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1. Introduction

The nonlinear Schrodinger (NLS) equation is a canonical model
for describing the weakly nonlinear modulation of a train of surface
gravity waves. It is accurate up to O(e?) and is valid for waves of
bandwidth O(e), where ¢ is a small parameter measuring the wave
steepness. Besides inherent limitations related to the assumption
of small wave steepness, the NLS equation also exhibits an
unbounded region of Benjamin-Feir instability, in the case of two-
dimensional sideband perturbations, which extends outside the
regime of a narrow-banded spectrum. As a result, energy initially
contained at low wavenumbers can leak to higher ones, as shown
in numerical simulations of Martin and Yuen [1].

These limitations have prompted a number of initiatives in
order to extend the range of applicability of the NLS equation. For
deep-water waves, Dysthe [2] considered terms of up to O(g%)
(see[3] for the finite-depth case). His analysis reveals contributions
from the mean flow induced by radiation stresses of the modulated
wavetrain. This mean flow causes a local Doppler shift in the
main direction of wave propagation, which results in improved
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stability properties. Subsequently, motivated by the fact that ocean
wave spectra are usually not as narrow banded as assumed by
the NLS equation, Trulsen and Dysthe [4] derived a high-order
model similar to Dysthe’s, which allows for waves of slightly
larger bandwidth, O(e'/?). Their model essentially retains the
same accuracy in nonlinearity as Dysthe’s equation, but exhibits
additional higher-order linear dispersive terms. Trulsen et al. [5]
then took this idea further by combining the exact linear dispersion
relation for deep-water waves with the cubic nonlinear terms of
Dysthe’s equation. This approach allows the exact linear dispersive
term to be efficiently computed by a pseudo-spectral method,
while retaining the relative simplicity of Dysthe’s equation. A
significant improvement on stability properties was observed in
comparison with McLean’s results on exact Stokes waves [6].
More specifically, Trulsen et al.’s analysis [5] reveals a bounded
Benjamin-Feir instability region which prevents energy from
leaking to high wavenumbers in their model.

While these earlier higher-order versions of the NLS equation
have been applied with reasonable success to modeling a
variety of wave phenomena, including four-wave interactions
in applications to ocean wave spectra and rogue waves, they
share a fundamental shortcoming: they are not Hamiltonian
partial differential equations, despite the fact that they represent
approximations to the Euler equations which can be written as a
Hamiltonian system [7]. This in part motivated the recent work of
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Craig et al. [8,9] who proposed a systematic Hamiltonian approach
to nonlinear wave modulation. In particular, these authors derived
Hamiltonian versions of Dysthe’s equation for gravity water waves
on both finite and infinite depth. The present paper takes this
idea further by proposing Hamiltonian counterparts to the models
derived by Trulsen and coworkers [4,5], using the method recently
developed by Craig et al. [8]. These new Hamiltonian models, not
only possess a high degree of accuracy, but are also consistent
with the Hamiltonian formulation of the full water wave problem!.
In addition to presenting their derivation, we also analyze their
properties with regards to the Benjamin-Feir stability of a uniform
wavetrain (i.e. a Stokes wave). These stability results are tested
against numerical simulations using a fourth-order symplectic
scheme for time integration. To our knowledge, this is the first time
that results are reported on applications of this type of symplectic
integrators to Hamiltonian higher-order NLS equations for water
waves.

The remainder of the paper is organized as follows. In
Section 2, we present the mathematical formulation of the problem
including the Hamiltonian formulation of the equations of motion.
Sections 3 and 4 describe the main steps in our Hamiltonian
perturbation method, and Sections 5 and 6 give the derivation of
our Hamiltonian models. The Benjamin-Feir stability analysis of
these models is presented in Section 7, and numerical results are
then discussed in Section 8. Finally, concluding remarks are given
in Section 9.

2. Hamiltonian formulation and Dirichlet-Neumann operator

We consider the evolution of a free surface {y = n(x, t)} on top
of an infinitely deep fluid

Sm) ={(x,y) eR" ' xR: —00 <y < n(x, t)},

under the influence of gravity. Here, (x, y) denote the horizontal
and vertical coordinates respectively, t is time, and n = 2 or 3 is
the space dimension. The fluid is assumed to be incompressible,
inviscid and the flow is irrotational, so that the free-surface
elevation 7n(x, t) and the velocity potential ¢(x,y, t) satisfy the
boundary value problem

Ve =0 inS(y), (1)

atn + axn : aX@ - y(/) =0 aty = n(xs t)’ (2)
1

3r<p+5|V<p|2+gn=O aty = n(x, t), (3)

oy — 0 asy — —oo, (4)

where g denotes the acceleration due to gravity and V = (0, ay)T.

