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a b s t r a c t

In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with
artificial randomly constructed bone. Even though it is known that actual bone does not have randomly
distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any
microstructural information, such as trabeculae width and distance between trabeculae, being gleaned
from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation
on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation
frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a
composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time
domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from
CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles
generated via the turning bands method. A detailed comparison is performed on various parameters
such as the attenuation rate and speed of sound through the bone samples as well as the normalized
broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples
allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random
model provides suitable bone samples for ultrasound interrogation in the transverse direction of the
trabecular network.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasound has been considered as a means to characterize
the elastic properties of cortical and cancellous bone for some time
[1–32].

One experiment involves computing the spectrum of the phase
velocity cðf cÞ and that of the attenuation rate αðf cÞ where fc is
the frequency of the sound wave. Many investigations report
that attenuation depends linearly on frequency from 200 kHz to
600 kHz and in the range of 600 kHz to 1 MHz [22,24,30,33]. Here
we emulate some of these experiments in our computer simula-
tions. In particular, we observe an approximately linear increase
in attenuation over a wide range of frequencies, consistent with
in vitro experiments of Wear [30].

Prior numerical work on this subject includes time-domain inves-
tigations by e.g. Hosakawa and Otani [17], Hosokawa [34], Buchanan
et al. [35,36] and Bossy et al. [3,4,37]. In Hosokawa [34], three-

dimensional simulations were performed with interrogations of
cancellous bone in the main trabecular direction. Bossy et al. [37] also
considered three-dimensional simulations with quasi-plane waves
using a variant of the Graves method [38]. Frequency-domain inves-
tigations were conducted by e.g. Ilic et al. [39,40]. In this context,
Klinge et al. [41] recently investigated ultrasound attenuation through
cancellous bone, including the influence of wave reflection, using a
homogenized finite-element model.

In the present paper, we examine ultrasound propagation through
cancellous bone using the finite-difference time-domain approach
described in [42,43]. More specifically, assuming that cancellous bone
is a composite viscoelastic material with a prescribed distribution
of fluid and solid points, we perform numerical simulations on two-
dimensional bone samples obtained from CT-scanned images of
human calcaneus and from realizations of a random process, to assess
the phenomenon of ultrasound attenuation including its dependence
on excitation frequency and bone volume fraction. For this purpose,
a perfectly matched layer is introduced to minimize spurious wave
reflection in the computational domain. The idea of using bone
samples reconstructed from CT scans in numerical simulations was
first proposed by Luo et al. [44].
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Currently, the problem of ultrasound propagation in cancellous
bone is still not fully understood. In particular, the relationships
between ultrasound parameters and bone properties are still not
clearly established. Such information is needed in clinical exam-
inations for better assessment of bone quality and for better
diagnosis of such bone diseases as osteoporosis, using quantitative
ultrasound techniques. With this in mind, the goal of the present
study is two-fold:

� Assess the role of ultrasonic scattering by the trabecular net-
work, following upon the work of Bossy et al. [37] who
suggested that this mechanism is a major factor in ultrasonic
attenuation. Indeed, cancellous bone is a heterogeneous med-
ium with a very complex trabecular microstructure. Here we
model this geometric feature by random realizations using the
isotropic turning bands method [45], which allows for efficient
numerical simulations with tunable parameters, and we care-
fully examine the relative effects of scattering versus viscosity.

� Test this random algorithm in view of generating a large
catalog of viable, synthetic bone specimens (both in vitro and
in vivo) to be used in a numerical procedure for solving the
inverse problem of recovering effective bone parameters from
acoustic interrogation. Despite recent progress [6,8,7], this
inverse problem still represents a mathematical and computa-
tional challenge. This will be addressed in a future investiga-
tion. Here we test the random algorithm by comparing
with results from CT scans of real bone on various ultrasonic
quantities of clinical relevance, such as the attenuation rate and
speed of sound (SOS) as well as the normalized broadband
ultrasound attenuation (nBUA) coefficient.

Our numerical results support the claim that scattering by bone
microstructure is a major component in ultrasound attenuation,
even in two dimensions. Moreover, we observe that the measure-
ments from CT scans and random realizations are similar, and
consistent with existing results in the literature [30,37], which
leads to expect that if instead of using isotropic random fields, we
use orthotropic random fields, then the results may be even closer.
This also casts doubt on the possibility of recovering any micro-
structural information, such as trabeculae width and distance
between trabeculae, from acoustic interrogation of bone. Chaffai
et al. [46] performed a correlation analysis on experimental data to
evaluate the relationships between ultrasonic backscatter, density
and microarchitecture of cancellous bone. They found no signifi-
cant independent association between microstructure and back-
scatter coefficient (a microstructure-related ultrasonic parameter)
after adjustment for density.

Recently, Meziere et al. [47] performed numerical simulations
of ultrasound propagation through cancellous bone modeled
by clusters of elliptic (two-dimensional) and ellipsoidal (three-
dimensional) scatterers which are randomly distributed in an
interstitial fluid. However, their random structures were synthe-
sized by Monte Carlo generation, which is different from our
turning bands method, and their study was not concerned with
comparing results between real and synthetic bone. Bossy et al.
[37] showed computations with bone samples reconstructed from
CT scans of femural bone, but did not consider randomly generated
samples. To our knowledge, a detailed comparison of numerical
results based on CT scans and randomly generated structures of
bone is reported for the first time here.

The paper is organized as follows: a viscoelastic model for
ultrasound propagation through cancellous bone is presented in
Section 2, and this model is reformulated in terms of the stress and
velocity variables in Section 3. For the absorbing boundary condi-
tions, we introduce perfectly matched layers in Section 4. Section 5
recalls the staggered-grid finite-difference scheme to discretize

the resulting equations and Section 6 describes the two types of
bone samples used in our investigation. Finally, we perform and
discuss a number of numerical simulations on ultrasound attenua-
tion using these bone samples in Section 7.

2. Viscoelastic model

Cancellous bone may be thought of as consisting of a solid
matrix (trabeculae) filled with an interstitial fluid (blood marrow
in vivo or water in vitro). In the present model, we assume a
representative volume element of cancellous bone is the union of
fluid and solid regions where the fluid region (denoted by the
superscript f) obeys Stokes flow while the solid region (denoted by
the superscript s) is a viscoelastic material. We only consider linear
viscoelasticity without memory.

