values seem to be insensitive to varying η
and all fit onto a single curve. By contrast, the larger the viscosity,
the stronger the attenuation at any frequency. The q-curves look
alike but are shifted upward as η increases. Further comparison
with the EFS and WS models is shown for η = 10−3 m2 s−1, and
the same observations as above can be made. Note that without
the normalization by k0, k would grow monotonically with f (see
Fig. 3a), indicating a natural correspondence between wavelength
(spatial scale) and wave period (temporal scale). Consequently,
the fact that q also grows monotonically with f is consistent with
the intuition that viscosity is stronger at smaller scales and thus
shorter waves are more damped.

Similar results were reported by Collins et al. [25] in their
review of existing models for wave propagation through sea ice.
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Fig. 3. Wavenumber k vs. frequency f for (a) varying ice thickness h and (b) varying shear modulus µ, in the non-porous elastic case. Open-water, FS and ML
predictions are shown for comparison.

The slight increase of k/k0 at low frequencies as shown in Fig. 2(a)
and (c) is typical of mass loading, while the decrease at higher
frequencies is attributed to elasticity. The slope change for q
as observed in Fig. 2(b) and (d) also corresponds to the transi-
tion from mass loading to flexural rigidity as a dominant effect.
Past this transition, the fact that short waves experience more
attenuation in thinner ice (which is rather counter-intuitive) is
reminiscent of a common feature in models for water waves over
seabed composed of a viscous mud layer, where dissipation has a
non-monotonic dependence on mud-layer thickness, with thicker
layers being less dissipative [38].

3.2.2. Purely elastic case
In addition to β = 0, if viscosity is neglected (i.e. η = 0 and

thus µc , Kc are real), then the constitutive laws for the ice layer
simplify to those for an isotropic elastic material, as mentioned
in Section 2.2.1. The resulting coupled system still views the
underlying ocean as a weakly compressible fluid. In the absence
of viscosity, for the infinite uniform domain depicted in Fig. 1,
our continuum model only admits real roots of the dispersion
relation. Its expression is pretty much identical to (30) with the
exception that µc is replaced by µ. Fig. 3(a)–(b) show graphs
of wavenumber k versus frequency f for varying ice thickness
h (with µ = 2 × 105 Pa) and varying shear modulus µ (with
h = 1 m). Shear modulus µ is a measure of the material rigidity,
therefore higher µ is indicative of a stiffer ice cover.

We see that, in all cases, k grows monotonically with f . As
h → 0, these curves tend to a parabola over the entire range
of frequencies considered, which is a characteristic shape for the
dispersion relation in the open-water limit. In general however,
two different trends can be discerned: a parabolic-like increase
at low frequencies (which is slightly steeper than the open-water
parabola) and a much slower increase at higher frequencies. The
transition between these two trends appears as an inflection
point on the curves and corresponds to the peak of k/k0 as
depicted in Fig. 2(a). Similar to the viscoelastic case, the former
trend is a mass-loading effect as confirmed by the comparison
with (2) in Fig. 3(b), while the latter trend is an elastic response
that lessens k as µ increases. Therefore, at high frequencies, k is
smaller than k0, which is consistent with the fact that elasticity is
a restoring force supplementing gravity in this problem and thus
has a smoothing effect on wave motion [35,39,40]. Conversely, we
observe that the mass-loading model is recovered as µ decreases.
Our results are in excellent agreement with FS predictions for
kh ≪ 1, which is precisely the regime of validity for a thin elastic
plate.

3.3. Porous case

We now examine the porous case by allowing β ̸= 0 in
(29). Recall that β ∈ [0, 1] with β = 0 corresponding to a
solid state (pack ice) and β = 1 corresponding to a fluid state
(near-open water). As mentioned in Section 2.2.2, Biot’s equations
(16) and (17) for the ice layer can also describe friction due
to the relative motion between the solid and fluid components,
along with bulk viscous dissipation. This additional dissipative
mechanism is represented by the parameter b, which depends
on β as defined in (18). For the purposes of our analysis, we
discuss the cases b = 0 and b ̸= 0 separately, and in the
former, we set b = 0 though β ̸= 0. We first present results
for b = 0 as this is a natural extension of the previous section
and then turn our attention to the case b ̸= 0. Because the
present paper is focused on the development of our new model
and its preliminary testing, we only show illustrative examples
here and postpone a more detailed parametric study (including
comparison with experimental data) to a future publication.

