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a b s t r a c t

In this paper, we perform time-domain simulations of ultrasound interrogations on cancel-
lous bone. We are interested in describing the attenuation of displacement as a function of
frequency as well as of bone porosity. A representative volume element for the cancellous
bone is constructed using a two-dimensional random distribution of fluid and solid par-
ticles, via the turning bands method. Our numerical results compare favorably with those
obtained from homogenization methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasound has been considered as ameans to characterize the elastic properties of cortical and cancellous bone for some
time [1–32].

One experiment involves computing the spectrum of the phase velocity c(fc) and that of the attenuation rate α(fc),
where fc is the frequency of the sound wave. Many investigations report that attenuation depends linearly on frequency
from 200 to 600 kHz and in the range of 600 kHz to 1 MHz [22,24,33]. We emulate some of these experiments in our
computer simulations described below. We observe this increase in attenuation as frequency increases; however, not
enough frequencies were computed to suggest a functional relationship for α(fc).

Prior numerical work on this subject is usually divided into frequency-domain (e.g. [34]) and time-domain models (e.g.
[3,4,17,35–38]). In particular, Hosokawa [36] performed three-dimensional simulations but with interrogations in the main
trabecular direction. Bossy et al. [35] also considered three-dimensional simulations with quasi-plane waves using a variant
of the Graves method [39].

In this paper, we introduce a composite viscoelastic model for ultrasound propagation through cancellous bone in the
time domain. We restrict ourselves to the two-dimensional case. In view of applications to quantitative ultrasound tech-
niques for the diagnosis of such bone diseases as osteoporosis, we pay particular attention to bone samples of high porosity.
Compared to the mixture approach of Gilbert et al. [40], the present model presents a number of new features:

(i) In view ofmore realistic simulations, the domain is specified to be a randomdistribution of points that are either fluid or
solid. This ismotivated by CT-scans of bone that usually show a very irregularmicrostructure. The turning bandsmethod
is adapted and used to produce two-dimensional isotropic random fields from which random spatial distributions of
fluid–solid points can be generated for a given porosity. To our knowledge, this is the first time that the turning bands
method is applied to a bone problem.
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(ii) Both the fluid and solid parts include viscosity to closely account for ultrasound attenuation through cancellous bone, as
observed in many laboratory experiments [11,22,30,41,42]. A parametric analysis is conducted to determine physically
relevant values for the viscosity coefficients. The resulting equations can be cast into a stress–velocity formulation that
lends itself well to discretization by a staggered-grid finite difference method.

In reality, bone tissue is not isotropic and the fluid–solid constituents are not truly randomly distributed. As a conse-
quence, the proposed methods do not apply directly to bone tissues. In the present paper, we explore the possibility to
describe bone microstructure by using a flexible and efficient random model. This is motivated in part by previous numer-
ical studies such as [35] which suggest that ultrasound attenuation through cancellous bone is mainly due to scattering by
the complex trabecular network.

The remainder of the paper is organized as follows. We introduce the viscoelastic model for ultrasound propagation
through cancellous bone in Section 2, and reformulate the equations in terms of the stress and velocity variables in Section 3.
We recall the staggered-grid finite difference scheme to discretize these equations in Section 4 andpresent the turning bands
method to generate two-dimensional random fields in Section 5. Finally, we perform a number of numerical simulations to
verify the model in Section 6.

2. Viscoelastic model

If we account for dissipation in the solid part of cancellous bone, i.e. the trabeculae, the constitutive equations may be
written as

τ(s)
= A(s)e(u) + B(s)e(v),

for the stress tensor, where

e(u)ij =
1
2


∂ui

∂xj
+

∂ uj

∂xi


, e(v)ij =

1
2


∂ vi

∂xj
+

∂ vj

∂xi


, (2.1)

and u and v are the displacement and velocity fields, respectively.
These constitutive equations may be written in the generalized form

τ
(s)
ij = A(s)

ijkle(u)kl + B(s)
ijkle(v)kl, (2.2)

where the A(s)
ijkl are the elasticity coefficients for the solid and are assumed to have the classical symmetry and positivity

properties, i.e.

A(s)
ijkleijekl ≥ 0 and A(s)

ijkl = A(s)
klij = A(s)

jikl = A(s)
ijlk,

while the B(s)
ijkl would correspond to instantaneous viscosity terms andwe assume that these are also isotropic. In the isotropic

elastic case, we have

A(s)
ijklekl =


λ(1)δijδkl + 2µ(1)δikδjl


ekl = λ(1)δijekk + 2µ(1)eij,

where {λ(1), µ(1)
} are the Lamé parameters, and

B(s)
ijklekl =


λ(2)δijδkl + 2µ(2)δikδjl


ekl = λ(2)δijekk + 2µ(2)eij, (2.3)

where {λ(2), µ(2)
} are the viscosity parameters, or more compactly

τ(s)
= λ(1)Ie(u) + 2µ(1)e(u) + λ(2)Ie(v) + 2µ(2)e(v), (2.4)

where e is the dilatation, e is the strain tensor and I is the identity tensor. A plane-strain situation is considered here. The
equations of motion for the solid part are given by

∂tv = b(s)div

A(s)e(u) + B(s)e(v)


, (2.5)

in Ωs × [0, T ], where b(s)
= 1/ρ(s) and ρ(s) are the solid buoyancy and density respectively. In the case where the material

is isotropic, these equations take the form

∂tv = b(s)


∂

∂xj


λ(1)δijekk(u) + 2µ(1)eij(u)


+

∂

∂xj


λ(2)δijekk(v) + 2µ(2)eij(v)


. (2.6)
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In the fluid part Ωf × [0, T ], by using the small compressibility approximation, the constitutive equations are also of the
form (2.2), namely

τ(f )
= A(f )e(u) + B(f )e(v),

with

A(f )
= c2ρ(f ) I, B(f )

= 2ηI,

where c is the speed of sound in the fluid and η is the fluid viscosity.
The equations of motion for this Stokes system read

∂tv = b(f )div

c2ρ(f )div(uI) + 2 η e(v)


, (2.7)

in Ωf × [0, T ], where b(f )
= 1/ρ(f ) and ρ(f ) are the fluid buoyancy and density respectively.