More precisely, the constitutive equations for the solid part (i.e.
the trabeculae) are given by

τðsÞ ¼ AðsÞeðuÞþBðsÞeðvÞ;
for the stress tensor, where

eðuÞij ¼
1
2

∂ui

∂xj
þ∂uj

∂xi

� �
; eðvÞij ¼

1
2

∂vi
∂xj

þ∂vj
∂xi

� �
; ð2:1Þ

and u and v are the displacement and velocity fields, respectively.
These constitutive equations may be written in the generalized

form:

τðsÞij ¼ AðsÞ
ijkleðuÞklþBðsÞ

ijkleðvÞkl; ð2:2Þ

where the AðsÞ
ijkl are elasticity coefficients with the classical sym-

metry and positivity properties:

AðsÞ
ijkleijeklZ0 and AðsÞ

ijkl ¼ AðsÞ
klij ¼ AðsÞ

jikl ¼ AðsÞ
ijlk;

while the BðsÞ
ijkl correspond to instantaneous viscosity terms with

similar properties. In the isotropic elastic plane-strain case, we
have

AðsÞ
ijklekl ¼ ðλð1Þδijδklþ2μð1ÞδikδjlÞekl ¼ λð1Þδijekkþ2μð1Þeij;

where fλð1Þ;μð1Þg are the Lamé parameters, and

BðsÞ
ijklekl ¼ ðλð2Þδijδklþ2μð2ÞδikδjlÞekl ¼ λð2Þδijekkþ2μð2Þeij; ð2:3Þ

where fλð2Þ;μð2Þg are viscosity parameters, or more compactly

τðsÞ ¼ λð1ÞIeðuÞþ2μð1ÞeðuÞþλð2ÞIeðvÞþ2μð2ÞeðvÞ; ð2:4Þ
with e being the dilatation, e the strain tensor and I the identity
tensor. The equations of motion for the solid part are given by

∂tv¼ bðsÞ div½AðsÞeðuÞþBðsÞeðvÞ�; ð2:5Þ
in Ωs � ½0; T �, where bðsÞ ¼ 1=ρðsÞ and ρðsÞ are the solid buoyancy
and density respectively. In the case where the material is
isotropic, these equations take the form:

∂tv¼ bðsÞ
∂
∂xj

ðλð1ÞδijekkðuÞþ2μð1ÞeijðuÞÞ
�

þ ∂
∂xj

ðλð2ÞδijekkðvÞþ2μð2ÞeijðvÞÞ
�
:

ð2:6Þ
In the fluid part, by using the small compressibility approxima-

tion, the constitutive equations also take the form (2.2), namely

τðf Þ ¼ Aðf ÞeðuÞþBðf ÞeðvÞ;
with

Aðf Þ ¼ c2ρðf ÞI; Bðf Þ ¼ 2ηI;

where c is the speed of sound in the fluid and η is the fluid
dynamic viscosity. The equations of motion for this Stokes system
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read

∂tv¼ bðf Þ div c2ρðf ÞdivðuÞIþ2ηeðvÞ
h i

; ð2:7Þ

in Ωf � ½0; T �, where bðf Þ ¼ 1=ρðf Þ and ρðf Þ are the fluid buoyancy
and density respectively.

In both fluid and solid parts, the system of equations for τ, v
and u is completed by

∂tu¼ v: ð2:8Þ
Free-surface conditions are imposed at the boundary of the full
domain Ωf [ Ωs. Continuity of displacements, velocities and
forces is assumed at the fluid–solid interface. This is completed
by initial conditions τ ¼ τ0, v¼ v0 and u¼ u0 at t¼0. For ultra-
sound excitations by a pressure source as in Section 7.2, we set
τ0 ¼ 0, v0 ¼ 0 and u0 ¼ 0.

These are the linearized equations for acoustic propagation
through a composite fluid-solid material, which are solved in our
numerical simulations.

3. Stress–velocity formulation

Since the trabeculae is assumed to be viscoelastic and isotropic,
this leads to a system of equations similar to that in Graves [38] for
seismic waves. Considering the two-dimensional case in Cartesian
coordinates (x,y), the stresses in the trabeculae may be written as

τðsÞxx ¼ ðλð1Þ þ2μð1ÞÞ∂xuxþλð1Þ∂yuy

þðλð2Þ þ2μð2ÞÞ∂xvxþλð2Þ∂yvy;

τðsÞyy ¼ ðλð1Þ þ2μð1ÞÞ∂yuyþλð1Þ∂xux

þðλð2Þ þ2μð2ÞÞ∂yvyþλð2Þ∂xvx;

τðsÞxy ¼ μð1Þð∂xuyþ∂yuxÞþμð2Þð∂xvyþ∂yvxÞ; ð3:1Þ

and their evolution obeys

∂tτðsÞxx ¼ ðλð1Þ þ2μð1ÞÞ∂xvxþλð1Þ∂yvy

þðλð2Þ þ2μð2ÞÞ∂x _vxþλð2Þ∂y _vy;

∂tτðsÞyy ¼ ðλð1Þ þ2μð1ÞÞ∂yvyþλð1Þ∂xvx

þðλð2Þ þ2μð2ÞÞ∂y _vyþλð2Þ∂x _vx;

∂tτðsÞxy ¼ μð1Þð∂xvyþ∂yvxÞþμð2Þð∂x _vyþ∂y _vxÞ; ð3:2Þ

where ∂t denotes the partial derivative with respect to time t, and
ð∂x; ∂yÞ denote the partial derivatives with respect to the spatial
coordinates (x,y) respectively. Moreover, to avoid overly clumsy
expressions, the upper dot is further shorthand notation for ∂t (e.g.
_vx ¼ ∂tvx). In (3.2), the acceleration field is given by

∂tvx ¼ bðsÞ½∂xτðsÞxx þ∂yτðsÞxy �;
∂tvy ¼ bðsÞ½∂xτðsÞxyþ∂yτðsÞyy�: ð3:3Þ

In the interstitial fluid, the evolution equations for the stress
field are

∂tτðf Þxx ¼ c2ρðf Þð∂xvxþ∂yvyÞþ2η∂x _vx;