Following Craig and Sulem [12], we can reduce the dimen-
sionality of the classical formulation (1)-(4) for the water wave
problem by considering surface quantities as unknowns. This can
be accomplished by introducing the Dirichlet-Neumann operator
(DNO)

GE = (=3, DT - Voly=y, (3)

which takes Dirichlet data £(x,t) = @(x, n(x, t), t) at the free
surface, solves the Laplace equation (1) for ¢ with boundary
condition (4), and returns the corresponding Neumann data
(i.e. the normal fluid velocity at the free surface).

1 After we submitted this paper, we learnt about the recent work of Gramstad
and Trulsen [10] who derived a Hamiltonian form of the modified NLS equation
for gravity waves on arbitrary depth, starting from Krasitskii's version [11] of
Zakharov’s equation.

In terms of £ and G(n)é&, Eqgs. (1)-(4) reduce to

8en = GOE, (6)
5= T A P

X [1EI? — (GE)? — 2(B,E - Bn)G(n)E

+10E P18 — (B - 32, 7)

which are Hamiltonian equations in Zakharov’s formulation of
the water wave problem [7,12,13]. These can be expressed in the
canonical form

#(6)=(5 o) () ®

for the conjugate variables 1 and &, with the Hamiltonian

1
H= / [EG(E + gn’ldx. (9)

Eq. (9) can be thought of as the total energy of the system, with
the first and second terms representing the kinetic and potential
energies respectively.

It has been shown that the DNO is an analytic function of 7
provided the free surface is sufficiently regular [ 14], which implies
that the DNO can be written in terms of a convergent Taylor series
expansion

G =Y _ G, (10)
j=0

where the Taylor polynomials G; can be determined recur-
sively [12]. However, only contributions of up to second order in
n, i.e.

Go = |Dx|7
G1 = Dyn - Dy — GonGo,

__1 2.2 2ip 2 _
G = 2(|Dx| 1n°Go + Gon”|Dx|” — 2GonGonGo),

are needed for the purposes of the present study, as they include
all the contributions relevant to four-wave interactions [15].
Note that D, = —idy (so its Fourier symbol is k) and, in the
case of a (constant) finite depth h, the only modification to this
formulation is Gy = |Dx| tanh(h|Dy|) [12,13]. The reader may refer
to [16-21,13] for applications of this formulation to long-wave
perturbation calculations as well as direct numerical simulations
of nonlinear waves on both uniform and variable depth.

3. Canonical transformations and modulational Ansatz

Following Craig et al. [22,8,9,23], our Hamiltonian approach for
deriving envelope models involves canonical transformations that
approximate the original Hamiltonian of the system and change
the corresponding symplectic structure. First, we introduce the

normal modes (z, Z, 7, £) defined by

1 _ ~
n=—a '(D)(z+2) +7,

7 7 = Pon, (11)
1 ~ -
§= EG(DX)(Z —2)+§, & =P, (12)
where
ad) = J £,

and (7, E) are the zeroth modes representing the mean flow. The
symbol ” stands for complex conjugation, and Py is the projection
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that associates to (5, &) their zeroth-frequency components. We
split the zeroth modes from the higher ones in this decomposition
because otherwise a~!(0) = 0 and so the transformation (1, £) —
(z, z) is singular for k = 0. As a result, system (8) becomes

z 0 —i(I—Py) O 0 8,H
Z| _ |i@—Po) 0 0 0 &zH
wl7l=1 o 0 o pl|lsH] ¥
£ 0 0 —Py 0/ \&H
where I is the identity operator.
The next step is to introduce the modulational Ansatz
z = eu(X, t)eko* 7 = eu(X, t)e *o*, (14)
=y, E=shK D, (15)

which is to say that we look for solutions in the form of
monochromatic waves with carrier wavenumber kg € R’l’] \ {0}
and with slowly varying complex envelope u depending on X =
€1/2x. As suggested by Trulsen and Dysthe [4], this choice of long
spatial scale allows for waves of slightly larger bandwidth than
assumed by the NLS and Dysthe equations. The exponent o >
1 is to be determined by the subsequent asymptotic procedure,
and ¢ = O(Jkolap) < 1 is a small parameter measuring the
wave steepness (qo is a typical wave amplitude). In (15), there is
a difference by an_exponent 1/2 in the power of ¢ between the
mean fields 77 and & because we anticipate that 7 ~ 0,& similarly
to the long-wave regime [17,22,19]. The corresponding equations
of motion are given by