In both fluid and solid parts, the system of equations for τ, v and u is completed by

∂tu = v. (2.8)

Free-surface conditions are imposed at the boundary of the full domainΩf ∪Ωs [40]. Continuity of displacements, velocities
and forces is assumed at the fluid–solid interface.

3. Graves-like scheme

Since the trabeculae is considered to be viscoelastic and isotropic, this leads to a system of equations similar to that in
Graves [39] for seismic waves. Restricting our attention to the two-dimensional case in Cartesian coordinates (x, y), the
stresses in the trabeculae may be written as

τ (s)
xx =


λ(1)

+ 2µ(1) ∂xux + λ(1)∂yuy +

λ(2)

+ 2µ(2) ∂xvx + λ(2)∂yvy,

τ (s)
yy =


λ(1)

+ 2µ(1) ∂yuy + λ(1)∂xux +

λ(2)

+ 2µ(2) ∂yvy + λ(2)∂xvx, (3.1)

τ (s)
xy = µ(1) 

∂xuy + ∂yux

+ µ(2) 

∂xvy + ∂yvx

,

and their evolution obeys

∂tτ
(s)
xx =


λ(1)

+ 2µ(1) ∂xvx + λ(1)∂yvy +

λ(2)

+ 2µ(2) ∂xv̇x + λ(2)∂yv̇y,

∂tτ
(s)
yy =


λ(1)

+ 2µ(1) ∂yvy + λ(1)∂xvx +

λ(2)

+ 2µ(2) ∂yv̇y + λ(2)∂xv̇x, (3.2)

∂tτ
(s)
xy = µ(1) 

∂xvy + ∂yvx

+ µ(2) 

∂xv̇y + ∂yv̇x

,

where the dot represents differentiation with respect to t (e.g. v̇x = ∂tvx). In (3.2), the acceleration field is given by

∂t vx = b(s) 
∂xτ

(s)
xx + ∂yτ

(s)
xy


,

∂t vy = b(s) 
∂xτ

(s)
xy + ∂yτ

(s)
yy


. (3.3)

In the interstitial fluid, the evolution equations for the stress field are

∂tτ
(f )
xx = c2ρ(f )(∂xvx + ∂yvy) + 2η∂xv̇x,

∂tτ
(f )
yy = c2ρ(f )(∂xvx + ∂yvy) + 2η∂yv̇y, (3.4)

∂tτ
(f )
xy = η


∂xv̇y + ∂yv̇x


,

combined with

∂t vx = b(f ) 
∂xτ

(f )
xx + ∂yτ

(f )
xy


,

∂t vy = b(f ) 
∂xτ

(f )
xy + ∂yτ

(f )
yy


. (3.5)

We note that both the fluid and solid phases are described by a general system of the form

τ (a)
xx =


λ(k)

+ 2µ(k) ∂xux + λ(k)∂yuy +

λ(k+1)

+ 2µ(k+1) ∂xvx + λ(k+1)∂yvy,

τ (a)
yy =


λ(k)

+ 2µ(k) ∂yuy + λ(k)∂xux +

λ(k+1)

+ 2µ(k+1) ∂yvy + λ(k+1)∂xvx, (3.6)

τ (a)
xy = µ(k) 

∂xuy + ∂yux

+ µ(k+1) 

∂xvy + ∂yvx

,
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together with the evolution equations

∂tτ
(a)
xx =


λ(k)

+ 2µ(k) ∂xvx + λ(k)∂yvy +

λ(k+1)

+ 2µ(k+1) ∂xv̇x + λ(k+1)∂yv̇y,

∂tτ
(a)
yy =


λ(k)

+ 2µ(k) ∂yvy + λ(k)∂xvx +

λ(k+1)

+ 2µ(k+1) ∂yv̇y + λ(k+1)∂xv̇x, (3.7)

∂tτ
(a)
xy = µ(k) 

∂xvy + ∂yvx

+ µ(k+1) 

∂xv̇y + ∂yv̇x

,

where (a, k) = {(s, 1), (f , 3)}, λ(3)
= c2ρ(f ), λ(4)

= 0, µ(3)
= 0 and µ(4)

= η. The acceleration field also has the same form
for both phases,

∂t vx = b(a) 
∂xτ

(a)
xx + ∂yτ

(a)
xy


,

∂t vy = b(a) 
∂xτ

(a)
xy + ∂yτ

(a)
yy


. (3.8)

This is completed by

∂t ux = vx, ∂t uy = vy, (3.9)

which yields the displacements in both phases as well.

4. Discretized systems

We use a staggered-grid finite difference scheme to discretize the system (3.6)–(3.9) in each phase, where the different
components of displacement, velocity and stress are defined at different grid points in the computational domain and the
variables are also staggered temporally. In our notation, the subscripts refer to the spatial indices while the superscripts
refer to the time index. For example, the expression

v
n+ 1

2
x i+ 1

2 ,j
,

represents the x-component of the velocity at point xi+1/2 = (i+1/2)∆x, yj = j∆y and at time tn+1/2 = (n+1/2)∆t , where
∆x, ∆y are the mesh sizes in the two spatial directions and ∆t is the time step. To avoid overly cumbersome expressions, Dj
denotes the difference operator for the discretization of the partial derivative ∂j in space. The superscript (a) refers to fluid
or solid depending on which phase the grid point is in. We briefly present the discretized equations below and refer the
reader to [39,40] for further details.