∂tτðf Þyy ¼ c2ρðf Þð∂xvxþ∂yvyÞþ2η∂y _vy;

∂tτðf Þxy ¼ ηð∂x _vyþ∂y _vxÞ; ð3:4Þ

combined with

∂tvx ¼ bðf Þ½∂xτðf Þxx þ∂yτðf Þxy �;
∂tvy ¼ bðf Þ½∂xτðf Þxy þ∂yτðf Þyy �: ð3:5Þ

We note that both the fluid and solid phases are described by a
general system of the form:

τðaÞxx ¼ ðλðkÞ þ2μðkÞÞ∂xuxþλðkÞ∂yuy

þðλðkþ1Þ þ2μðkþ1ÞÞ∂xvxþλðkþ1Þ∂yvy;

τðaÞyy ¼ ðλðkÞ þ2μðkÞÞ∂yuyþλðkÞ∂xux

þðλðkþ1Þ þ2μðkþ1ÞÞ∂yvyþλðkþ1Þ∂xvx;

τðaÞxy ¼ μðkÞð∂xuyþ∂yuxÞþμðkþ1Þð∂xvyþ∂yvxÞ; ð3:6Þ

together with the evolution equations

∂tτðaÞxx ¼ ðλðkÞ þ2μðkÞÞ∂xvxþλðkÞ∂yvy

þðλðkþ1Þ þ2μðkþ1ÞÞ∂x _vxþλðkþ1Þ∂y _vy;

∂tτðaÞyy ¼ ðλðkÞ þ2μðkÞÞ∂yvyþλðkÞ∂xvx

þðλðkþ1Þ þ2μðkþ1ÞÞ∂y _vyþλðkþ1Þ∂x _vx;

∂tτðaÞxy ¼ μðkÞð∂xvyþ∂yvxÞþμðkþ1Þð∂x _vyþ∂y _vxÞ; ð3:7Þ

where ða; kÞ ¼ fðs;1Þ; ðf ;3Þg, λð3Þ ¼ c2ρðf Þ, λð4Þ ¼ 0, μð3Þ ¼ 0 and
μð4Þ ¼ η. The symbol ðaÞ refers to either fluid or solid depending
on which phase is considered. From a numerical point of view as
described below, each grid point is thus either fluid or solid, and
satisfies the corresponding equations.

The acceleration field also has the same form for both phases:

∂tvx ¼ bðaÞ½∂xτðaÞxx þ∂yτðaÞxy �;
∂tvy ¼ bðaÞ½∂xτðaÞxy þ∂yτðaÞyy �; ð3:8Þ

and this is completed by

∂tux ¼ vx; ∂tuy ¼ vy; ð3:9Þ
which yields the displacements in both phases as well.

4. Perfectly matched layer

In all of our applications, the domain (i.e. the bone sample) is
assumed to be rectangular. To simulate ultrasound propagation, a
signal is emitted by a source from one side of the domain and
recorded by a receiver on the opposite side. Free-surface boundary
conditions are specified as in [42], except on the receiver side
where an absorbing boundary condition is imposed. The reason for
this is to prevent spurious wave reflection which may contaminate
the calculation of ultrasound attenuation rate as described below
[37]. For this purpose, we adopt the approach of perfectly matched
layers (PMLs) which has proved to be effective in finite-difference
and finite-element methods for simulation of linear electromag-
netic and acoustic waves in the time domain [48]. In particular,
Collino and Tsogka [49] adapted this approach to the stress–
velocity formulation of elastodynamics. Here we apply their
method to our bone problem and adapt it to our staggered-grid
finite-difference scheme. A perfectly matched layer is an artificial
region adjacent to the actual domain and is designed in such a way
that no reflection is produced at the interface between the two
media. In practice, a relatively thin layer with strong damping
parameters may be used to save computational cost.

Following [49], we decompose the stress and velocity compo-
nents as

τðaÞij ¼ τðaÞ?ij þτðaÞ Jij ; vj ¼ v?
j þv J

j ;

so that their evolution equations read as follows:

∂tτðaÞ?xx þdðxÞτðaÞ?xx ¼ ðλðkÞ þ2μðkÞÞ∂xvxþðλðkþ1Þ þ2μðkþ1ÞÞ∂x _vx;
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∂tτðaÞ?yy þdðxÞτðaÞ?yy ¼ λðkÞ∂xvxþλðkþ1Þ∂x _vx;

∂tτðaÞ?xy þdðxÞτðaÞ?xy ¼ μðkÞ∂xvyþμðkþ1Þ∂x _vy;

∂tv?
x þdðxÞv?

x ¼ bðaÞ∂xτðaÞxx ;

∂tv?
y þdðxÞv?

y ¼ bðaÞ∂xτðaÞxy ; ð4:1Þ

for the derivatives perpendicular to the interface with the PML,
and

∂tτðaÞ Jxx ¼ λðkÞ∂yvyþλðkþ1Þ∂y _vy;

∂tτðaÞ Jyy ¼ ðλðkÞ þ2μðkÞÞ∂yvyþðλðkþ1Þ þ2μðkþ1ÞÞ∂y _vy;

∂tτðaÞ Jxy ¼ μðkÞ∂yvxþμðkþ1Þ∂y _vx;

∂tv J
x ¼ bðaÞ∂yτðaÞxy ;

∂tv J
y ¼ bðaÞ∂yτðaÞyy ; ð4:2Þ

for the derivatives parallel to this interface. In writing (4.1) and
(4.2), we assume waves propagate mainly in the x-direction and
thus the PML is adjacent to a y-side of the domain. Therefore, the
symbol ?refers to the x-direction while the symbol Jrefers to the
y-direction. The damping function d(x) is taken to be zero every-
where except in the PML, hence system (4.1) and (4.2) is equiva-
lent to (3.7) and (3.8) in the interior region, by linearity. A similar
procedure can be followed for absorption in the y-direction.

