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a b s t r a c t 

A direct numerical method is proposed to simulate nonlinear water waves with nonzero constant vor- 

ticity in a two-dimensional channel of finite or infinite depth. Such a vortical distribution represents a 

linearly varying shear current in the background flow. Our method is based on the reduction of this prob- 

lem to a lower-dimensional Hamiltonian system involving surface variables alone. This is made possible 

by introducing the Dirichlet–Neumann operator and associated Hilbert transform which are described 

via a Taylor series expansion about the still water level. Each Taylor term is a sum of concatenations of 

Fourier multipliers with powers of the surface elevation, and thus is efficiently computed by a pseudo- 

spectral method using the fast Fourier transform. The performance of this numerical model is illustrated 

by examining the long-time evolution of Stokes waves on deep water and of solitary waves on shallow 

water. It is observed that a co-propagating current has a stabilizing effect on surface wave dynamics 

while a counter-propagating current promotes wave growth. In particular, the Benjamin–Feir instability 

of Stokes waves can be significantly reduced or enhanced. Our simulations also suggest the existence of 

stable rotational solitary waves if the vorticity is not too large in magnitude. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The classical formulation for water waves assumes flow irrota-

tionality and has been widely used in the literature. Under this as-

sumption, the original Laplace problem can be reduced from one

posed inside the fluid domain to one posed at the boundary alone.

This is accomplished by using boundary integral operators and fur-

thermore, in the absence of dissipative mechanisms, a canonical

Hamiltonian formulation can be written in terms of surface vari-

ables alone [50] . The two conjugate variables are the surface el-

evation and the velocity potential evaluated at the free surface.

This dimension reduction is quite advantageous for mathematical

analysis and numerical simulation, and has contributed to the suc-

cess of the irrotational formulation [47] . In particular, Craig and

Sulem [17] showed that the dependence on the surface elevation

can be made more explicit in the Hamiltonian functional by intro-

ducing the Dirichlet–Neumann operator, and they proposed an effi-

cient and accurate numerical method for simulating nonlinear wa-

ter waves based on a Taylor series expansion of this operator. On

the analytical side, Zakharov’s Hamiltonian formulation can also be

used to obtain rigorous results on the nonlinear stability of solitary
wave solutions. 
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In recent years, the free boundary problem for water waves

ith nonzero vorticity has drawn increasing attention from the

athematical community. This setting is of special relevance to

roblems in oceanography and coastal engineering where wave-

urrent interactions may play a major role [40] . Much theoret-

cal work has been done by Constantin, Strauss and coworkers

o investigate the existence and properties (e.g. stability) of two-

imensional traveling wave solutions based on the stream function

r Dubreil–Jacotin formulation of the Euler equations [10,24,32,48] .

or constant vorticity, a Hamiltonian formulation similar to Za-

harov’s can be derived so that the governing equations can again

e expressed in terms of surface variables involving the stream

unction and generalized velocity potential [9,45] . An alternative

onlocal formulation has been proposed by [2] via the use of inte-

ral equations. Recent progress has been made on extending these

onlocal equations to two-layer systems with constant (but dis-

inct) vorticity in each fluid layer [8,19] . 

In addition to these theoretical results, numerical studies have

lso been conducted in the fully nonlinear two-dimensional set-

ing. For example, Ko and Strauss [35] computed finite-depth

eriodic waves with general vorticity by solving the full equa-

ions in the Dubreil–Jacotin formulation. The moving fluid do-

ain is mapped to a fixed rectangle where the bulk equations

nd boundary conditions are discretized by finite differences. Mor-

ira and Peregrine [37] simulated nonlinear interactions between

http://dx.doi.org/10.1016/j.compfluid.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.06.004&domain=pdf
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P. Guyenne / Computers and Fluids 154 (2017) 224–235 225 

d  

m  

i  

w  

C  

r  

b  

l  

m  

m  

p  

t  

o  

t  

w  

t  

q  

t  

n  

s  

a

 

s  

e  

p  

c  

o

N  

i  

n  

t  

t  

v  

o  

r  

p  

p  

f  

t  

d  

a  

A  

a

 

s  

c  

p  

m  

t  

a  

r  

l  

o  

n

 