The discretization of (3.7) reads

τ
(a) n+1
xx i, j = τ

(a) n
xx i,j + ∆t


λ(k)

+ 2µ(k)Dxvx + λ(k)Dyvy +

λ(k+1)

+ 2µ(k+1)Dxv̇x + λ(k+1)Dyv̇y
n+ 1

2
i, j ,

τ
(a) n+1
yy i, j = τ

(a) n
yy i,j + ∆t


λ(k)

+ 2µ(k)Dyvy + λ(k)Dxvx +

λ(k+1)

+ 2µ(k+1)Dyv̇y + λ(k+1)Dxv̇x
n+ 1

2
i, j ,

τ
(a) n+1
xy i+ 1

2 , j+ 1
2

= τ
(a) n
xy i+ 1

2 ,j+ 1
2

+ ∆t

µ(k) 

Dxvy + Dyvx

+ µ(k+1) 

Dxv̇y + Dyv̇x
n+ 1

2
i+ 1

2 , j+ 1
2
, (4.1)

and the discretized form of (3.8) is

v
n+ 1

2
x i+ 1

2 ,j
= v

n− 1
2

x i+ 1
2 ,j

+ b(a)∆t

Dxτ

(a)
xx + Dyτ

(a)
xy

n
i+ 1

2 , j
,

v
n+ 1

2
y i, j+ 1

2
= v

n− 1
2

y i,j+ 1
2

+ b(a)∆t

Dxτ

(a)
xy + Dyτ

(a)
yy

n
i, j+ 1

2
. (4.2)

In the present formulation, Eqs. (4.1) and (4.2) form a closed system of equations for the stress and velocity fields. Free-
surface conditions are imposed at the boundaries of the domain. An auxiliary computation determines the displacements
from the velocities at every time step, assuming their respective components are defined at the same grid points but
staggered temporally. Using centered finite differences in time, the discretization of (3.9) is given by

un+1
x i+ 1

2 , j
= un

x i+ 1
2 ,j

+ ∆t v
n+ 1

2
x i+ 1

2 , j
,

un+1
y i, j+ 1

2
= un

y i,j+ 1
2

+ ∆t v
n+ 1

2
y i,j+ 1

2
. (4.3)

The overall scheme is (formally) second-order in both space and time. Because this scheme is explicit in time, it is thus con-
ditionally stable. A von Neumann stability analysis providing an upper bound for the time step is performed in Appendix A.
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5. Turning bands method

In this paper, we assume the domain is a random distribution of fluid and solid points. For this purpose, we adopt the
efficient and accurate ‘turning bands’ method of Mantoglou and Wilson [43] (see also [44]) to simulate multidimensional
stationary random fields with a prescribed covariance structure. Because it is a key component of our numerical model, we
review this approach in the present section and explain how we adapt it to our bone problem.

Given a point x = (x1, x2, . . . , xn) in Rn, the random function z(x) is called a random field. The mean of z(x) is
defined as

m(x) = E[z(x)],

where E is the expectation, and the covariance function is defined as

C(x1, x1) = E[(z(x1) − m(x1))(z(x2) − m(x2))],

for all x1, x2 ∈ Rn. Here we focus our attention on second-order stationary random fields which require that:

1. The mean is independent of the position of each point,

E[z(x)] = m(x) = m, ∀x ∈ Rn,

2. The covariance function only depends on the difference between two points,

C(x1, x2) = C(x1 − x2) = C(h), ∀x1, x2 ∈ Rn,

where h is the difference vector. Furthermore, if the covariance function only depends on the distance between two
points, i.e.

C(h) = C(r),

where r = |h|, then it is called isotropic. In the turning bands method, instead of generating a high-dimensional field
directly, several independent one-dimensional processes (evenly distributed in the higher dimension) are simulated and
superimposed. Because we restrict ourselves to two-dimensional numerical experiments in the present case, we will only
discuss the generation of two-dimensional second-order stationary isotropic random fields.

Assuming the field to be simulated is second-order stationary and isotropic, its value at each point is normally distributed
and has zero mean. The covariance function C(r) of the random field is assumed to be known. Fig. 1 shows a schematic
representation of the method. Let D denote this two-dimensional field with grid points in both x- and y-directions. First,
choose an arbitrary point as the origin O, generate L lines through O such that the directional vectors ui of each line are
uniformly distributed over the unit circle, with θi being the angle between line i and the positive x-axis. Along each line, we
simulate a discrete one-dimensional second-order stationary processwith zeromean and covariance C1(ξ). The relationship
between C1(ξ) and C(r) will be discussed later. More specifically, along each line, we define small intervals with length
∆ξ . If we draw a perpendicular line at the end of each interval, we will see a set of bands, as depicted in Fig. 1, hence the
terminology ‘turning bands’ for this method. The one-dimensional process generates a set of discrete values, with each band
having a unique value. Let xN denote the position vector of point N in the domain, then the projection of xN onto line i is
ξNi = xN · ui and the assigned value zi(ξNi) depends on which band the projection falls into. For the L lines, we generate
independent one-dimensional processes with the same covariance C1(ξ). For every point N in the domain, there are thus L
assigned values zi(ξNi) and the final assignment is given by the sum

z(xN) =
1

√
L

L
i=1

zi(xN · ui). (5.1)

Note each line should have aminimum length depending on the domain size so that it can cover the projections of all points
in the domain.

Next let us show that the generated field has the desired property. It is clear that the field given by (5.1) has zero mean
because each one-dimensional process has zeromean. The question remains as towhether the random field has the imposed
covariance structure. By definition of the covariance together with (5.1), we have

C(x1, x2) = E[(z(x1) − E[z(x1)])(z(x2) − E[z(x2)])]
= E[z(x1)z(x2)]

=
1
L

L
i=1

L
j=1

E[zi(x1 · ui)zj(x2 · uj)]

=
1
L

L
i=1

C1(h · ui), (5.2)



948 R.P. Gilbert et al. / Computers and Mathematics with Applications 66 (2013) 943–964

where h = x1 − x2. In (5.2), we have used the fact that the one-dimensional process is second-order stationary and that
all i ≠ j terms vanish because the processes on two different lines are independent. Since the directional vectors ui are
uniformly distributed over the unit circle, C1 is only a function of r for large L, which implies that the two-dimensional
process is stationary and isotropic, and we can write

C(x1, x2) = Cs(h) = Cs(r) =
1
L

L
i=1

C1(h · ui).