5. Discretized equations

Following [38,42,43], we use a staggered-grid finite-difference
scheme to discretize system (4.1) and (4.2) in each phase, where
the various components of displacement, velocity and stress are
defined at different grid points in the computational domain.
A sketch of a unit cell constituting the building block of the
computational domain shows the grid layout in Fig. 1. This method
is staggered and second-order in both space and time. In the
following expressions, subscripts refer to the spatial indices while
superscripts refer to the time index. For example,

vnþ1=2
xiþ1=2;j

represents the x-component of the velocity at point xiþ1=2 ¼
ðiþ1=2ÞΔx, yj ¼ jΔy and at time tnþ1=2 ¼ ðnþ1=2ÞΔt, where Δx,
Δy are the mesh sizes in the two spatial directions and Δt is the
time step. To avoid overly cumbersome expressions, Dj denotes the
difference operator for the discretization of the partial derivative ∂j
in space. Below we briefly present the discretized equations in
the present context with a PML and refer the reader to [38,42]
for further details on these difference operators. In particular,
convergence tests of this numerical scheme for a related acoustic
model of cancellous bone were performed in [42,43] (without
PML). Because we assume continuity of displacements, velocities
and forces across phases, the difference formulas may involve
values at neighboring points located in different phases.

The discretization of (4.1) leads to

ðτðaÞ?xx Þnþ1
i;j �ðτðaÞ?xx Þni;j
Δt

þdðxiÞ
ðτðaÞ?xx Þnþ1

i;j þðτðaÞ?xx Þni;j
2

¼ ½ðλðkÞ þ2μðkÞÞDxvxþðλðkþ1Þ þ2μðkþ1ÞÞDx _vx�nþ1=2
i;j ;

ðτðaÞ?yy Þnþ1
i;j �ðτðaÞ?yy Þni;j
Δt

þdðxiÞ
ðτðaÞ?yy Þnþ1

i;j þðτðaÞ?yy Þni;j
2

¼ ½λðkÞDxvxþλðkþ1ÞDx _vx�nþ1=2
i;j ;

ðτðaÞ?xy Þnþ1
iþ1=2;jþ1=2�ðτðaÞ?xy Þniþ1=2;jþ1=2

Δt

þdðxiþ1=2Þ
ðτðaÞ?xy Þnþ1

iþ1=2;jþ1=2þðτðaÞ?xy Þniþ1=2;jþ1=2

2
¼ ½μðkÞDxvyþμðkþ1ÞDx _vy�nþ1=2

iþ1=2;jþ1=2;

ðv?
x Þnþ1=2

iþ1=2;j�ðv?
x Þn�1=2

iþ1=2;j

Δt
þdðxiþ1=2Þ

ðv?
x Þnþ1=2

iþ1=2;jþðv?
x Þn�1=2

iþ1=2;j

2
¼ ½bðaÞDxτðaÞxx �niþ1=2;j;

ðv?
y Þnþ1=2

i;jþ1=2�ðv?
y Þn�1=2

i;jþ1=2

Δt
þdðxiÞ

ðv?
y Þnþ1=2

i;jþ1=2þðv?
y Þn�1=2

i;jþ1=2

2
¼ ½bðaÞDxτðaÞxy �ni;jþ1=2; ð5:1Þ

and that of (4.2) yields

ðτðaÞ Jxx Þnþ1
i;j �ðτðaÞ Jxx Þni;j
Δt

¼ ½λðkÞDyvyþλðkþ1ÞDy _vy�nþ1=2
i;j ;

ðτðaÞ Jyy Þnþ1
i;j �ðτðaÞ Jyy Þni;j
Δt

¼ ½ðλðkÞ þ2μðkÞÞDyvy

þðλðkþ1Þ þ2μðkþ1ÞÞDy _vy�nþ1=2
i;j ;

ðτðaÞ Jxy Þnþ1
iþ1=2;jþ1=2�ðτðaÞ Jxy Þniþ1=2;jþ1=2

Δt
¼ ½μðkÞDyvxþμðkþ1ÞDy _vx�nþ1=2

iþ1=2;jþ1=2;

ðv J
x Þnþ1=2

iþ1=2;j�ðv J
x Þn�1=2

iþ1=2;j

Δt
¼ ½bðaÞDyτðaÞxy �niþ1=2;j;

ðv J
y Þnþ1=2

i;jþ1=2�ðv J
y Þn�1=2

i;jþ1=2

Δt
¼ ½bðaÞDyτðaÞyy �ni;jþ1=2: ð5:2Þ

As proposed by [49], we use a damping function of the form:

dðxÞ ¼ d0
x
δ

� �2
;

with

d0 ¼
3V
2δ

log
1
R

� �
;

where R is the theoretical reflection coefficient, δ is the PML width
and V is a representative velocity. In this case, Collino and Tsogka
[49] found that the simulated reflection coefficient is about 1%,
0.1% and 0.01% for δ¼ 5Δx, 10Δx and 20Δx respectively.

Fig. 1. Sketch of four unit cells in the two-dimensional staggered grid. The different
nodes for the various physical variables are also labeled in each cell. Note that the
displacement and velocity components are evaluated at the same respective nodes.
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Eqs. (5.1) and (5.2) form a closed system of equations for the
stress and velocity fields. An auxiliary computation determines
the displacements from the velocities at every time step, assuming
that their respective components are defined at the same grid
points but staggered temporally. Using centered finite differences
in time, the discretization of (3.9) is

unþ1
xiþ1=2;j ¼ un

xiþ1=2;jþΔtvnþ1=2
xiþ1=2;j;

unþ1
yi;jþ1=2 ¼ un

yi;jþ1=2þΔtvnþ1=2
yi;jþ1=2: ð5:3Þ

6. Simulated bone samples

In the present model, the domain is a given distribution of
points which are either fluid or solid. Numerically, this distribution
of grid points is specified in two different ways: as a random
distribution according to the turning bands method of Mantoglou
and Wilson [45,50] and from digitized CT-scanned images of real
human calcaneus. An example of such CT-scanned images, in
a transverse plane of the foot, is shown in Fig. 5 with the top,
bottom, right and left sides of the image corresponding to the
anterior, posterior, lateral and medial aspects of the calcaneal bone
respectively. A rectangular cross-section along this bone specimen
is typically used in our numerical simulations. For this purpose,
the original grayscale image is segmented to yield a binary
mapping of the trabecular architecture (black for fluid and white
for solid), as depicted in Fig. 5. Bone porosity is estimated from
these binary images by evaluating the proportion of black pixels
relative to the total number of pixels. In view of applications to
quantitative ultrasound techniques for diagnosis of such bone
diseases as osteoporosis, we focus our attention on bone samples
of relatively high porosity.