3.3.1. Porous elastic case
If µc and Kc are taken to be real (i.e. bulk viscosity is ignored),

then the ice layer is viewed as a porous elastic material. With
b = 0, all roots of (29) are real and we again follow WS
criteria to select relevant solutions. Computations of k versus f
are presented in Fig. 4 for h = {0.01, . . . , 4.00} m (with β = 0.01)
and β = {0.01, . . . , 0.99} (with h = 1 m).

In Fig. 4(a), we check that results for β = 0.01 (very low
porosity) are essentially identical to those for β = 0 as shown
in Fig. 3(a). Expectedly, k → k0 as h → 0 in this porous case
too. Fig. 4(b) shows how the k-graph changes as β is varied over
the range [0, 1]. Overall, k increases with β but the variations are
rather mild and the dependence of k on f remains qualitatively
the same as in the non-porous case, displaying two distinct be-
haviors at low and high frequencies as discussed earlier. Recall
from Section 2.2.1 that the system retains strong elastic proper-
ties across the entire range of β , even at β = 1 where the solid
and fluid constituents still coexist, and although Kf takes over Ks
in this limit, these two parameters are comparable in magnitude.
It is therefore not surprising that the graphs for varying β in
Fig. 4(b) remain relatively close together. The limiting value β =

1 does not quite represent a pure fluid, even less an inviscid
irrotational flow as assumed for the underlying ocean, and so k is
not supposed to coincide with k0. Nonetheless we see, especially
at high frequencies, a tendency for k to move toward k0 as β → 1
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Fig. 4. Wavenumber k vs. frequency f for (a) varying ice thickness h and (b) varying porosity β , in the porous elastic case. Open-water and FS predictions are shown
for comparison.

Fig. 5. (a) Wavenumber k and (b) attenuation rate q vs. frequency f for varying porosity β , in the porous viscoelastic case. Open-water, EFS and WS predictions are
shown for comparison.

(fluid limit), and a good agreement with FS predictions as β → 0
(solid limit).

3.3.2. Porous viscoelastic case
The porous model now incorporates bulk viscosity by allowing

µc and Kc to be complex while keeping b = 0. Accordingly, the
dispersion relation (29) also admits complex roots and, proceed-
ing as in Section 3.2.1, we can determine κ given β and other
physical parameters. Fig. 5 plots wavenumber k and attenuation
rate q versus frequency f for h = 1 m, η = 10−2 m2 s−1 and
varying β .

Fig. 5(a) for k bears resemblance to Fig. 4(b) in the porous
elastic case, which confirms that viscosity has no influence on the
wavenumber. Similar observations can be made about Fig. 5(b)
for q. Little difference is seen as β is varied. The various q-
graphs almost overlap and their general shape is identical to that
illustrated in Fig. 2(b) for a non-porous viscoelastic ice layer. In
general, the higher β , the larger k and q, and this behavior is more
pronounced at higher frequencies. Close examination indicates
that our results on k and q tend to converge to EFS andWS predic-
tions as β → 0, with a better agreement found on k. Our solutions
for q compare well with WS predictions at low porosities, while
EFS values remain visibly lower. All three models however display
qualitatively the same properties of wave attenuation.

An exception may be made for WS q-curve whose drop as
f → 0 seems to slow down, in contrast to the EFS curve which
quickly falls at low frequencies. This phenomenon is especially
evident in Fig. 2(d) for a non-porous viscoelastic ice layer (see
also Fig. 6b or d) and is consistent with results obtained in [25]
for EFS and Keller’s viscous-layer models. Interestingly, while our
q-values are closer to WS predictions at higher frequencies, this
trend is reversed at lower frequencies where our solutions behave
more similarly to EFS predictions.