u
u
&1
0 —jgn=3/2y 0 0
_ |1 0 0 0
- O 0 0 8(!172740()/2
0 0 _(n—2-4m)/2 0
S,H
SzH
<sin | (16)
m
851

where I’ is the identity on the class of functions {u(X)}, and the
final 2 x 2 block retains essentially the standard symplectic form
on the two-dimensional space of functions (71, &;).

Note the successive changes in the symplectic structure of the
system, as represented by the different coefficient matrices on
the right-hand side of (8), (13) and (16). Further details on these
canonical transformations can be found in [22,8].

4. Expansion and reduction of the Hamiltonian

The expression of the Hamiltonian (9) is also transformed
through the changes of variables (11)-(12) and (14)—(15). The first
transformation diagonalizes the quadratic (i.e. linear) part of the
Hamiltonian, so as to exhibit more clearly the natural frequencies
of the system. The second one introduces the small parameter ¢
and, together with the Taylor series expansion of the DNO, this
allows us to expand H in powers of ¢. For example, the Fourier
multiplier D, = &'?Dy when acting on functions of X only,
while D, = ko + £'/2Dx when acting on functions of the form
u(X)etkox 23],

Moreover, since we look for solutions in the form of multiple
scale functions, with the slowly varying components being the
focus of our attention, further simplifications can be achieved

by only retaining resonant terms in the Hamiltonian. This
homogenization (or averaging) procedure is based on the scale
separation result of Craig et al. [ 19], which implies that terms with
fast oscillations essentially homogenize to zero and thus do not
contribute to the effective Hamiltonian. More specifically, if g(x)
is a periodic function and f (X) is a Schwartz class function, then

X _ N
/ g (ﬁ)fmdx _ E(g) / FOOAX + 0(e),

for any N > 0, with E(g) being the average value of g over
a fundamental domain. A more precise statement of this result
together with its proof can be found in [19]. In the present setting,
the homogenized coefficients are of the form

o ikon-xy __ 1 ifn= O,
E(g) = E(e"o™) = {0 ifn 20

which may be interpreted as resonance conditions for n-wave
interactions.

Starting from the decomposition
H=H,+H3+Hy+---,
1 X 1
=3 (6Go§ +gn7)dx,  H3= 5 §G1&dx,
s [ s
= — X,
5 2

where
we obtain, after transformations and simplifications,

_ 1 a3z 0 T
H, = S(S_H)/Z/ |:ua)(ko+81/2Dx)u+282a 32Dy |&

+ g 2= 1“’2} dX + - (17)
i _ ~
H; = 5€(G+2a7”)/2/ {[Zkolulz—l—é‘l/z(quu—l—quu)] 'Dxf]
1 g2 0 ko
3¢ o] - (@Dxu — uDyu)|Dy [&; { dX + - -, (18)
0
Hy = Le@-mi2p / u* + e ko \up@pgu
4 2 “ |2 X
+ uDXu):| X + -, (19)

where w(Dy) = (gGo)/? = (g|Dy|)!/? is the Fourier multiplier
representing the exact linear dispersion relation of the problem.

5. 0(¢%/2) model
If we now expand w(ko +£'/2Dyx) up to O(£>/?) so as to consider
the same order of approximation as in [4], and collect the various

terms, we find

H = &M/ f g |:a)(ko) + &2 qw(ko) - Dx

e £5/2
+ gaék,w(ko)D?gx, 4wk )DS]