Synthetic bone samples are simulated by using the turning
bands method [45,50] which generates multidimensional station-
ary random fields with a prescribed covariance structure. This
numerical approach is particularly efficient because, instead
of generating a multidimensional field directly, several indepen-
dent one-dimensional processes are simulated and superimposed.
Below we briefly recall how we adapt this approach to our bone
problem and refer the reader to [43,45] for further details. An
example of two-dimensional random field so-obtained is pre-
sented in Fig. 6, where each point is normally distributed and
the two-dimensional statistics obey an exponential covariance
structure. To turn the random field into a distribution of fluid
and solid points, we need to come up with a procedure to select
which values of this field correspond to fluid or solid points for
a prescribed porosity β. Since the field value at each point is
normally distributed, this categorization can be achieved by using
the error function:

erfðzÞ ¼ 2ffiffiffiffi
π

p
Z z

0
e� t2 dt;

which is related to the cumulative density function of a standard
normal distribution by

ΦðzÞ ¼ 1
2
þ1
2
erf

zffiffiffi
2

p
� �

: ð6:1Þ

Suppose z0 is the critical point such that the probability:

Pð�z0ozoz0Þ ¼Φðz0Þ�Φð�z0Þ ¼ β;

then z0 can be found by using (6.1) as

z0 ¼
ffiffiffi
2

p
erf �1ðβÞ:

Therefore a point in the domain is fluid if its field value is in
½�z0; z0�, otherwise it is a solid point. By this selection, we can
guarantee that a proportion of β points out of the total number is

fluid. If the normal probability distribution is not standard, then
we can always make it so by a change of variables.

Based on the two-dimensional realization of Fig. 6, we show
examples of random distributions of fluid–solid points for β¼0.7,
0.75, 0.8 and 0.85 in Fig. 7(e)–(h), using the categorization
described above. As expected, the proportion of fluid points
increases with β similar to real bone samples. The main difference
between these two types of bone samples is that the real ones
exhibit a more anisotropic trabecular structure at lower porosity,
with a preferred orientation in the vertical direction according to
the CT-scanned images. Indeed, real cancellous bone is known
to be an anisotropic heterogeneous material made of a complex
network of interconnected plates and rods, while the simulated
random one looks like an isotropic collection of solid patches
among a fluid background. The synthetic bone samples however
tend to look more and more like real ones as the porosity
increases, which is consistent with the disappearance of the
trabecular matrix during the osteoporosis process.

In the next section, comparing numerical results from these
two types of bone samples allows us to assess the role of bone
microstructure in ultrasound attenuation through the process of
scattering. This is also a way to test the use of homogenization
in effective acoustic models of cancellous bone [51–53] and thus
whether information on bone properties (including the micro-
structure) can be effectively inferred from such models.

7. Numerical tests

Because of the large disparity in orders of magnitude between
the various physical parameters in the problem, we find it
convenient to non-dimensionalize the equations by using the
characteristic length scale L¼ 10�2 m related to the size of the
bone specimen and the characteristic time scale T ¼ 10�5 s in the
ultrasonic range. Therefore, unless stated otherwise, it is under-
stood that values of dimensional quantities specified without
physical units are dimensionless values relative to these charac-
teristic scales.

Typical values of the physical parameters in the model are
listed in Tables 1 and 2. The Lamé parameter λð1Þ for the solid

Table 1
Values of physical parameters for the solid phase (cortical bone) as given in
[17,7,39].

Parameter Symbol Value

Solid bulk modulus K ðsÞ 2.04�1010 Pa

Solid shear modulus μð1Þ 0.833�1010 Pa
Solid Young's modulus E 2.2�1010 Pa
Poisson's ratio ν 0.32
Lamé coefficient λð1Þ 1.48�1010 Pa
Frame material density ρðsÞ 1960 kg m�3

Solid frame viscosity λð2Þ 197 Pa s
Solid frame viscosity μð2Þ 35 Pa s

Table 2
Values of physical parameters for the fluid phase (blood marrow) as given in
[17,7,39].

Parameter Symbol Value

Fluid bulk modulus Kðf Þ 2�109 Pa

Pore fluid density ρðf Þ 950 kg m�3

Sound speed in fluid c 1451 m s�1

Pore fluid viscosity η 1.46 N s m�2
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phase is defined by

λð1Þ ¼ νE
ð1þνÞð1�2νÞ:

The viscosity coefficients λð2Þ, μð2Þ and η are derived in the
following Appendix [54,55].

In this section, we first test the performance of the PML, and
then examine ultrasound attenuation through bone samples
obtained from CT-scanned images and simulated random realiza-
tions, as described above.

7.1. Perfectly matched layer

Let us consider a purely solid material (β¼0). In the case of one-
dimensional wave propagation without viscosity, Eqs. (3.7)–(3.9)
with free-surface boundary conditions reduce to the wave equation:

∂2t ux ¼
λð1Þ þ2μð1Þ

ρðsÞ ∂2xux; ð7:1Þ

for the displacement ux, with reflecting boundary condition ∂xux ¼ 0
at both endpoints x¼0 and x¼ Lx. The corresponding stress and

velocity are determined by

τxx ¼ ðλð1Þ þ2μð1ÞÞ∂xux; vx ¼ ∂tux:

Given initial conditions

ux ¼ f ðxÞ; ∂tux ¼ 0;

and considering only the first rebound off the endpoints, Eq. (7.1)
admits the exact d'Alembert solution:

ux ¼ 1
2 ½f ðxþcðsÞtÞþ f ðx�cðsÞtÞ�;

vx ¼ 1
2 c

ðsÞ½f 0ðxþcðsÞtÞ� f 0ðx�cðsÞtÞ�;
τxx ¼ 1

2 ðλ
ð1Þ þ2μð1ÞÞ½f 0ðxþcðsÞtÞþ f 0ðx�cðsÞtÞ�;

if x�cðsÞt40, xþcðsÞtoLx, and

ux ¼ 1
2 ½f ð2Lx�x�cðsÞtÞþ f ðcðsÞt�xÞ�;

vx ¼ �1
2 c

ðsÞ½f 0ð2Lx�x�cðsÞtÞ� f 0ðcðsÞt�xÞ�;
τxx ¼ �1

2 ðλ
ð1Þ þ2μð1ÞÞ½f 0ð2Lx�x�cðsÞtÞþ f 0ðcðsÞt�xÞ�;

otherwise, where

cðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1Þ þ2μð1Þ

ρðsÞ

s
;
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Fig. 2. Profile of displacement ux in the cross-section y¼ Ly=2 at t¼0, 0.15, 0.38, 0.6. The solid line corresponds to the numerical solution (with PML at x¼ Lx) while the
dashed line corresponds to the exact solution (without PML).
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and the primes denote differentiation with respect to the argument
of the function f.