3.3.3. Porous frictional case
Our porous model is extended to the case b ̸= 0, allowing for

friction due to the relative motion between the solid and fluid
constituents, along with viscous dissipation in the bulk of each
phase. The roots of (29) are again complex and we anticipate this
frictional mechanism would primarily affect the imaginary part
of κ corresponding to the attenuation rate q. The coefficient of
permeability Kp in the definition (18) of b may be estimated by

Kp =
βa2

8
, (32)

where a is a measure of the pore size, as proposed in [20,36].
Understandably, permeability (i.e. the ability of a porous material
to allow fluids to pass through it) depends on porosity and
pore size. That b is inversely proportional to Kp reflects the fact
that the more permeable the medium, the larger the difference
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Fig. 6. Wavenumber k and attenuation rate q vs. frequency f for varying porosity β , in the porous frictional case with (a)–(b) a = 1 m and (c)–(d) a = 10 m.
Open-water, EFS and WS predictions are shown for comparison.

between solid and fluid motions, hence the stronger the friction.
Combining (18) and (32) reveals that b depends linearly on β , and
thus friction is directly connected to the porous nature of the ice
cover. Because b is proportional to η as well, if η = 0, then the
porous elastic case (without viscosity or friction) is recovered.

Fig. 6 depicts k and q versus f for h = 1 m, η = 10−2

m2 s−1, a = {1, 10} m and varying β . Bear in mind that fluid
pores may here represent areas of open water across the ice
field. As expected, the k-graphs closely resemble those in Fig. 5(a)
for a porous viscoelastic ice layer. This result confirms that the
wavenumber is insensitive to any dissipative effect in the present
model. However, unlike Fig. 5(b), the attenuation rate now ex-
hibits much stronger dependence on porosity. We observe again
that q increases with β , which is not surprising since b (and
hence friction) strengthens as β increases, but this rise in q is
quite significant for the range of β ∈ [0, 1], spanning several
orders of magnitude above EFS and WS values (which serve as
a reference for the non-porous frictionless limit as β → 0). For a
given η (bulk viscosity), the attenuation rate is thus amplified in
the presence of friction (b ̸= 0). Because of the direct relationship
between a, b and β through (18) and (32), we would obtain plots
similar to Fig. 6 by varying a or Kp while fixing β .

Another striking difference compared to Fig. 5(b) for vary-
ing β or Fig. 2(d) for varying η is that the dependence of q
on f is no longer monotonic: q quickly grows to a maximum
around f = 0.3 Hz before slowly decaying at higher frequencies.
This maximum seems to coincide with the transition point from
mass loading to flexural rigidity as discussed in Section 3.2.1.

Interestingly, Fig. 6(b) and (d) are reminiscent of the roll-over
phenomenon that has been reported in field observations [7,17].
Here, the higher the porosity, the more pronounced this roll-over
in attenuation plots. Continuum (visco)elastic models or discrete
scattering models have usually been unable to predict this phe-
nomenon [2,6]. Possible explanations that have been suggested
include wind forcing and nonlinear wave interactions [13,41]. Al-
though it is difficult to discriminate one particular mechanism in
the present continuum setting, our linear results indicate that the
relative motions between different constituents of the ice cover
(e.g. ice floes, pancake ice, brash ice) induce friction that may
interfere with other dissipative effects to help produce the non-
monotonic (roll-over) behavior of q as a function of f , which has
been observed in the MIZ. Given the possible large repercussions
associated with friction as illustrated in Fig. 6, this dissipative
mechanism may play an important role in applications of our
poroelastic model to wave-ice interactions.

3.3.4. Porous asymptotic case
Because the porosity is by definition a small dimensionless

parameter (0 ≤ β ≤ 1), it is natural to seek an alternate
expression for the dispersion relation (29) with a more explicit
dependence on β . This can be accomplished by exploiting the
exact character of (29) and by Taylor expanding it, say, up to first
order in β . In this process, all parameters that depend on β are
expanded, including e.g. Lamé’s parameter

λ = λ(0) + λ(1)β,
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Fig. 7. Wavenumber k vs. frequency f for (a) varying ice thickness h and (b) varying porosity β , in the porous asymptotic case (η = 0). Open-water and FS predictions
are shown for comparison.

where

λ(0) = Ks −
2
3
µc ,

λ(1) = −Ksn +
Kf Ks(−1 + n)2

Ks + Kf (−1 + n)
.