120
+c.c.+ 273/, Dy &1 + Zgza K
; -
+5 a+]/2[2k |u| +81/2(uDXu+quu)] DXSl
i a+1 ko
+-¢ . (Dxu — uDx)|Dy £,
4 kol
+8—|k0|3 Wl + 2612 X0 2 @peu + ubya)
z " e
+ ..., (20)
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where ‘c.c.’ stands for the complex conjugate of all the preceding
terms on the right-hand side of the equation. Dominant balance
suggests that 2o — 3/2 = 5/2 and thus @ = 2, which leads to

u
c-5/2 — /5 [w(ko) + &2 dw(ko) - Dx

€2 2 e s 5
+ iakjk,w(ko)ijx, +-+ %3 w(ko)D” | u

g2 1~ -~

+cc+ Z|ko|3|u|4 + &2 [251|Dx|sl
. 2 ~ 3 2 —

+ilul“ko - Dx&1 + §|k0|ko - |lu|*(uDxu

+ quu)] dX + 0(e?). (21)
In this equation, the Einstein summation convention is used for
repeated indices (j,I = {1,...,n — 1}), and the fifth-order
derivative term is expressed in the short multi-index notation. The

so-obtained Hamiltonian can be further reduced by subtracting
multiples of the conserved wave action

M= g<5f")/2/|u|2ax, (22)
and of the conserved impulse (or momentum)

[ = / N9 dx,
1/2

_ 8(54)/2/ [k0|u|2 + %(EDXu + uDyu)

+ is3ﬁ1ngl] dx, (23)
so that the reduced form is
(=921
= "2 H — dw(ko) - 1 — [w(ko) — ko - (ko) IM},
e u g3/2
=— | 1= |02 wko)D:, + -+ —3°w(ky)D® |u
2) |2[%m X 60

& ~ ~ . ~
+cc + 5|k0|3|u|“ + &2 [sﬂDxl& + 2ilul*ko - Dx£;

3 _
+ Z|/<0|k0 - lu]? @Dy u + quu)] } dX + 0(e). (24)

Introducing M is equivalent to saying that our approximation of the
problem is phase invariant (as is typically the case for the NLS and
Dysthe equations). Subtracting I from H is equivalent to changing
the coordinate system into a reference frame moving with the
group velocity dyw (ko) [22,8].

From (16), the corresponding equations of motion read

3/2
2id,u = 8,fj,qa)(k0)D)2(jx,u 4.4 aaSio(ko)DSu

+ slko}|ul?u + £3/?(2iko - uDx&;1 + 3|ko|ko

- |[u]*Dxu) + 0(?), (25)
£d.711 = |Dx|&; — iko - Dx[ul® + 0(¢'/?), (26)
£d:& = 0(e"?), (27)

where T = et is a slow time. Noting that the mean field 51 only
appears at order 0(¢/2) in (25), we can solve (26) for &; at leading
order,

& = iDx| ko - Dx|ul? + 0(¢"/?), (28)

and plug this expression in (25). The resulting closed equation for
the complex envelope u,

2 2 e 5
2idu = _3k,-k,w(k0)3x]-x,” +-- = zaa w(kg)d’u

+elkol*Jul’u + ¥/ Qukojko|Dx | " 9 x lul?

— 3ilkolko - |ul*dxw), (29)

is a Hamiltonian version of the model derived by Trulsen and
Dysthe [4]. It can be cast into the symplectic form

o;u = —idzH, (30)
with the Hamiltonian

1 u 2 2 &2 5 5
H = 3 3 —akjklw(ko)axjxl + = zaa w(ko)d” | u

e 3 _
+cc + 5|1<0|3|u|4 + 32 [5|k(,|k0 - |ulS@agu)

- ko,'koz(ax,-|u|2)|Dx|13x,|U|2] }dX, (31)

where J denotes the imaginary part. This closed-form Hamiltonian
results from (24) by substituting &; with (28).

We remark that, in the finite-depth case, dominant balance
would likely imply a smaller value of «, which means that the
mean flow would occur at a lower order in the asymptotic analysis.
Derivations in this case for waves of bandwidth O(¢) can be found
in [8].

6. 0(£°/?) model with exact linear dispersion

As suggested by Trulsen et al. [5], a better approximation can
be achieved by expanding the nonlinear terms in (9) up to 0(g°/?)
as previously, while keeping the linear dispersion relation exact. In
the present framework, the resulting envelope equation is

2
2i0.u = =[wko + £?Dx) — w(ko)]u + &lkol*|ul?u
&
+83/2(2u1<0j/<0,|Dx|*1a§le|u|2

— 3ilkolko - |u|*dxu), (32)

which can be viewed as a Hamiltonian version of the model derived
in [5], and the corresponding Hamiltonian is given by

1 2_ 1/2 € 13,4
H = 3 gu[w(ko +¢&/“Dx) — w(ko)]u + Elkol ul

3 _
+&7? [zlkolko - |uP Y (Wdxu)

- kOjkOI(axj|u|2)|Dx|13x,|u|2:| }dx. (33)

Note that the extra term proportional to w(kg) in (33) is due to the
reduction H — H — w(kg)M, and the symplectic structure (30) still
holds true for this case.