To compare with this exact solution, we perform numerical
simulations of (4.1) and (4.2) using initial conditions

uxðx; y;0Þ ¼ f ðxÞ ¼ 0:01e�100ðx�ðLx þδÞ=2Þ2 ;

vxðx; y;0Þ ¼ 0;

and

τxxðx; y;0Þ ¼ ðλð1Þ þ2μð1ÞÞf 0ðxÞ
¼ �ðλð1Þ þ2μð1ÞÞð2x�Lx�δÞe�100ðx�ðLx þδÞ=2Þ2 ;

which are invariant in the y-direction. The computational domain
is a square with sides Lx ¼ Ly ¼ 3. A PML of width δ¼ 20Δx with
damping parameters R¼ 10�4 and V ¼ cðsÞ is placed next to the
right side x¼ Lx.

Figs. 2–4 show the comparison between exact (without PML)
and numerical (with PML) profiles of ux, vx and τxx in the cross-
section y¼ Ly=2 at various values of t. The spatial resolution is
Nx � Ny ¼ 200� 200, where Nx and Ny denote the number of grid
points in the x- and y-directions respectively, and the time step is
Δt ¼ 5� 10�4. This simulation includes the splitting of the initial
condition into left- and right-moving components, as well as their
propagation to and bouncing off the sides of the domain. For all
three variables, the profile of their left component, its propagation
speed and the reflecting boundary condition at x¼0, are well

reproduced numerically. In particular, neither visible spurious
oscillations nor significant numerical diffusion are observed. Of
course, a better agreement can be obtained by increasing the
spatial resolution. By contrast, the right component is quickly
absorbed as it travels through the PML and no reflection is
discernible from the right side. We checked that the amplitude
ratio of the right (damped) wave to the left (undamped) wave is
about 10�4 at t¼0.6, which agrees with the specified value of R
and with results of Collino and Tsogka [49] for the PML width
being considered. This test confirms that our implementation of
the PML is effective at significantly reducing wave reflection from
domain boundaries.

7.2. Ultrasound attenuation

It is well known that ultrasound propagation through cancel-
lous bone experiences attenuation [56,57,39]. This attenuation
is more pronounced at higher frequencies and also increases
with bone volume fraction (i.e. bone density). In this section, we
numerically check these features of ultrasound attenuation for
bone samples obtained from both CT-scanned images and simu-
lated random realizations. Hereinafter, for convenience, we refer
to ‘real bone’ samples in our study as those reconstructed from CT-
scanned images of real human calcaneus and to ‘synthetic bone’
samples as those obtained from random realizations simulated by
the turning bands method.

Fig. 3. Profile of velocity vx in the cross-section y¼ Ly=2 at t¼0, 0.15, 0.38, 0.6. The solid line corresponds to the numerical solution (with PML at x¼ Lx) while the dashed line
corresponds to the exact solution (without PML).
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Fig. 4. Profile of stress τxx in the cross-section y¼ Ly=2 at t¼0, 0.15, 0.38, 0.6. The solid line corresponds to the numerical solution (with PML at x¼ Lx) while the dashed line
corresponds to the exact solution (without PML).

Fig. 5. Left: CT-scanned image of human calcaneus. Right: binary mapping of a rectangular 1 cm �2 cm cross-section along the calcaneal bone. The white area is the
trabecular matrix while the black area is the interstitial space.
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As mentioned earlier, we concentrate on two-dimensional
rectangular bone samples which are 1 cm long in the x-direction
and 2 cm wide in the y-direction. The incoming pulse is generated
by a pressure source located on the left side of the domain (x¼0)
and defined by

τxxð0; y; tÞ ¼ P sin ð2πf ctÞe�ðt�5t0=2Þ2=t20 ;

where t0 ¼ 1=f c and fc denotes the prescribed temporal frequency.
The pressure is applied over the whole left side of the domain, and
its amplitude is set to be P¼8 kPa following [39,42]. A PML of
width δ¼ 20Δx is attached to the right side. The spatial resolution
Nx � Ny ¼ 200� 200 and time step Δt ¼ 10�4 are selected suffi-
ciently fine so they can resolve well the excitation wavelength and
period. The time step is also chosen based on the CFL condition for
stability as derived in [43]. Since we expect the excitation to
be primarily longitudinal, propagating from left to right in the
x-direction, we focus our attention on ux. The transverse displace-
ment uy (not shown here) is typically of an order of magnitude
smaller than ux. This direction of wave propagation is chosen to be
perpendicular to the main orientation of the trabecular network
in real bone (as indicated in Fig. 7(a)–(d)) so as to match the
orientation of the ultrasound beam in in vivo clinical examinations.

Fig. 8 shows time series of a typical signal sent out by the
source and received on the opposite side of the domain. For
illustration, a snapshot of the corresponding two-dimensional
profile at t ¼ 12 μs is presented in Fig. 9. The irregular character
of the medium is apparent from the two-dimensional profile of
the signal. The one-dimensional profiles of ux in Fig. 8 result from
averaging over the transverse y-direction. We see that the wave-
form is overall preserved but its amplitude decreases as the wave
travels through the domain. To quantify this effect, in particular its
dependence on excitation frequency and bone volume fraction, we

evaluate the attenuation coefficient α as defined by

A2

A1
¼ e�αLx ;

where A1 (resp. A2) is the input (resp. received) y-averaged
amplitude of ux and Lx¼1 cm.