Therefore, by the law of large numbers,

C(r) = lim
L→∞


1
L

L
i=1

C1(h · ui)


= E[C1(h · u)]

=


c
C1(h · u)f (u) du

=
1
2π


c
C1(h · u) du, (5.3)

where c represents the unit circle and f (u) is the probability density function of u which equals 1/(2π) in the two-
dimensional case. Furthermore, if the origin is taken to be at x1 and the vector h points in the vertical direction, then
ξ = h · u = r sin θ as depicted in Fig. 2, and

C(r) =
2
π

 π/2

0
C1(r sin θ) dθ, (5.4)

given that C1 is an even function. The above integral equation relates the one-dimensional covariance C1(ξ) to the two-
dimensional covariance C(r). Although it is difficult to find an explicit analytical expression in most cases, the one-
dimensional process can be easily simulated by a spectral method.

Suppose S(ω) is the spectral density function of the covariance C(h) of a two-dimensional process, where ω is a vector
of frequencies. The Fourier transform relates these two functions in the following way,

C(h) =


R2

eih·ωS(ω) dω,

S(ω) =


R2

e−ih·ωC(h) dh.

(5.5)

If the field is isotropic, then S(ω) = S(ω) where ω = |ω|, and we can define the radial spectral density function of the
two-dimensional isotropic process as

f (ω) =
1
σ 2


cω

S(ω)dω =
2πωS(ω)

σ 2
,

where cω is a circle of radius ω and σ 2 is the variance of the process. Eq. (5.5) becomes

C(r) = σ 2


∞

0
f (ω)J0(ωr) dω,

f (ω) =
ω

σ 2


∞

0
C(r)J0(ωr) dr,

(5.6)

where J0 is the first-kind Bessel function of order zero. From (5.6), if the covariance C(r) of a two-dimensional isotropic
process is known, then we can find the corresponding radial spectral density function.

For the one-dimensional processwith covariance C1(ξ), its spectral density function S1(ω) is real, symmetric and positive.
Therefore, the Fourier representation of C1(ξ) is

C1(ξ) =


∞

−∞

eiωξ S1(ω) dω = 2


∞

0
cos(ωξ)S1(ω) dω. (5.7)

Substituting (5.7) into (5.4), we obtain

C(r) =
4
π


∞

0
S1(ω)

 π/2

0
cos(ωr sin θ) dθ


dω

= 2


∞

0
S1(ω)J0(ωr) dω,
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and by the Hankel transform,

S1(ω) =
ω

2


∞

0
C(r)J0(ωr) rdr. (5.8)

Comparing (5.8) and the second equation of (5.6), we find

S1(ω) =
σ 2

2
f (ω), (5.9)

which implies that the spectral density function of the one-dimensional process can be easily determined if the radial
spectral density function of the two-dimensional process is known.

In the present model, each point in the domain is either ‘fluid’ or ‘solid’. Therefore we also need to come up with a
procedure to selectwhich values of the generated two-dimensional field correspond to fluid or solid points for the prescribed
porosity β . Since the field value at each point is normally distributed, this categorization can be achieved by using the error
function

erf(z) =
2

√
π

 z

0
e−t2dt,

which is related to the cumulative density function of a standard normal distribution by

Φ(z) =
1
2

+
1
2
erf


z

√
2


. (5.10)

Suppose z0 is the critical point such that the probability

P(−z0 < z < z0) = Φ(z0) − Φ(−z0) = β,

then z0 can be found by using (5.10) as

z0 =
√
2 erf−1(β).

Therefore a point in the domain is fluid if its field value is in [−z0, z0], otherwise it is a solid point. By this selection, we can
guarantee that a proportion of β points out of the total number is fluid. If the normal probability distribution is not standard,
then we can always make it so by a change of variables. Numerical illustrations will be provided in the next section.

6. Numerical experiments

In this section, we perform a number of two-dimensional simulations to verify our numerical model and illustrate key
features such as dissipative, elastic and random properties. Typical values for physical parameters in the model are listed in
Table 1. The Lamé parameter λ(1) for the solid phase is defined by

λ(1)
=

νE
(1 + ν)(1 − 2ν)

.

Because of the large disparity in orders of magnitude between the various parameters, we find it convenient to non-
dimensionalize the equations by using a characteristic length scale L related to the size of the bone sample and a char-
acteristic time scale T in the ultrasonic range.

6.1. Comparison with exact solution

Let us consider a purely solid material (all points are solid points). In the one-dimensional case, Eqs. (3.7)–(3.9) for (a, k)
= (s, 1) reduce to the damped wave equation

∂2
t ux =

λ(1)
+ 2µ(1)

ρ(s)
∂2
x ux +

λ(2)
+ 2µ(2)

ρ(s)
∂xxtux, (6.1)

for the displacement ux, with reflecting boundary condition ∂xux = 0 at both endpoints x = 0 and x = Lx. The corresponding
stress and velocity are determined by

τxx = (λ(1)
+ 2µ(1))∂xux + (λ(2)

+ 2µ(2))∂xvx, vx = ∂tux.

Given initial conditions

ux = f (x), ∂tux = 0,
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Table 1
Values of physical parameters for cancellous bone as given in [7,17,34].