Putting all the contributions together, the Taylor expansion of
(29) up to first order in β can be written as

ω2
= (T (0)

0 + T (1)
0 β)D(0)

4 tanh(D(0)
4 H) , (33)

where

T (0)
0 =

T (0)
1 + g T (0)

2

T (0)
3

,

T (1)
0 =

T (0)
3 T (1)

1 − T (1)
3 T (0)

1 + g T (0)
3 T (1)

2 − g T (1)
3 T (0)

2

T (0)
3

2 .

We emphasize that, in this asymptotic form, the coefficients T (0)
0 ,

T (1)
0 and D(0)

4 are not functions of β though they still exhibit a
dependence on ω. Their lengthy expressions together with ex-
pansions of Biot’s parameters are relegated to an appendix for the
reader’s convenience. Because ice concentration is an important
factor in characterizing and modeling the sea-ice cover, Eq. (33)
with such a simple dependence on β may be helpful in estimating
ice concentration from the knowledge of other ice and wave
parameters. This inverse problem is outside the scope of the
present paper and is envisioned for future work.

Unfortunately, our perturbation calculations suggest that
Eq. (33) only applies to the porous elastic case (η = 0). For a
porous viscoelastic layer (η ̸= 0) with complex shear modulus
given by (5), first-order terms in β seem to cancel out and the
next-order nonzero contributions are of second order. These how-
ever produce lengthier expressions and thus make the asymptotic
approximation less appealing in this case. Taking µc and Kc to
be real, computations of k versus f based on (33) are shown
in Fig. 7(a) for β = 0.01 and varying h, and in Fig. 7(b) for
h = 1 m and varying β . As expected, these results are similar to
those obtained in the porous elastic limit (see Fig. 4) with the full
dispersion relation (29). A noticeable difference between Fig. 4(b)
and 7(b) is that the k-graphs for varying β remain very close
together in the asymptotic case, which is indicative that (33) may
not be suitable over the entire range β ∈ [0, 1]. This result is not
too surprising given the fact that a first-order approximation such
as (33) would be accurate only for very small β , which may be
viewed as a limitation for the aforementioned inverse problem.

Further investigation is needed in this regard and is left for future
work, possibly examining both (29) and (33).

4. Conclusions

We have proposed a two-dimensional continuum model for
linear wave propagation across ice-infested seas. It is based on a
two-layer formulation where the floating sea ice is described as
a homogeneous isotropic poroelastic material according to Biot’s
theory, and the underlying ocean is viewed as a weakly compress-
ible fluid. Dissipative effects are included in this formulation via
two distinct mechanisms: viscosity in the bulk of the ice layer,
and friction caused by the relative motion between its solid and
fluid constituents. In view are potential applications to model-
ing wave scattering and attenuation in the MIZ. A parameter of
special interest in our wave-ice model is the porosity, whose
complement may serve as a measure of ice concentration in the
ice field.

We have established an exact dispersion relation for surface
traveling waves in this coupled system and obtained numerical
estimates of its complex roots. For a given frequency, the real and
imaginary parts of these roots represent the wavenumber and
attenuation rate in the horizontal direction, respectively. Despite
the complicated nature of this dispersion relation, we were able
to find relevant solutions in all the cases we considered, using
a well-established root-finding method together with relatively
simple selection criteria.

We have conducted extensive tests to examine the depen-
dence of solutions on various parameters in both the porous
and non-porous cases, and performed detailed comparisons with
other models. Given the good agreement found overall, these
results help validate our new poroelastic formulation against
existing elastic and viscoelastic models in their respective limits,
and in turn also help validate these simpler models against a
more general representation of the ice-ocean system. Overall,
both the wavenumber and attenuation rate are found to be in-
creasing functions of frequency, although their slopes are not
monotonic functions because they are indicative of the rela-
tive importance of various rheological effects (e.g. mass loading,
elasticity) as frequency is varied.