Eq. (32) looks very similar to that derived by Trulsen et al. [5] in
its general form, with the exception that a higher-order nonlinear
term like ko - u?dxu is absent, and here we are also able to
explicitly close the equation by solving for the mean flow. The
same observations apply to (29) in comparison with the model of
Trulsen and Dysthe [4]. It is possible to recover the original models
from their Hamiltonian counterparts by a change of variables,
as shown in [8] for the Hamiltonian Dysthe equation, but this
transformation is not canonical. Eq. (32) also closely resembles the
Hamiltonian model of Gramstad and Trulsen [10] in its deep-water
limit, although these authors did not express their equation in an
explicitly closed form.
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Fig. 1. Comparison of instability regions for Ag = 0.1 and ¢ = 1 between (a) the NLS equation, (b) the Hamiltonian Dysthe equation, (c) model (29) and (d) model (32).

7. Stability of Stokes waves

Both models (29) and (32) admit uniform wavetrain solutions
up(7) = Aoei%gkgA[Z’t,

where Ag is a real constant, which correspond to progressive
Stokes waves. In this section, we analyze the modulational or
Benjamin-Feir stability of these solutions, i.e. their linear stability
with respect to sideband perturbations. For this purpose, we

consider the general three-dimensional case n = 3 such that
X = (x1,x)' € R? and we assume that ko, points in the x;-
direction.

Examining model (29) first, if we insert a perturbed solution of
the form

uX, t) =up(t)[1+BX, 1)],
where

B(X, 1) = BleQr+i(AX1+;LX2) + Bzeﬁz—i(xxl+ux2)

and By, B, are complex coefficients, we find that the condition
N(£2) # 0 for instability yields

2/ 22 2, 15 2% 15 A%u?
& Ko | — — —&— — —¢
VBT T Tt e T s e

)\,2
X k0—281/27
/)\'2_'_“2
_ (R 150 15 a9 ity
4k \ 2 9% kX 8 k2 24 k]

> 0,

(34)

where 9t denotes the real part. This somewhat straightforward
but tedious calculation is similar to those presented in [3,2,24,4,5],
therefore we skip the details and only show the final result for the
reader’s convenience.

Applying the same strategy to model (32), we find that sideband
instability occurs when

)‘.2
282 ICAAD (0, 1) + D(—h, )] | ko — 2612 ——x
/)\'2 + /~’L2
—[DO, W) + D(=1, ] > 0,

which is expressed in terms of the exact linear multiplier

D, ) = /gko — Vgl (ko + £1/22)2 + epu?]1/2.

As expected, both (34) and (35) indicate that the linear dispersive
terms as well as the mean-flow term play an important role on the
growth of sideband perturbations. In particular, we clearly notice
the ‘Doppler shift’ relative to the carrier wavenumber kg, due to the
mean flow.

Fig. 1 shows the instability regions enclosed by the zero-level
contour of conditions (34) and (35). As a reference, we also in-
clude the plots of the instability regions for the cubic NLS and
Hamiltonian Dysthe equations as derived in [8]. To allow for
direct comparison with existing results [6,4,5], we choose the
parameter values Ap = 0.1, g = 1, kg = lande = 1.
The latter choice of value for ¢ allows for a more suitable scaling-
independent inter-comparison between the different asymp-
totic models under consideration. Overall, we observe strong
similarities with previously published results based on other
Hamiltonian [10] and non-Hamiltonian models [5]. A clear im-
provement from (29) and (32) over the NLS and Dysthe equa-
tions is that the neutral stability curves are no longer straight
lines. In particular, the instability region for (32) is localized near
the origin and takes an arched shape connecting back to the
A-axis, which closely resembles McLean'’s class I results on ex-
act Stokes waves of small amplitude [6]. This supports the idea
that linear dispersion strongly affects the Benjamin-Feir instability
process.
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8. Numerical results

Although the analysis and derivations presented in the
previous sections apply to the general three-dimensional case,
for convenience here, we will only show two-dimensional (n =
2) numerical simulations. In this situation, models (29) and (32)
simplify respectively into
el/2
2id,u = —dfw(ko)dzu + iT