Parameter Symbol Value

Solid bulk modulus K (s) 2.04 × 1010 Pa
Solid shear modulus µ(1) 0.833 × 1010 Pa
Solid Young’s modulus E 2.2 × 1010 Pa
Poisson’s ratio ν 0.32
Fluid bulk modulus K (f ) 2 × 109 Pa
Frame material density ρ(s) 1960 kg m−3

Pore fluid density ρ(f ) 950 kgm−3

the exact solution can be expressed in terms of a Fourier cosine series,

ux(x, t) = a0 +

∞
n=1


ane

−


Cn−

√
C2
n−4Dn


t/2

+ bne
−


Cn+

√
C2
n−4Dn


t/2


cos


nπx
Lx


. (6.2)

Details on the derivation of (6.2) and on the expressions of the Fourier coefficients are given in Appendix B. Following [6],
the viscosity coefficients are taken as

λ(2)
=

δ

π
λ(1), µ(2)

=
δ

π
µ(1), (6.3)

using the logarithmic decrement δ = 0.01 s. To compare with this exact solution, we perform numerical simulations of
(3.7)–(3.9) using initial conditions

ux(x, y, 0) = f (x) = 0.01 e−100(x−Lx/2)2 , vx(x, y, 0) = 0,

and

τxx(x, y, 0) = (λ(1)
+ 2µ(1))f ′(x) = −(λ(1)

+ 2µ(1))(2x − Lx) e−100(x−Lx/2)2 ,

which are invariant in the y-direction. The computational domain is a square with side lengths Lx = Ly = 3.
Fig. 3 plots the relative L∞ and L2 errors between the exact and numerical solutions at t = 0.5, for different values of Nx

with a fixed ∆t = 10−4. A number of 50 terms is used in the series (6.2) for the exact solution. Given the smoothness of
the solution being considered, this number of terms is more than sufficient for the series solution to be reliable. The good
agreement (on all three variables ux, vx, τxx) with the−2 slope confirms the second-order accuracy in space of our numerical
scheme.

Figs. 4–6 show the comparison between exact and numerical profiles of ux, vx and τxx in the cross-section y = Ly/2 at
various times. The spatial resolution is Nx × Ny = 100 × 100 and the time step is ∆t = 5 × 10−4, where Nx and Ny denote
the number of grid points in the x- and y-directions respectively. This simulation reproduces well the splitting of the initial
condition into left- and right-moving components, as well as their propagation to and bouncing off the boundaries of the
domain. It also shows the damping of the solution with time. For all three variables, the shape of the profile, the propagation
speed, the damping and the reflecting boundary condition, as well as the (anti)symmetry of the solution with respect to
x = Lx/2, are well reproduced numerically. A better agreement can be obtained by increasing the spatial resolution.

6.2. Random domain generation

The random distribution of fluid and solid points in the domain is specified by the turning bands method described
previously. For a covariance C1(ξ) and spectral density S1(ω) as given by (5.9), the one-dimensional second-order stationary
process can be generated by

zi(ξn) = 2
M

k=1

[S1(ωk)∆ω]
1/2 cos(ω′

kξn + φk), (6.4)

where ωk = (k − 1/2)Ω , ω′

k = ωk + δω , Ω is the maximum frequency so that the spectral density function S1(ω) is well
supported within [0, Ω], ∆ω = Ω/M , and M is the number of harmonics chosen large enough to ensure a fine resolution
∆ω [45]. The phase shift φk is taken to be a random variable distributed uniformly on [0, 2π ]. The small perturbation δω is
introduced to avoid periodicity. Ideally, as Ω → ∞, M → ∞ and ∆ω → 0, the process given by (6.4) should have zero
mean and the desired covariance C1(ξ).

After generating the L independent one-dimensional processes, we use (5.1) to assemble the two-dimensional field.
The number L of lines is another factor which may cause inaccuracy. Fig. 7 shows a comparison between the simulated
two-dimensional covariance and the theoretical one for various values of L. The covariance being simulated is a simple
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exponential function C(r) = σ 2e−r with σ 2
= 1. By integrating C(r) through (5.6), it can be shown that the corresponding

radial spectral density function is

f (ω) =
ω

(1 + ω2)3/2
,

as given in [43]. The spectral density function S1(ω) required in (6.4) is then determined from f (ω) by virtue of (5.9).
We use Ω = 50 and M = 500 for the one-dimensional process. We observe a fast convergence as L increases, with

L = 16 yielding an excellent agreement (at least to graphical accuracy). Fig. 8 depicts a realization of the two-dimensional
random field z(x) corresponding to this covariance structure. The domain is a 1 × 1 cm2 square. Since each point in the
field obeys a standard normal distribution, most values fall within the range of standard deviation [−3, 3]. Based on the
field realization of Fig. 8, we show examples of random spatial distributions of fluid–solid points for β = 0.6, 0.7, 0.8, 0.9
in Fig. 9, using the categorization described in Section 5. As expected, the proportion of fluid points increases with β . More
specifically, patches of solid points shrink as β is increased, which is consistent with the disappearance of the trabecular
matrix in the osteoporosis process.

6.3. Calculation of elastic coefficients and effective material parameters

To ensure that the random field effectively represents the compositematerial that wewant to simulate, we now examine
the elastic coefficients and material parameters in a plane-strain situation. In Voigt notation,

τ =


τxx
τyy
τxy


=


τ1
τ2
τ6


, e =

exx
eyy
exy


=

e1
e2
e6


.

The elasticity (or stiffness) tensor C can be expressed as

C =

C11 C12 C16
C21 C22 C26
C61 C62 C66


, (6.5)

and the relation between stress and strain is

τ = C · e. (6.6)

Therefore, the elasticity tensor can be calculated as the first derivative of the stress tensor with respect to the strain tensor,

C =
∂τ

∂e
, (6.7)

which can be translated numerically to

Cij =
τi(epj) − τi(e)

p
, (6.8)

where epj is the perturbed strain tensor such that e
pj
i = ei for i ≠ j, e

pj
i = ei + p for i = j, and p is a small perturbation.

The simulation domain is considered here to be a thin slice cut from a long bone and assuming isotropy, the elasticity
tensor C reduces to

C =

C11 C12 0
C12 C11 0
0 0 C66


,

with only three parameters measuring deformations in the (x, y)-plane. To calculate these elastic coefficients, we perturb
the strain tensor as indicated in (6.8) and use (3.6) to evaluate the corresponding stress at each point. We then spatially
average over the whole domain, for a given random field and porosity, and also average over 10 realizations of the random
field for a given porosity. Fig. 10 plots the variation of C11 and C12 with increasing porosity. These coefficients are measures
of the material stiffness and, as expected, their values decrease as β increases (i.e. as the material becomes more porous). In
the limit β → 1 (purely fluid case), both coefficients tend to 2000 N/mm2.