A more complex picture arises when friction is taken into
account, showing a non-monotonic behavior of attenuation rate
as a function of frequency, which is reminiscent of the roll-over
phenomenon that has been reported in field observations. This
finding highlights the role of porosity in the present descrip-
tion of wave-ice interactions, as friction is directly connected
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to the porous nature of the ice cover. Significant quantitative
and qualitative differences in wave attenuation are observed as
compared to the frictionless case. It is suggested that friction
may interfere with bulk viscosity to produce the observed non-
monotonic behavior. This dissipative mechanism could possibly
be a contributing factor in the roll-over phenomenon arising from
field observations.

Finally, we have also derived an alternate form of the dis-
persion relation, which displays a more explicit dependence on
porosity. This is accomplished via a first-order Taylor expansion
by exploiting the smallness of the corresponding parameter. It is
anticipated that such an approximation of the dispersion relation
may be helpful in obtaining information on ice concentration
from the knowledge of other ice and wave parameters.

A natural next step would be to provide a detailed assessment
of our model predictions against experimental data [7,15,42,43].
Considering the large parameter space associated with our poroe-
lastic formulation as well as the possible need for more refined
criteria in the search of relevant solutions, this investigation is
envisioned for future work. It would also be of interest to ex-
amine nonlinear extensions of our poroelastic model. Nonlinear
theory of wave-ice interactions has received increasing attention
in recent years [35,39,40,44,45].
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Appendix. Coefficients in the dispersion relation

A.1. General case

Coefficients in the full dispersion relation (29) have the fol-
lowing expressions:

T1 = 2E1E12[E2E23(1 − cosh(D1h) cosh(D3h)) sinh(D2h)
− E1E13(1 − cosh(D1h) cosh(D2h)) sinh(D3h)]
+ sinh(D1h)[2E1E13E2E23(−1 + cosh(D2h) cosh(D3h))

− (E2
1 (E

2
12 + E2

13) + E2
2E

2
23) sinh(D2h) sinh(D3h)] ,

T2 = E1[(E17E4E7 + E18E6E9)(1 − cosh(D1h) cosh(D2h))
− (E14E2E21E7 − E20E5E9)(1 − cosh(D1h) cosh(D3h))
− (E19E4E5 − E14E2E22E6)(1 − cosh(D2h) cosh(D3h))]
− E1[(E17E3E7 + E18E6E8)(1 − cosh(D1h)
× cosh(D2h)) cosh(D3h)
+ (E16E2E21E7 − E20E5E8) cosh(D2h)
× (−1 + cosh(D1h) cosh(D3h))
+ (E19E3E5 − E16E2E22E6) cosh(D1h)
× (−1 + cosh(D2h) cosh(D3h))]
+ E1(E12E4E6 + E13E7E9) sinh(D1h) sinh(D2h)
− E1(E12E3E6 + E13E7E8) cosh(D3h) sinh(D1h) sinh(D2h)

+ (E2
1E12E14E5 − E2E23E7E9) sinh(D1h) sinh(D3h)

− (E2
1E12E16E5 − E2E23E7E8) cosh(D2h) sinh(D1h) sinh(D3h)

− (E2
1E13E14E5 − E2E23E4E6) sinh(D2h) sinh(D3h)

+ (E2
1E13E16E5 − E2E23E3E6) cosh(D1h) sinh(D2h) sinh(D3h) ,

T3 = E1[(E11E18E6 + E10E17E7)
× (1 − cosh(D1h) cosh(D2h)) cosh(D3h)

− (E11E20E5 − E15E2E21E7) cosh(D2h)
× (−1 + cosh(D1h) cosh(D3h))
+ (E10E19E5 − E15E2E22E6) cosh(D1h)
× (−1 + cosh(D2h) cosh(D3h))]
+ E1(E10E12E6 + E11E13E7) cosh(D3h) sinh(D1h) sinh(D2h)

+ (E2
1E12E15E5 − E11E2E23E7) cosh(D2h) sinh(D1h) sinh(D3h)