S  

l  

f  

D  

S  

t  

S  

t  

t  

i  

a

2

2

 

d  

n  

a  

o  

b  

m

�

a

u

a

u

w  

i  

f

 

t

P

w  

m

v

T  

d

v

T  

e

H

i

u  

e  

t  

s

 

t

ϕ

w  

t  

γ  

v

∇
w  

C  

i

ϕ

a  

o  

s

�

eep-water waves and variable currents via a boundary integral

ethod where the rotational part of the underlying flow is spec-

fied by a distribution of singularities (point vortices). In earlier

ork, Vanden-Broeck [44] developed a similar method based on

auchy’s integral formula for constant vorticity. The latter case cor-

esponds to a linear shear current and has also been examined

y other investigators, including [20] who sought a numerical so-

ution in the form of a perturbative series, [6] who used confor-

al mapping to derive a lower-dimensional system of equations

ore suitable for direct numerical simulation, and [23] who pro-

osed an extension of the high-order spectral method of [21] . All

he numerical studies mentioned above focused on wave solutions

f Stokes type (i.e. periodic nonlinear wave trains). Recently, Cas-

ro and Lannes [5] extended Zakharov’s Hamiltonian formulation to

ater waves with general vorticity but the resulting surface equa-

ions are coupled to a bulk equation for the vorticity, which re-

uires a solution defined over the entire fluid domain. Based on

his new formulation, Lannes and Marche [36] derived a conve-

ient set of Green–Naghdi equations for rotational waves in the

hallow-water regime, via the use of vertically averaged quantities,

nd investigated solitary wave solutions numerically. 

In this paper, we extend the numerical approach of [17] to

olving the full dynamical equations for two-dimensional nonlin-

ar water waves with nonzero constant vorticity. This setting is of

hysical interest; e.g. tidal flows are well described by linear shear

urrents [42] . The starting point is the Hamiltonian formulation

f [45] and [9] , where such nonlocal operators as the Dirichlet–

eumann operator and associated Hilbert transform play a key role

n the reduction to surface variables. The former operator gives the

ormal derivative of the velocity potential at the free surface, while

he latter operator evaluates the stream function there. In light of

heir analyticity properties, both operators are expressed via a con-

ergent Taylor series expansion about the unperturbed geometry

f the fluid domain. Each term in these Taylor series is determined

ecursively as a sum of concatenations of Fourier multipliers with

owers of the surface deformation, and thus is efficiently com-

uted by a pseudo-spectral method using the fast Fourier trans-

orm. In doing so, we propose a new way of evaluating the Hilbert

ransform for Dirichlet data given on the boundary of an irregular

omain. To our knowledge, this is the first time that the numerical

pproach of [17] is extended and applied to rotational water waves.

 nice feature of this approach is that it can readily accommodate

rbitrary water depth. 

Our new contributions include: (i) a detailed derivation of the

eries expansion for the Hilbert transform as well as extensive

onvergence tests with respect to various physical and numerical

arameters, (ii) the development of an efficient and accurate nu-

erical model that directly solves the full time-dependent equa-

ions for nonlinear water waves with nonzero constant vorticity,

nd (iii) applications to nonlinear solutions in two distinct limiting

egimes: Stokes waves on deep water and solitary waves on shal-

ow water. In particular, we provide the first numerical evidence

f stable rotational solitary waves from direct simulations of fully

onlinear and fully dispersive equations. 

The remainder of this paper is organized as follows.

ection 2 presents the mathematical formulation of the prob-

em, including the basic governing equations and their sur-

ace reduction, as well as the Taylor series expansions for the

irichlet–Neumann operator and associated Hilbert transform.

ection 3 describes the numerical methods for spatial discretiza-

ion and temporal integration of the reformulated equations.

ection 4 shows numerical tests on the convergence of the Hilbert

ransform and applications of the numerical model to various

ypes of wave solutions. The influence of vorticity on their dynam-

cs is discussed and the conservation of invariants of motion is

lso assessed. Finally, concluding remarks are given in Section 5 . 
. Mathematical formulation 

.1. Basic governing equations 

We consider the motion of a free surface on top of a two-

imensional ideal fluid of uniform depth h . In Cartesian coordi-

ates, the x -axis is the direction of wave propagation and the y -

xis points upward. The free surface is assumed to be the graph

f a function as given by y = η(x, t) . Denoting the velocity field

y u (x, y, t) = 

(
u (x, y, t) , v (x, y, t) 