Effective material parameters are another point of interest. They are given by the compliancematrix which is the inverse
of the elasticity matrix. In the present plane-strain case, the compliance tensor reads

S =
1 + ν

E

1 − ν −ν 0
−ν 1 − ν 0
0 0 1


= C−1.

Therefore, once the elasticity coefficients are known, Young’s modulus E and Poisson’s ratio ν of the composite material can
be determined by inverting C. The shear modulus is then obtained from

G =
E

2(1 + ν)
.
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Table 2
Attenuation coefficients at fc = 1 MHz and corresponding viscosity coefficients for the solid phase.
Source: αL is taken from [48], αT is taken from [49], η11 and η66 are evaluated from (6.9) and (6.10)
while η12 is calculated from (6.11).

αL αT η11 η12 η66
(dB cm−1) (dB cm−1) (Pa s) (Pa s) (Pa s)

4.2 4 267 197 35

Fig. 11 plots the variation of these effective parameters as a function of porosity. We see that both E and G decrease
linearly as β increases, while ν shows an opposite tendency. Figs. 10 and 11 also compare our results with those found
by Ilic et al. [34] using a homogenizedmodel for ultrasound propagation through cancellous bone. These authors performed
numerical simulations with a similar pressure source and similar rectangular bone samples. Our values are overall higher
than theirs but they remain comparable and show a similar trend as β varies. Moreover, in the limit β → 0, our curve of E
consistently tends to the value 2.2 × 1010 Pa used for the solid phase (see Table 1).

6.4. Ultrasound attenuation test

It is well known that ultrasound propagation through cancellous bone experiences attenuation [34,41,42]. This atten-
uation is more pronounced at higher frequencies and also increases with bone volume fraction (i.e. bone density). In this
section, we check numerically that these features of ultrasound attenuation are reproduced well in the present model. For
the purpose of this experiment, we choose physically relevant values for the viscosity coefficients, (λ(2), µ(2)) in the solid
phase and η in the fluid phase, following [46,47].

For the solid phase, let αL and αT be the attenuation rates associated with the longitudinal and transverse modes,
respectively. A relation between attenuation rate and viscosity coefficient for the longitudinal mode is given by

αL =
η11ω

2

2cL(λ(1) + 2µ(1))
, (6.9)

provided ω ≫ αLcL, where cL =


(λ(1) + 2µ(1))/ρ(s) is the speed of sound in the longitudinal direction. A similar relation
for the transverse mode can be written as

αT =
η66ω

2

2cTµ(1)
, (6.10)

provided ω ≫ αT cT , where cT =


µ(1)/ρ(s) is the speed of sound in the transverse direction. Using parameter values listed
in Table 1 together with values of αL and αT reported in [48,49], we find αLcL = 1.68 × 105 s−1 and αT cT = 8.25 × 104 s−1

while ω = 6.3 × 106 s−1 for a characteristic ultrasonic frequency fc = 1 MHz, so the conditions for (6.9) and (6.10) are met
here. From (6.9) to (6.10) and the fact that

η12 = η11 − 2η66, (6.11)

in the isotropic case, we can evaluate the viscosity coefficients η12, η11, η66 (see Table 2) and, accordingly,

λ(2)
= η12, µ(2)

= η66.

Similarly, for the fluid phase, a relation between attenuation rate and viscosity coefficient reads

αf =
ηω2

2cK (f )
, (6.12)

provided ω ≫ αf c , where c =

K (f )/ρ(f ) and K (f ) is the fluid bulk modulus. Again, using parameter values from Table 1

and αf from [50], we can check that αf c = 1.45 × 104 s−1
≪ ω for a frequency fc = 1 MHz. Recall that λ(3)

= c2ρ(f ),
λ(4)

= 0, µ(3)
= 0 and µ(4)

= η for the fluid phase. Table 3 lists the value of η obtained from (6.12), which is close to the
value η = 1.5 Pa s used in [17].

Following [34], the bone sample is assumed to be rectangular, 15 mm long in the x-direction and 30 mm wide in the
y-direction. The incoming wave is generated by a localized pressure source, centrally located on the left side of the domain
(x = 0) and defined by

τxx(0, y, t) = −P cos(2π fc t)e−15(y−Ly/2)2 ,

where fc denotes the prescribed temporal frequency, and the mollifier

e−15(y−Ly/2)2 ,
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Table 3
Attenuation coefficient at fc = 1 MHz and corresponding
viscosity coefficient for the fluid phase.
Source:αf is taken from [50] andη is evaluated from (6.12).

αf c η

(dB cm−1) (m s−1) (Pa s)

1 1451 1.46

is used to avoid discontinuities which may lead to spurious waves propagating in the y-direction. The pressure is applied
over a length of about 10 mm on the left side of the bone sample. Its amplitude is set to be P = 8 kPa and the choice of
porosity will determine the random distribution of fluid–solid points. The spatial resolution Nx ×Ny = 500× 500 and time
step∆t = 10−4 are selected sufficiently fine so they can resolve well the excitation wavelength and period. Since we expect
the excitation to be primarily longitudinal, propagating from left to right in the x-direction, we focus our attention on ux. For
clarity, the dimensionless values in all the following figures are magnified by a factor of 103. Therefore, given L = 0.01 m
and T = 10−5 s as used in our non-dimensionalization, the actual values of ux are of order of 10−10 m, which is consistent
with previous results [34,40]. The transverse displacement uy (not shown here) is typically of an order of magnitude smaller
than ux.

We first examine ultrasound attenuation caused by the randomness. The random inhomogeneities in the domain are
expected to promote scattering of the incoming signal [29,30]. For this purpose, all the viscosity coefficients (in both fluid
and solid phases) are set to zero. Fig. 12b shows a two-dimensional color plot of ux at t = 1 for a fixed frequency fc = 1.1
MHz but three different porosities β = 0.72, 0.82, 0.92. The corresponding distributions of fluid–solid points are depicted in
Fig. 12a. Forβ = 0.72, the incomingwave is so strongly scattered and attenuated that it barely leaves the close neighborhood
of the source. As β increases (i.e. as bone density decreases), the material becomes more fluid and homogeneous. Therefore,
the wave tends to be more focused in the longitudinal direction and is able to reach the right side of the domain without
much attenuation.