€ 4 4 &%/ 5 5
+ Eakw(ko)axu — la 0, w(ko)dzu
+ ekd|ul®u — &3/2k2 (2u|Dx | [ul* + 3ilu|*dxu), (36)

whose Hamiltonian is

1 u 2 2 £ 3
H = 5 5 —aka)(ko)ax +lTaka)(k0)aX

dpw(ko)d3u

€ 4 4 e%? 5 5
+ Eakw(ko)ax — lﬁakw(ko)ax u

e 3
+cc + 5kg|u|4 + %212 |:5|u|2;“s(ﬁaxu)

- |U|2|Dx||u|2] }dX, (37)
and
p 2 1/2 31,12
2i0;u = —[w(ko + £/“Dx) — w(ko)]u + ekglul“u
e
—&*?kguDyx | [uf® 4 3ilu|*dxu), (38)
with the Hamiltonian

LY 12p,y _ € 3
H = 3 gu[w(ko—l—e Dx) — w(ko)u + 2k0|u|

3 _
+ ¥%2 [5|u|2~3(uaxu) — |ul?|Dx]| |u|2:| } dXx. (39)

Note that now X = X; € Rand ky > 0.

The purpose of this section is twofold. First, we want to
numerically check that models (29) and (32) derived in Sections 5
and 6 conserve their respective Hamiltonians in time. Second,
we want to numerically test and validate the stability analysis
presented in Section 7. Since this analysis only concerns linear
stability while the problem is nonlinear, it is of interest to
examine e.g. the validity of these results for long time intervals.
Furthermore, we take this opportunity to introduce a symplectic
numerical scheme for time integration of the two proposed
models, motivated by the fact that they are Hamiltonian. We
emphasize however that our intention is not to claim that this
scheme is crucial for correctly simulating these Hamiltonian
equations, nor is it superior to other (non-symplectic) schemes.
This debate is beyond the scope of the present paper. Rather, we
want to offer a possible choice of symplectic time integrator which
is both numerically efficient and accurate. Details are given below.

8.1. Numerical methods

For space discretization, we use a pseudospectral method
assuming periodic boundary conditions in X [12,21,25]. More
specifically, the complex envelope u is approximated by a
truncated Fourier series. Spatial derivatives and nonlocal Fourier
multipliers are evaluated in Fourier space, while nonlinear
products are calculated in physical space, on a grid of N equally
spaced points. For example, the term w(ky + £'/2Dx)u in (38) can
be efficiently computed by

FVelko + 20| F (u)],

using the fast Fourier transform # . Aliasing errors are removed by
zero-padding in Fourier space, meaning that for the calculation of
the nonlinear terms, the size of the solution’s spectrum is extended
by a factor of 2 and the extra modes are set to zero.

Time integration of (36) and (38) is performed in Fourier space,
so that the linear terms can be solved exactly by the integrating
factor technique. For illustration, let us consider model (38) in its
Fourier form

U= LU+ N1,

where
£=—=[Valko+ el - V/ako) .
£

is the Fourier multiplier of the linear part (£ = —.£), & (1) is the
nonlinear partandu(X, t) = ¥ (u(X, 7)). Then making the change
of variables

U, 1) = e, 1), (40)
leads to the following nonlinear evolution equation for v,
3,0 = e LN (eF D) = N (D). (41)

Because Eq. (40) is a canonical transformation [22,8,13], through
which

o (Y _ (0 —i'(&H
\u) —\ir' o0 J\&H)’

is transformed into
o (D) _ (e 0 (o il (e 0\ (&H
\o) "o eff)J\il' o 0 e 8sH )"
(0 —il'\ (&H
—\ir o 3sH )~

therefore Eq. (41) for v is also Hamiltonian with the same
symplectic structure (30) as for u and u. That (40) is a canonical
transformation should be expected since all the linear terms in (38)
have counterparts in the corresponding Hamiltonian (39), and thus
(40) can be thought of as a phase change (in Fourier space) which
further renormalizes the Hamiltonian by subtracting off the linear
contributions.