)� 
, the equations of motion in the

oving fluid domain 

(t) = { 0 < x < L, −h < y < η(x, t) } , 
re the Euler equations for mass conservation 

 x + v y = 0 , (1) 

nd momentum conservation 

 t + uu x + v u y = −P x , v t + u v x + vv y = −P y − g , (2) 

here P ( x , y , t ) is the pressure (divided by the fluid density) and g

s the acceleration due to gravity. Subscripts are shorthand notation

or partial or variational derivatives (e.g. u t = ∂ t u ). 
In the absence of surface tension, the boundary conditions at

he free surface { y = η(x, t) } are the dynamic condition 

 = P 0 , (3) 

here P 0 denotes the constant atmospheric pressure, and the kine-

atic condition 

 = ηt + uηx . (4) 

he boundary condition at the bottom { y = −h } is the no-flow con-

ition 

 = 0 . (5) 

his system of equations is conservative in the sense that the total

nergy 

 = 

∫ ∫ 
�

[ 
1 

2 

(
u 

2 + v 2 
)

+ gy 

] 
d x d y , (6) 

s conserved over time. In two dimensions, the vorticity γ = v x −
 y is simply advected by the flow and so if it is initially constant

verywhere, then it remains so. Flows with nonzero constant vor-

icity are thus of interest and we hereafter assume γ to be a con-

tant. 

From (1) , there exist two conjugate harmonic functions such

hat 

 x = ψ y = u + γ y , ϕ y = −ψ x = v , (7) 

here ϕ( x , y , t ) denotes the generalized velocity potential, ψ( x , y ,

 ) may be viewed as a stream function and the constant vorticity

represents a background shear current that varies linearly in the

ertical direction. With these new variables, Eq. (2) take the form 

 

[ 
ϕ t + 

1 

2 

(
ϕ 

2 
x + ϕ 

2 
y 

)
+ γψ − γ yϕ x + P + gy 

] 
= 0 , 

hich implies that the expression between brackets is a function

 ( t ) of time alone throughout the fluid. Absorbing C ( t ) into the def-

nition of ϕ yields 

 t + 

1 

2 

(
ϕ 

2 
x + ϕ 

2 
y 

)
+ γψ − γ ηϕ x + gη = 0 , 

t the free surface, with the pressure jump set to zero by virtue

f (3) . The initial boundary value problem (1) –(5) can then be re-

tated as 

ϕ = 0 , in �(t) , (8) 
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ηt − ϕ y + ϕ x ηx − γ ηηx = 0 , on y = η(x, t) , (9)

ϕ t + 

1 

2 

(
ϕ 

2 
x + ϕ 

2 
y 

)
+ γψ − γ ηϕ x + gη = 0 , on y = η(x, t) , 

(10)

ϕ y = 0 , on y = −h . (11)

Expressing ∇ϕ and ψ in terms of Dirichlet data for ϕ on the free

surface requires the introduction of nonlocal operators as discussed

next. 

2.2. Hamiltonian formulation 

Following [17,45] and [9] , the dimensionality of the Laplace

problem (8) –(11) can be reduced by introducing the trace of the

velocity potential on the free surface, 

ξ (x, t) = ϕ(x, η(x, t) , t) , (12)

together with the Dirichlet–Neumann operator (DNO) 

G (η) ξ = (−ηx , 1) � · ∇ϕ 

∣∣
y = η , (13)

which is the singular integral operator that takes Dirichlet data ξ
on y = η(x, t) , solves the Laplace Eq. (8) subject to (11) , and re-

turns the corresponding Neumann data (i.e. the normal fluid ve-

locity there). Via this surface reduction, Eqs. (9) and (10) can be

formulated as a non-canonical Hamiltonian system (
ηt 

ξt 

)
= 

(
0 1 

−1 γ ∂ −1 
x 

)(
H η

H ξ

)
, (14)

for the conjugate variables η and ξ , whose Hamiltonian 

H = 

1 

2 

∫ L 

0 

[ 
ξG (η) ξ − γ ξx η

2 + 

1 

3 

γ 2 η3 + gη2 
] 

d x , (15)

corresponds to the total energy (6) . 