Due to random inhomogeneity, wave attenuation also depends on frequency. Keeping the viscosities ‘turned off’, Fig. 13
shows ux at t = 1 for a fixed porosity β = 0.82 but four different frequencies fc = 0.9, 1.1, 1.4, 1.7 MHz. As expected, the
higher the excitation frequency, the stronger the wave attenuation. This is because higher-frequency waves have smaller
wavelengths and thus are more subject to scattering by the random array of solid patches.

We now include viscosity in both phases (as given by Tables 2 and 3) and repeat the two previous experiments, to
investigate the viscous effects (in addition to randomness) on ultrasound propagation. We can see in Figs. 14 and 15 that
the amplitude of ux is further damped by viscosity, in comparison with Figs. 12 and 13. However, these viscous effects are
relatively weak and the random patterns with viscosity are overall similar to those without viscosity. For β = 0.82 and
fc = 1.7 MHz, the excitation is so strongly scattered and damped that it is barely noticeable.

7. Conclusions

We have introduced a composite viscoelastic model for ultrasound propagation through cancellous bone, in which the
domain is a random distribution of points that are either fluid or solid. To accomplish this, we have adapted and used the
turning bands method to produce two-dimensional random fields from which random spatial distributions of fluid–solid
points can be generated given a porosity. The resulting equations expressed in the stress–velocity formulation were solved
numerically by a second-order staggered-grid finite difference method.

We have performed a number of two-dimensional plane-strain simulations in the time domain to verify the numerical
model and illustrate key features such as dissipative, elastic and random properties. In particular, we have examined the
dependence of effective parameters of this compositematerial (e.g. the shearmodulus, Young’smodulus and Poisson’s ratio)
on porosity. Our results show that ultrasound is attenuated by viscosity but even more so by the random inhomogeneity
of the domain, which promotes scattering. The lower the porosity or the higher the excitation frequency, the stronger the
wave attenuation.
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Appendix A. von Neumann stability analysis

Through a von Neumann stability analysis, we derive a condition on ∆t that ensures stability of the numerical scheme.
We restrict the analysis to the two-dimensional case as in our numerical simulations. Assuming a displacement field of the
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Fig. 1. Schematic representation of the turning bands method.

form

u(x, t) = (ux,uy)ei(k·x−ωt), (A.1)

and substituting v = ∂tu together with (3.6) into the general system (3.8), yield a closed system of equations for the
displacement field. The corresponding discretized equations, set up in matrix form, read

(α2
kDxx + β2

kDyy) + α2
k+1Dxxt + β2

k+1Dyyt − Dtt (α2
k − β2

k )Dxy + (α2
k+1 − β2

k+1)Dxyt

(α2
k − β2

k )Dxy + (α2
k+1 − β2

k+1)Dxyt (α2
kDyy + β2

kDxx) + α2
k+1Dyyt + β2

k+1Dxxt − Dtt


u = 0,

where

αk =


λ(k) + 2µ(k)

ρ(a)
, βk =


µ(k)

ρ(a)
,

and

αk+1 =


λ(k+1) + 2µ(k+1)

ρ(a)
, βk+1 =


µ(k+1)

ρ(a)
,

given that (a, k) = {(s, 1), (f , 3)} for solid and fluid points, respectively.
This linear system admits a non-trivial solution if and only if the determinant of the coefficient matrix is zero, which

implies

Dtt =
1
2


α2
k + β2

k − iω(α2
k+1 + β2

k+1)

(Dxx + Dyy) ±

1
2


α2
k − β2

k − iω(α2
k+1 − β2

k+1)
 

(Dxx − Dyy)2 + 4D2
xy,

and hence

sin2 ω∆t
2

=
1
2


∆t
h

2  α2
k + β2

k − iω(α2
k+1 + β2

k+1)


±

α2
k − β2

k − iω(α2
k+1 − β2

k+1)
  sin2 kxh

2
+ sin2 kyh

2


, (A.2)

after substituting (A.1), where k = (kx, ky) and, for simplicity, we assume that ∆x = ∆y = h. Details on the difference
operators can be found in [39,40]. By requiring that the right-hand side of (A.2) be less than or equal to 1, we arrive at the
stability condition

∆t ≤ min

 h
2(α4

k + ω2α4
k+1)

1/2
,

h
2(β4

k + ω2β4
k+1)

1/2

 . (A.3)

Note that (αk, αk+1) represent speeds of longitudinal (or compressional) waves while (βk, βk+1) represent speeds of
transverse (or shear) waves. Since longitudinal waves usually travel faster than transverse waves, i.e. αk > βk and
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Fig. 2. Definition sketch for the two-dimensional coordinate system with the unit circle as used in the turning bands method.

Fig. 3. Relative L∞ and L2 errors vs. Nx between the exact and numerical solutions at t = 0.5. The displacement ux is represented in circles, the velocity
vx in diamonds and the stress τxx in squares. For reference, the dashed line represents the curve N−2

x which has a −2 slope in log–log plot.

αk+1 > βk+1, therefore (A.3) simplifies to

∆t ≤
h

2(α4
k + ω2α4

k+1)
1/2

,

which generalizes the stability condition derived in [40] to a viscoelastic material.
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Fig. 4. Profile of displacement ux in the cross-section y = Ly/2 at t = 0, 0.15, 0.35, 0.6. The solid line corresponds to the numerical solution while the
dashed line corresponds to the exact solution.

Appendix B. Exact solution of the damped wave equation

Consider the damped wave equation

∂2
t ux =

λ(1)
+ 2µ(1)

ρ(s)
∂2
x ux +

λ(2)
+ 2µ(2)

ρ(s)
∂xxtux, (B.1)

with reflecting boundary conditions

∂xux(0, t) = 0, ∂xux(Lx, t) = 0, (B.2)

and initial conditions

ux(x, 0) = f (x), ∂tux(x, 0) = 0. (B.3)

The corresponding stress and velocity are determined by

τxx = (λ(1)
+ 2µ(1))∂xux + (λ(2)

+ 2µ(2))∂xvx, vx = ∂tux.