We integrate (41) in time using a symplectic fourth-order
(2-stage) Gauss-Legendre Runge-Kutta scheme [26],

P =T, + ATy N @) + by N D)),
) =7, + Atfapn N @) 4 ap N @P)],
TP =T, + Atlan N @) + anp N @), (42)

for the solution v"*! at 7,41 = 1, + At, where At is the constant
time step and

o g o,y V3 o ] V3
n=n =g, 2= 6’ 2n =g 6
1 1 3 1 V3
by =b; = -, =5+ — GQ=z-—-—
2 2 6 2 6
By inverting (40), we can rewrite (42) in terms of U as
T = eLAT 4 AgetAT[hyeC1LAT (A1 LATR(D)
4 bzefc‘zuCATN(eCZiAfa(Z))]’ (43)

1 = W+ Atag e AT (e tA D)
+ Atalze—cziAtN(652£Ara(2)), (44)
T = T 4 Aragge 1EAT p (eI LAy
+ Atage 2EAT N (e2 48T, (45)
At each time step, the values of 7" and ® required in (43)
to update u"t! are obtained by solving the nonlinear system
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Fig. 2. Comparison of instability regions for Ag = 0.15,¢ = land u =0 (n = 2)
between the NLS equation (dotted-dashed line), the Hamiltonian Dysthe equation
(dashed line), model (36) (dotted line) and model (38) (solid line). The instability
curves for the latter two models are given by conditions (34) and (35).

(44)-(45). This is accomplished through fixed point iteration with
the initial guess for iV and ® given by the solutionu" at time T,,.
A similar scheme was used in [13] to solve the full Egs. (6)—(7). For
all the applications shown in the present paper, three iterations
were typically needed to solve the nonlinear system given a
convergence tolerance of 10~ on the relative error. This was found
to be a good compromise between accuracy and computational
cost.

We point out that the numerical methods for space discretiza-
tion and time integration, as described above, can be readily ex-
tended to the three-dimensional case (n = 3).

8.2. Discussion of results

For our two-dimensional simulations, we non-dimensionalize
the equations according to Stokes wave theory in deep water by
multiplying lengths by ko and multiplying times by w(kg) so that

1000 1500 2000

T

0 500 2500

both g = 1 and k; = 1. Having the test on Benjamin-Feir
instability in mind, we start our computations with the perturbed
solution

u(X, 0) = Ao[1 + a, cos(A,X)].

Since the main goal of this section is to illustrate properties of
models (36) and (38) along with the performance of the symplectic
time integrator, we will restrict our attention to the case Ay = 0.15,
e = 1,a, = 0.01 and A, = 0.2. Because of our choice of non-
dimensionalization, specifying Ay <« 1 while fixing ¢ = 1 is
equivalent to specifying ¢ <« 1 while fixing Ay = 1. The initial
wave steepness is measured by the parameter Ay.

We have typically observed that smaller values of Ay and a,
induce slower evolutions in time (and thus longer computations),
while larger values induce faster evolutions, quickly leading
to higher-frequency physical/numerical instabilities beyond the
Benjamin-Feir regime due to the higher nonlinearities involved.
Therefore, the choice of Ay = 0.15 (and a, = 0.01) was found to be
a good compromise for the purpose of our numerical illustrations.
The value A, = 0.2 corresponds to the most unstable disturbance
as shown in Fig. 2. For comparison again, we also plot the instability
curves for the NLS and Hamiltonian Dysthe equations. Note that the
curves for (36) and (38) are indistinguishable at the graphical scale
of Fig. 2.

Figs. 3 and 4 show the time evolution of the relative errors on
M and H up to T = 2500, where My and Hy are the initial values at
t = 0. We used a computational domain of length L = 20z with
spatial resolution N = 256 and time step At = 1073, The value
of At is selected such that it is much smaller than the smallest
linear period allowed by the chosen spatial resolution. Overall,
both M and H are very well conserved by the two models, although
the corresponding errors exhibit a tendency to grow in time. This
growth is likely due to the accumulation of numerical errors, which
is aggravated by the development of the Benjamin-Feir instability,
and is more pronounced for model (38), especially with regards to
the conservation of H.

Fig. 5 depicts the time evolution of the normalized amplitudes
for the fundamental and sideband harmonics, [t1(0)| and [u(£A,)|.

1500 2000

T

0 500 1000 2500

Fig. 3. Relative error on wave action M as a function of time for Ag = 0.15,& = 1,a, = 0.01 and 1, = 0.2. Left panel: model (36). Right panel: model (38).
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1000
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Fig. 4. Relative error on Hamiltonian H as a function of time for Ay = 0.15,& = 1,4, = 0.01 and A, = 0.2. Left panel: model (36). Right panel: model (38).
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Fig. 5. Normalized harmonics as a function of time for Ay = 0.15, ¢ = 1,

a, = 0.01 and A, = 0.2. Fundamental [t1(0)| (thick solid line). Lower sideband
[u(—Ap)| (dashed line). Upper sideband [ti(,)] (thin solid line). Top panel: model
(36). Bottom panel: model (38).