− (E2
1E13E15E5 − E10E2E23E6) cosh(D1h) sinh(D2h) sinh(D3h) ,

and the Ei (i = 1, . . . , 23) are defined as follows:

E1 = 2D3κ
2µc ,

E2 = −(D2
2 − κ2)(F6Q + F8R)(−κ2(F7Q + F5λ)

+ D2
1(F7Q + F5(λ+ 2µc)))

+ (D2
1 − κ2)(F5Q + F7R)(−κ2(F8Q + F6λ)

+ D2
2(F8Q + F6(λ+ 2µc))) ,

E3 = −(D2
2 − κ2)(F6Q + F8R)(ρs − ρf )(1 − β) ,

E4 = −(D2
2 − κ2)(F6Q + F8R)ρs(1 − β)

+ ρwβ[−κ2(F8Q + F6λ) + D2
2(F8Q + F6(λ+ 2µc))] ,

E5 = −2D1D2F6(F5(−1 + β) − F7β)
+ 2D1D2F5(F6(−1 + β) − F8β) ,

E6 = D1(D2
3 + κ2)(F5(−1 + β) − F7β)

+ 2D1F5κ2(1 + (−1 + F9)β) ,

E7 = D2(D2
3 + κ2)(F6(−1 + β) − F8β)

+ 2D2F6κ2(1 + (−1 + F9)β) ,

E8 = −(D2
1 − κ2)(F5Q + F7R)(ρs − ρf )(1 − β) ,

E9 = −(D2
1 − κ2)(F5Q + F7R)ρs(1 − β)

+ ρf β[−κ2(F7Q + F5λ) + D2
1(F7Q + F5(λ+ 2µc))] ,

E10 = −(D2
2 − κ2)(F6Q + F8R)ρf (1 − β)

+ ρf β[−κ2(F8Q + F6λ) + D2
2(F8Q + F6(λ+ 2µc))] ,

E11 = −(D2
1 − κ2)(F5Q + F7R)ρf (1 − β)

+ ρf β[−κ2(F7Q + F5λ) + D2
1(F7Q + F5(λ+ 2µc))] ,

E12 = 2D1F5(D2
2 − κ2)(F6Q + F8R) ,

E13 = 2D2F6(D2
1 − κ2)(F5Q + F7R) ,

E14 = ρf β ,

E15 = ρf β ,

E16 = 0 ,

E17 = 2D1F5(D2
1 − κ2)(F5Q + F7R) ,

E18 = 2D2F6(D2
2 − κ2)(F6Q + F8R) ,

E19 = (D2
1 − κ2)(D2

3 + κ2)(F5Q + F7R) ,

E20 = (D2
2 − κ2)(D2

3 + κ2)(F6Q + F8R) ,
E21 = 2D1F5 ,
E22 = 2D2F6 ,

E23 = D2
3 + κ2 .

A.2. Asymptotic case

Coefficients in the truncated dispersion relation (33) have the
following expressions:

λ(0) = Ks −
2µ
3
, λ(1) = −Ksn +

Kf Ks(−1 + n)2

Ks + Kf (−1 + n)
,

Q (1)
=

Kf Ks(−1 + n)
Ks + Kf (−1 + n)

, R(1)
=

Kf Ks

Ks + Kf (−1 + n)
,
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r (0)11 = ρs , r (1)11 = −ρs − ρf (1 − α) , r (1)12 = ρf (1 − α) ,

r (1)22 = ρf α ,

a(0)11 =
1

λ(0) + 2µ
, a(1)11 =

Q (1)2
− R(1)λ(1)

R(1)(λ(0) + 2µ)2
,

a(0)12 =
Q (1)

R(1)(λ(0) + 2µ)
, a(1)12 =

Q (1)(Q (1)2
− R(1)λ(1))