Values of α for β¼0.7, 0.75, 0.8, 0.85 as functions of frequency fc
are reported in Figs. 10 and 11. Both real and synthetic bone
samples are examined. A number of observations can be made
from these figures. First, in all cases, α seems to increase linearly
with fc over the wide range 0.5–2 MHz, which is consistent
with other experimental [57,22,30] and numerical [37] results.
In particular, Wear [30] also observed linear dependence (without
apparent breakpoint) from 0.4 MHz up to at least 1.7 MHz for
human calcaneus in vitro. For all four values of β considered,
attenuation is slightly stronger in real bones than in synthetic
ones but their respective values of α are overall comparable.
This suggests that randomly generated bone samples are a good
approximation to real ones, at least as far as wave propagation in
the x-direction is concerned here. Figs. 10 and 11 also compare
cases with and without viscosity (by setting λð2Þ ¼ μð2Þ ¼ η¼ 0). As
expected, attenuation is found to be larger in viscous cases than in
non-viscous ones, and is more pronounced at higher frequencies,
but overall the difference in α between these two cases is almost
negligible for both real and synthetic bones. Our two-dimensional
results support the conclusion drawn by Bossy et al. [37], based on
three-dimensional numerical simulations without viscosity, that
ultrasound attenuation in cancellous bone is mainly attributable to
scattering by the complex trabecular structure.

Assuming a linear dependence of attenuation on frequency, as
suggested by our numerical results, we can calculate the nBUA
parameter defined as the slope of a linear fit to the data:

α¼ α0þnBUA � f :

Here this linear fit is applied to the whole range f cA ½0:5;2� MHz.
Normalized nBUA values are known to be strongly and positively
correlated with bone volume fraction (i.e. bone density) BV
¼ 1�β [46,58,59], which is well illustrated in Fig. 12. A total
of 60 bone samples (30 real and 30 synthetic bone samples),
including viscous effects, are used for this plot. The nBUA values
for real bone are overall larger than those for synthetic bone but
they remain comparable, with a difference of about 15%, and they
follow a similar increasing trend. These results are again consistent
with those reported in [30,37], however we note that the nBUA
values found in [37] tend to grow faster with bone volume
fraction than our values do. For example, their nBUA value is
about 30 dB/cm/MHz for BV¼20% while ours (for real bone) is
about 13 dB/cm/MHz for the same volume fraction. This may be
attributed to the complex three-dimensional trabecular architec-
ture used in their numerical simulations, which promotes stronger
ultrasound scattering than in two dimensions. The similarities
between the nBUA graphs for real and synthetic bones in Fig. 12
(and with the nBUA graph in [37]) further support the fact that the
present random model can generate realistic bone specimens for
ultrasound interrogation.

Another physical parameter which correlates well with bone
volume fraction is the SOS [58], as indicated in Fig. 13. For
fc¼1 MHz and a given porosity, by recording the peak times t1
and t2 of the emitted and received y-averaged pulses (on the left
and right sides of the domain) respectively, as shown in Fig. 8, we
can estimate the speed of sound through the bone sample as

SOS¼ Lx
t2�t1

:

Observations similar to those for the nBUA parameter can be made
here. In particular, for high porosities, our SOS values are found to

Fig. 6. Two-dimensional 1 cm �2 cm random field simulated by the turning bands
method for an exponential covariance function.
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increase over a range close to that reported by Bossy et al. [37] (i.e.
� 1500–1600 m=s). When comparing real and synthetic bones,
their respective SOS values tend to deviate from each other as BV
increases. However, this deviation remains small within 5% of a
representative value, say 1500 m/s. As far as the nBUA and SOS are
concerned, our two-dimensional results for real bone are overall
closer to the three-dimensional results of Bossy et al. [37]. This
may be explained by the fact that their numerical simulations used
three-dimensional bone samples reconstructed from CT scans of

real human femur. We note again that, unlike our acoustic model,
the one of Bossy et al. [37] did not account for viscous dissipation
in cancellous bone. Therefore, the similarity of results clearly
points to scattering as a major cause for ultrasound attenuation
in either two or three dimensions. This is consistent with results of
Naili et al. [60] who proposed an in vivo model for cortical bone,
and showed that viscous absorption in the surrounding fluid
tissues is negligible while bone viscoelastic properties may have
a significant effect on the acoustic response.

Fig. 7. Top: ‘real’ bone samples of porosity (a) β¼0.7, (b) 0.75, (c) 0.8, (d) 0.85 reconstructed from CT-scanned images of human calcaneus. Bottom: ‘synthetic’ bone samples
of porosity (e) β¼0.7, (f) 0.75, (g) 0.8, (h) 0.85 obtained from random realizations simulated by the turning bands method. The size of each sample is 1 cm �2 cm.

Fig. 8. Left: time series of a typical y-averaged signal sent out by the pressure source on the left side of the domain. The graph represents the profile of displacement ux.
Right: time series of the corresponding signal received on the right side of the domain.
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8. Conclusions

In this study, we perform numerical simulations on two-
dimensional bone samples obtained from CT scans of human
calcaneus and from realizations of a random process, to assess
the phenomenon of ultrasound attenuation including its depen-
dence on excitation frequency and bone volume fraction. We
examine in particular the contribution of scattering by the trabe-
cular microstructure. Another objective is to test the random
algorithm, based on the turning bands method, in view of creating
a large catalog of synthetic bone specimens to be used for the
inverse problem of recovering effective bone parameters from
acoustic interrogation.

Hoffmeister et al. [61] found that, in the range 0.5–1 MHz, the
nBUA exhibits a significant correlation with the anterior–posterior
and medial–lateral directions but not in the superior–inferior
orientations. A breakpoint in the slopes was observed at about

1 MHz, whereas other researchers observed one at about 400 kHz.
Other studies however reported measurable nonlinear attenuation
at frequencies below 400 kHz for unfatted bone from human
cadavers [28]. Our numerical results show a linearly increasing
dependence of ultrasound attenuation on incoming frequency in
both cases, over the wide range 0.5–2 MHz. We have not discerned
any noticeable breakpoint in this range of frequencies, consistent
with in vitro experiments of Wear [30]. Attenuation and propaga-
tion speed are also found to increase with bone volume fraction
for both types of bone samples. Our two-dimensional simulations
support the three-dimensional numerical results of Bossy et al.
[37] that scattering by the complex trabecular network plays
a major role in ultrasound attenuation. Moreover our random
model is shown to be able to mimic realistic bone specimens for
ultrasound interrogation, especially at high porosities and in the
transverse direction of the trabecular network.