For model (36), the near-recurring exchange of energy between the
fundamental and sidebands is consistent with previous observa-
tions of the Benjamin-Feir instability for waves of relatively small
amplitude and bandwidth (e.g. [24,27,1,13]). The asymmetric evo-
lution of the two sidebands, with the lower sideband being more
excited than the upper one, is also a well-known feature of the
phenomenon. It is mainly due to the higher-order nonlinear term
|u|>9xu in the equations, which has a skewness effect on both the
physical and spectral aspects of the solution. In contrast, the results
for model (38) show a more irregular pattern, which may be ex-
plained by the fact that the exact linear dispersion combined with
the moderately small wave steepness allows the Benjamin-Feir in-
stability to cause sufficient wave modulations to trigger higher-
wavenumber instabilities. This superposition of instabilities could
then result in the observed irregular behavior.

Finally, Figs. 6 and 7 show snapshots of the envelope
magnitude |u| together with the corresponding (rescaled) free-
surface elevation ¢~ 'n. The latter can be determined from the
envelope u using the transformation (11) and, in the present
numerical setting, it can be easily computed as

e ko +e2x] .\ .
nX, 1) = — | F71 o ko + e7%A| |u efoXIVe Lce |, (46)

V2 g

This expression neglects the mean field % which does not
contribute at the order of approximation considered here, but it
exactly accounts for all the contributions from the higher sideband
harmonics since it includes the exact expression of Gy. Overall, for
both models (36) and (38), the solution develops strong amplitude
modulations as a result of the Benjamin-Feir instability. We clearly
see the development of the left-right asymmetry in the profile of
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Fig. 6. Snapshots of the envelope magnitude |u| (thick solid line) and free-surface
elevation £ ~'7 (thin solid line) for model (36) at (a) T = 0, (b) 799.967, (c) 949.961,
(d) 1366.611 and (e) 1866.591, for Ag = 0.15,¢ = 1,a, = 0.01and 1, = 0.2.

|u|, especially at the initial stages of the wave evolution, which
is related to the skewness effect as discussed earlier. The more
unstable behavior for (38) as shown in Fig. 7 is in accordance
with our previous observation from Fig. 5, and suggests that
higher-wavenumber instabilities also come into play. We note
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Fig. 7. Snapshots of the envelope magnitude |u] (thick solid line) and free-surface
elevation ¢~ (thin solid line) for model (38) at (a) T = 791.634, (b) 1399.943,
(c) 1766.595, (d) 1924.922 and (e) 2500, for Ay = 0.15,¢ = 1,a, = 0.01 and
Ap=0.2.

interestingly that the profile of |u| does not exactly coincide
with the actual shape of the free-surface envelope everywhere at
every instant, although there is some correlation in the position
of their respective maximum amplitudes. This difference may be

explained in part by the fact that the relation (11) between u and
n is not a simple relation of proportionality due to the presence
of the Fourier multiplier a—'(D,), and therefore one should be
careful about the physical interpretation of u. In contrast, the
dependent variable in the original models of Trulsen and Dysthe [4]
and Trulsen et al. [5] is more closely related to the free-surface
envelope.

Finally we point out that, for a more correct reconstruction
of the free-surface elevation from e.g. (36), the inverse Fourier
transform # ~! in (46) should be translated by

X = X — ko)t /e,

and multiplied by the additional phase factor
e ilwko)—kodkw ko)t /e

which is related to the subtractions of M and I from H as discussed
in Section 5. Similar considerations apply to model (38). These
adjustments however have no major effect on the results shown
in Figs. 6 and 7.

9. Conclusions

We have applied the Hamiltonian approach of Craig et al. [8,9]
to deriving Hamiltonian versions of the higher-order NLS models
for broader-banded deep-water waves, originally proposed by
Trulsen and Dysthe [4] and Trulsen et al. [5]. The Benjamin-Feir
instability regions for these new models were then determined,
and a good agreement was found in comparison with previous
work. Finally, numerical simulations were shown to illustrate
these stability results and check the conservative properties of
our models. With this aim, we have introduced an efficient and
accurate symplectic scheme for time integration, combined with
a pseudospectral method for space discretization.
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