This problem can be solved analytically by separation of variables. Let ux(x, t) = X(x)T (t), then (B.1) becomes

X
X ′′

=
λ(1)

+ 2µ(1)

ρ(s)


T
T ′′


+

λ(2)
+ 2µ(2)

ρ(s)


T ′

T ′′


= −

1
κ

,



R.P. Gilbert et al. / Computers and Mathematics with Applications 66 (2013) 943–964 957

Fig. 5. Profile of velocity vx in the cross-section y = Ly/2 at t = 0, 0.15, 0.35, 0.6. The solid line corresponds to the numerical solution while the dashed
line corresponds to the exact solution.

where κ is a real constant. This leads to solving the boundary value problem

X ′′
+ κX = 0,

X ′(0) = X ′(L) = 0,
(B.4)

by virtue of (B.2), together with the initial value problem

T ′′
+ κ


λ(1)

+ 2µ(1)

ρ(s)
T +

λ(2)
+ 2µ(2)

ρ(s)
T ′


= 0,

T ′(0) = 0,
(B.5)

by virtue of (B.3).
To solve (B.4), we consider three cases:

1. κ = 0 implies X(x) = Ax + B and thus

X(x) = B = constant,

according to the boundary conditions.
2. κ < 0 implies

X(x) = A cosh(
√

−κx) + B sinh(
√

−κx),

but A = B = 0 according to the boundary conditions.
3. κ > 0 implies

X(x) = A cos(
√

κx) + B sin(
√

κx),
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Fig. 6. Profile of stress τxx in the cross-section y = Ly/2 at t = 0, 0.15, 0.35, 0.6. The solid line corresponds to the numerical solution while the dashed
line corresponds to the exact solution.

Fig. 7. Exponential covariance function C(r) of the two-dimensional random field. The solid line represents the theoretical covariance. The simulated
covariances correspond to L = 4 (squares), 8 (crosses) and 16 (circles).

where B = 0 and

κ =


nπ
Lx

2

, n ∈ N+, (B.6)

so that there are non-trivial solutions, according to the boundary conditions.
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Fig. 8. Simulated two-dimensional random field z(x) for an exponential covariance function with L = 16.

Fig. 9. Random spatial distributions of fluid and solid points for β = 0.6, 0.7, 0.8 and 0.9, generated from the two-dimensional field in Fig. 8. The black
area is solid while the gray area is fluid.
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Fig. 10. Elasticity coefficients C11 (solid line) and C12 (dashed line) vs. porosity β . Our numerical results are in black (stars) while those of Ilic et al. [34]
are in red (squares).

Therefore (B.4) admits an infinite number of solutions in the form

Xn(x) = An cos

nπx
Lx


, n ∈ N. (B.7)

Then substituting (B.6) (for n ∈ N) into (B.5), we obtain

T ′′
+ CnT ′

+ DnT = 0, (B.8)

where

Cn =
(λ(1)

+ 2µ(1))n2π2

ρ(s)L2x
, Dn =

(λ(2)
+ 2µ(2))n2π2

ρ(s)L2x
.

Solutions to (B.8) are of the form

Tn(t) = ane−(Cn−
√

C2
n−4Dn)t/2 + bne−(Cn+

√
C2
n−4Dn)t/2, (B.9)

with

an =


C2
n − 4Dn + Cn

C2
n − 4Dn − Cn

bn, (B.10)

according to the initial condition T ′(0) = 0.
By the superposition principle, the general solution of (B.1)–(B.3) can be written as

ux(x, t) = a0 +

∞
n=1


ane

−


Cn−

√
C2
n−4Dn


t/2

+ bne
−


Cn+

√
C2
n−4Dn


t/2


cos


nπx
Lx


.

Using the remaining initial condition u(x, 0) = f (x), we have

ux(x, 0) = a0 +

∞
n=1

(an + bn) cos

nπx
Lx


= f (x),

which is a Fourier cosine series for f (x). Accordingly, the Fourier coefficients are defined by

a0 =
1
Lx

 Lx

0
f (x) dx,

an + bn =
2
Lx

 Lx

0
f (x) cos


nπx
Lx


dx.
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Fig. 11. Effective material parameters: (a) Young’s modulus E, (b) Poisson’s ratio ν and (c) shear modulus G vs. porosity β . Our numerical results are in
black (stars) while those of Ilic et al. [34] are in red (squares).

Recalling the relation (B.10) between an and bn, we finally find

an =


C2
n − 4Dn + Cn

Lx

C2
n − 4Dn

 Lx

0
f (x) cos


nπx
Lx


dx,

bn =


C2
n − 4Dn − Cn

Lx

C2
n − 4Dn

 Lx

0
f (x) cos


nπx
Lx


dx.
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Fig. 12. (a) Random spatial distributions of fluid–solid points for β = 0.72, 0.82, 0.92. (b) Two-dimensional color plot of displacement ux at t = 1 for
fc = 1.1 MHz and β = 0.72, 0.82, 0.92 in the absence of viscosity. The values of ux are magnified by a factor of 103 .

Fig. 13. Two-dimensional color plot of displacement ux at t = 1 for β = 0.82 and fc = 0.9, 1.1, 1.4, 1.7 MHz in the absence of viscosity. The values of ux
are magnified by a factor of 103 .
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Fig. 14. Two-dimensional color plot of displacement ux at t = 1 for fc = 1.1 MHz and β = 0.72, 0.82, 0.92 with viscosity. The values of ux are magnified
by a factor of 103 .

Fig. 15. Two-dimensional color plot of displacement ux at t = 1 for β = 0.82 and fc = 0.9, 1.1, 1.4, 1.7 MHz with viscosity. The values of ux are magnified
by a factor of 103 .
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