R(1)2(λ(0) + 2µ)2
,

a(−1)
22 =

1
R(1) , a(0)22 =

Q (1)2

R(1)2(λ(0) + 2µ)
,

a(1)22 =
Q (1)2(Q (1)2

− R(1)λ(1))
(R(1))3(λ(0) + 2µ)2

,

B(0)
11 = a(0)11 r

(0)
11 ω

2 , B(1)
11 = (a(0)11 r

(1)
11 + a(1)11 r

(0)
11 − a(0)12 r

(1)
12 )ω

2 ,

B(0)
12 = (−a(0)12 r

(0)
11 + a(−1)

22 r (1)12 )ω
2 ,

B(1)
12 = −(a(0)12 r

(1)
11 + a(1)12 r

(0)
11 − a(0)22 r

(1)
12 )ω

2 ,

B(1)
21 = (a(0)11 r

(1)
12 − a(0)12 r

(1)
22 )ω

2 ,

B(0)
22 = a(−1)

22 r (1)22 ω
2 , B(1)

22 = (−a(0)12 r
(1)
12 + a(0)22 r

(1)
22 )ω

2 ,

D(0)
1 =

√−F (0)
1 −

√
F (0)
1

2
− 4F (0)

2

2
,

D(1)
1 =

2F (1)
2 − F (1)

1 (F (0)
1 +

√
F (0)
1

2
− 4F (0)

2 )

2
√
2

√
−F (0)

1 −

√
F (0)
1

2
− 4F (0)

2

√
F (0)
1

2
− 4F (0)

2

,

D(0)
2 =

√−F (0)
1 +

√
F (0)
1

2
− 4F (0)

2

2
,

D(1)
2 = −

2F (1)
2 + F (1)

1 (−F (0)
1 +

√
F (0)
1

2
− 4F (0)

2 )

2
√
2

√
−F (0)

1 +

√
F (0)
1

2
− 4F (0)

2

√
F (0)
1

2
− 4F (0)

2

,

D(0)
3 =

√
k2 −

r (0)11 ω
2

µ
, D(1)

3 =
(ρf (−1 + α)2 − r (1)11 α)ω

2

2αµD(0)
3

,

D(0)
4 =

√
k2 −

ω2

c2
,

F (0)
1 = B(0)

11 + B(0)
22 − 2k2 , F (1)

1 = (B(1)
11 + B(1)

22 ) ,

F (0)
2 = (B(0)

11 − k2)(B(0)
22 − k2) ,

F (1)
2 = −B(0)

12B
(1)
21 + B(0)

11B
(1)
22 + B(1)

11B
(0)
22 − (B(1)

11 + B(1)
22 )k

2 ,

F (0)
3 = −

B(0)
11 + D(0)

1
2
− k2

B(0)
12

, F (0)
4 = −

B(0)
11 + D(0)

2
2
− k2

B(0)
12

,

F (1)
3 =

−B(0)
12 (B

(1)
11 + 2D(1)

1 D(0)
1 ) + B(1)

12 (B
(0)
11 + D(0)

1
2
− k2)

B(0)
12

2 ,

F (1)
4 =

−B(0)
12 (B

(1)
11 + 2D(1)

2 D(0)
2 ) + B(1)

12 (B
(0)
11 + D(0)

2
2
− k2)

B(0)
12

2 ,

F (0)
5 = a(0)11 − a(0)12 F

(0)
3 , F (1)

5 = (a(1)11 − a(0)12 F
(1)
3 − a(1)12 F

(0)
3 ) ,

F (0)
6 = a(0)11 − a(0)12 F

(0)
4 , F (1)

6 = (a(1)11 − a(0)12 F
(1)
4 − a(1)12 F

(0)
4 ) ,

F (−1)
7 = a(−1)

22 F (0)
3 , F (−1)

8 = a(−1)
22 F (0)

4 , F (0)
9 = −

1 − α

α
,

F (0)
7 = −a(0)12 + a(−1)

22 F (1)
3 + a(0)22 F

(0)
3 ,

F (1)
7 = (−a(1)12 + a(0)22 F

(1)
3 + a(1)22 F

(0)
3 ) ,

F (0)
8 = −a(0)12 + a(−1)