Our acoustic model for cancellous bone includes viscosity in
both fluid and solid phases with physically relevant parameters.
The role played by bone marrow in ultrasound measurement for
bone is still under debate. Some researchers [62,63] claim that
taking into account marrow viscosity leads only to minor differ-
ences on the effective attenuation and dispersion. Nicholson and
Bouxsein [64] made quantitative ultrasound transmission and
backscatter experiments on 46 human cancellous bone specimens
(both water filled and in vivo). They concluded that the potential
impact of bone marrow should be considered when interpreting
quantitative ultrasound measurement. In simulated studies using
a variant of the Biot model, we found that using a shear-thinning
fluid, which we believe represents more accurately the blood-
marrow interstitial fluid, yields results quite different from the
case of water as the interstitial fluid [65]. See also the works
[66–68] which support our claim.

We plan in the future to compare three-dimensional, transver-
sely isotropic (i.e. orthotropic) random simulations in conjunction
with three-dimensional CT scans of actual bone samples. Trans-
verse isotropy can be included in the random realizations by

Fig. 9. Two-dimensional snapshot of displacement ux, corresponding to Fig. 8, at
t ¼ 12 μs. For clarity, the values of ux are magnified by a factor of 103.

Fig. 10. Attenuation coefficient α versus frequency fc for real bone samples of porosity β¼0.7, 0.75, 0.8, 0.85 with (crosses) and without (circles) viscosity.
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allowing the covariance function (which is a prescribed quantity in
the turning bands method) to exhibit angular dependence. In this
case, we expect that the comparison may be even more satis-
factory than for two-dimensional samples. Moreover, we intend
to incorporate in our model non-Newtonian interstitial fluids
as mentioned above. A long-term goal is to emulate three-
dimensional simulations of the experiments described in [17,69]
and, to accomplish this, we need to use the effective acoustic
propagation equations. Using homogenization theory, we showed
that the effective equations are equivalent, up to an order of
magnitude of 10�3, to a Biot system [51–53]. Having effective
equations allows us to pose a viable inverse problem for three-
dimensional samples by measuring acoustic pressure data at
different locations in the water tank [70]. Such problems are
solved by minimizing the difference with respect to an appropriate
norm between the measured acoustic pressure and the acoustic
pressure predicted by the effective equations over a set of effective

parameters (such as bone porosity and other elasticity coefficients)
related to material parameters as given in Tables 1 and 2. These
effective parameters can be evaluated from bone samples as
shown in [43], and having a large catalog of samples is crucial
for accurately solving the inverse problem. This has important
clinical implications for better assessment of bone quality and
for better diagnosis of osteoporosis using quantitative ultrasound
techniques.

To our knowledge, no three-dimensional inversions have to
date been made despite the scientific importance of work done in
[10–12,26,37,70,46,71,72]. These considered either one-dimensional
inversion approaches or three-dimensional direct problems, i.e. by
observing wave propagation through thematrix of one of the CT scans.
The inverse problem that we have in mind should not be confused
with the reconstruction of microstructure from CT scans obtained
using a synchrotron or with the correlation analysis performed
on macroscopic parameters [37,46]. Our two-dimensional inversion

Fig. 11. Attenuation coefficient α versus frequency fc for synthetic bone samples of porosity β¼ 0:7, 0.75, 0.8, 0.85 with (crosses) and without (circles) viscosity.
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Fig. 12. Normalized BUA versus bone volume fraction for 30 real bone samples
(solid dots) and 30 synthetic bone samples (circles).
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Fig. 13. Speed of sound at fc¼1 MHz versus bone volume fraction for 30 real bone
samples (solid dots) and 30 synthetic bone samples (circles).
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approach [7,8] is still state of the art for inverse problems for
cancellous bone. It is our intent to extend this method to fully
three-dimensional bone samples.
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Appendix A. Calculation of viscosity coefficients

In this Appendix, we derive physically relevant values for the
viscosity coefficients used in our numerical simulations of ultra-
sound propagation through cancellous bone. For the solid phase,
let αL and αT be the attenuation rates associated with the long-
itudinal and transverse modes, respectively. A relation between
attenuation rate and viscosity coefficient for the longitudinal mode
is given by

αL ¼
η11ω

2

2cLðλð1Þ þ2μð1ÞÞ
; ðA:1Þ

provided ωbαLcL, where cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλð1Þ þ2μð1ÞÞ=ρðsÞ

q
is the speed of

sound in the longitudinal direction. A similar relation for the
transverse mode can be written as

αT ¼
η66ω2

2cTμð1Þ; ðA:2Þ

provided ωbαTcT , where cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð1Þ=ρðsÞ

p
is the speed of sound in

the transverse direction. Using parameter values listed in Table 1
together with values of αL and αT reported in [73,74], we find
αLcL ¼ 1:68� 105 s�1 and αT cT ¼ 8:25� 104 s�1 while ω¼ 2π �
106 s�1 for a characteristic ultrasonic frequency fc¼1 MHz, so the
conditions for (A.1) and (A.2) are met here. From (A.1) and (A.2)
and the fact that

η12 ¼ η11�2η66; ðA:3Þ
in the isotropic case, we can evaluate the viscosity coefficients η12,
η11, η66 (see Table A1) and, accordingly,

λð2Þ ¼ η12; μð2Þ ¼ η66:

Similarly, for the fluid phase, a relation between attenuation
coefficient and viscosity coefficient reads as follows:

αf ¼
ηω2

2cK ðf Þ; ðA:4Þ

provided ωbαf c, where c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K ðf Þ=ρðf Þ

q
with K ðf Þ being the fluid

bulk modulus. Using parameter values from Table 2 and αf from
[75], we can check that αf c¼ 1:45� 104 s�15ω for a frequency

fc¼1 MHz. Recall that λð3Þ ¼ c2ρðf Þ, λð4Þ ¼ 0, μð3Þ ¼ 0 and μð4Þ ¼ η for
the fluid phase. Table A2 lists the value of η obtained from (A.4),
which is close to the value η¼1.5 Pa s used in [17].
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