22 F (1)
4 + a(0)22 F

(0)
4 ,

F (1)
8 = (−a(1)12 + a(0)22 F

(1)
4 + a(1)22 F

(0)
4 ) ,

E(0)
1 = 2D(0)

3 k2µ , E(1)
1 = 2D(1)

3 k2µ ,

E(0)
2 = k2R(1)((F (0)

6 F (−1)
7 − F (0)

5 F (−1)
8 )k2λ(0) + D(0)

2
2
(F (0)

5 F (−1)
8 λ(0)

− F (0)
6 F (−1)

7 (λ(0) + 2µ)))

+ D(0)
1

2
R(1)(D(0)

2
2
(F (0)

6 F (−1)
7 − F (0)

5 F (−1)
8 )(λ(0)

+ 2µ) + k2(−F (0)
6 F (−1)

7 λ(0) + F (0)
5 F (−1)

8 (λ(0) + 2µ))) ,

E(1)
2 = F (−1)

8 (−D(0)
2

2
+ k2)R(1)(−k2(F (0)

7 Q (1)
+ F (0)

5 λ(1) + F (1)
5 λ(0))

+ D(0)
1

2
(F (0)

7 Q (1)
+ F (0)

5 λ(1) + F (1)
5 λ(0)

+ 2F (1)
5 µ) + 2D(1)

1 D(0)
1 (F (−1)

7 Q (1)

+ F (0)
5 (λ(0) + 2µ))) + (−2D(1)

2 D(0)
2 F (−1)

8 R(1)

+ (−D(0)
2

2
+ k2)(F (0)

6 Q (1)

+ F (0)
8 R(1)))(−k2(F (−1)

7 Q (1)
+ F (0)

5 λ(0))

+ D(0)
1

2
(F (−1)

7 Q (1)
+ F (0)

5 (λ(0) + 2µ)))

+ F (−1)
7 (D(0)

1
2
− k2)R(1)(−k2(F (0)

8 Q (1)
+ F (0)

6 λ(1) + F (1)
6 λ(0))

+ D(0)
2

2
(F (0)

8 Q (1)

+ F (0)
6 λ(1) + F (1)

6 λ(0) + 2F (1)
6 µ) + 2D(1)

2 D(0)
2 (F (−1)

8 Q (1)

+ F (0)
6 (λ(0) + 2µ)))

+ (2D(1)
1 D(0)

1 F (−1)
7 R(1)

+ (D(0)
1

2
− k2)(F (0)

5 Q (1)

+ F (0)
7 R(1)))(−k2(F (−1)

8 Q (1)

+ F (0)
6 λ(0)) + D(0)

2
2
(F (−1)

8 Q (1)
+ F (0)

6 (λ(0) + 2µ))) ,

E(0)
3 = F (−1)

8 (−D(0)
2

2
+ k2)R(1)(ρs − ρf ) ,

E(1)
3 = (ρs − ρf )(F

(−1)
8 (−2D(1)

2 D(0)
2 + D(0)

2
2
− k2)R(1)

+ (−D(0)
2

2
+ k2)(F (0)

6 Q (1)
+ F (0)

8 R(1))) ,

E(0)
4 = F (−1)

8 (−D(0)
2

2
+ k2)R(1)ρs ,

E(1)
4 = −2D(1)

2 D(0)
2 F (−1)

8 R(1)ρs + k2(F (0)
8 R(1)ρs

− F (−1)
8 (R(1)ρs + Q (1)ρf )

+ F (0)
6 (Q (1)ρs − ρf λ

(0))) + D(0)
2

2
(−F (0)

6 Q (1)ρs

+ F (−1)
8 R(1)ρs − F (0)

8 R(1)ρs

+ F (−1)
8 Q (1)ρf + F (0)

6 ρf (λ(0) + 2µ)) ,

E(0)
5 = 2D(0)

1 D(0)
2 (F (0)

6 F (−1)
7 − F (0)

5 F (−1)
8 ) ,
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5 = 2(D(1)
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2 (F (0)

6 F (−1)
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5 F (−1)
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E(0)
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7 (−D(0)
1
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9 = −2D(1)

1 D(0)
1 F (−1)
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(−F (0)
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