In particular, all the spatial and temporal derivatives of ϕ on

the free surface can be explicitly written in terms of η and ξ (and

their derivatives) together with G ( η) ξ . For this purpose, we use a

number of identities, namely 

ξt = ϕ t + ϕ y ηt 

∣∣
y = η , ξx = ϕ x + ϕ y ηx 

∣∣
y = η , (16)

by differentiating (12) and using the chain rule, as well as 

G (η) ξ = ϕ y − ϕ x ηx 

∣∣
y = η , 

by virtue of (13) . This implies 

ϕ x = ξx − ϕ y ηx 

∣∣
y = η , (17)

and 

ϕ y = G (η) ξ + ϕ x ηx = G (η) ξ + (ξx − ϕ y ηx ) ηx 

∣∣
y = η , 

= G (η) ξ + ξx ηx − ϕ y η
2 
x 

∣∣
y = η , 

which yields 

ϕ y 

∣∣
y = η = 

1 

1 + η2 
x 

[ 
G (η) ξ + ξx ηx 

] 
. (18)

Then, by substituting (18) back into (17) and (16) , we obtain 

ϕ x 

∣∣
y = η = ξx − ηx 

1 + η2 
x 

[ 
G (η) ξ + ξx ηx 

] 
, 

= 

1 

1 + η2 
x 

[ 
ξx − ηx G (η) ξ

] 
, (19)
nd 

 t = ξt − ϕ y ηt 

∣∣
y = η, 

= ξt − 1 

1 + η2 
x 

[ 
G (η) ξ + ξx ηx 

] [ 
G (η) ξ + γ ηηx 

] 
, 

= ξt − 1 

1 + η2 
x 

[ 
(G (η) ξ ) 2 + γ ηηx G (η) ξ+ ξx ηx G (η) ξ+ γ ηξx η

2 
x 

] 
. 

or the latter equation, we also used the fact that 

t = ϕ y − ϕ x ηx + γ ηηx 

∣∣
y = η = G (η) ξ + γ ηηx , 

ccording to the kinematic condition (9) and the definition (13) of

he DNO. Moreover, adding up the squares of (18) and (19) , 

 

2 
y 

∣∣
y = η = 

1 

(1 + η2 
x ) 

2 

[ 
(G (η) ξ ) 2 + 2 ηx ξx G (η) ξ + η2 

x ξ
2 
x 

] 
, 

 

2 
x 

∣∣
y = η = 

1 

(1 + η2 
x ) 

2 

[ 
ξ 2 

x − 2 ηx ξx G (η) ξ + η2 
x (G (η) ξ ) 2 

] 
, 

eads to 

 

2 
x + ϕ 

2 
y 

∣∣
y = η = 

1 

(1 + η2 
x ) 

2 

[ 
(1 + η2 

x ) ξ
2 
x + (1 + η2 

x )(G (η) ξ ) 2 
] 

, 

= 

1 

1 + η2 
x 

[ 
ξ 2 

x + (G (η) ξ ) 2 
] 

. 

nserting these expressions into (9) and (10) gives a closed system

f two equations 

t = G (η) ξ + γ ηηx , (20)

t = −gη − 1 

2(1 + η2 
x ) 

[ 
ξ 2 

x − (G (η) ξ ) 2 − 2 ξx ηx G (η) ξ
] 

+ γ ηξx − γ K(η) ξ , (21)

here the trace of the stream function on the free surface is the

ilbert transform (HT) of ξ associated with the moving fluid do-

ain, i.e. 

(x, η(x, t ) , t ) = K(η) ξ , 

nd is related to the DNO by G (η) ξ = −∂ x K(η) ξ . As shown in [45] ,

ystem (14) can be brought into canonical form by using the Dar-

oux coordinates η and ζ , where 

= ξ − 1 

2 

γ ∂ −1 
x η , 

ut here we prefer to consider (14) because it is a direct extension

f Craig and Sulem’s formulation and thus can be simulated by a

imilar numerical method. Eqs. (20) and (21) reduce to the clas-

ical Hamiltonian equations for irrotational water waves if γ = 0 .

urface tension could be easily incorporated into (21) but will not

e examined in this paper. 

Other invariants of motion for (14) include the volume 

 = 

∫ L 

0 

η d x , 

nd impulse 

 = 

∫ L 

0 

(
ηξx − 1 

2 

γ η2 
)

d x . 
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.3. Dirichlet–Neumann operator and Hilbert transform 

Owing to its analyticity properties with respect to η [7] , the

NO can be expressed in terms of a convergent Taylor series ex-

ansion 

 (η) = 

∞ ∑ 

j=0 

G j (η) , (22) 

here each term G j is homogeneous of degree j in η and can be

etermined recursively [16] . More specifically, for j = 2 r > 0 , 

 2 r (η) = 

1 

(2 r)! 
G 0 D 

2(r−1) Dη2 r D 

−
r−1 ∑ 

s =0 

1 

(2(r − s ))! 
D 

2(r−s ) η2(r−s ) G 2 s (η) 

−
r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
G 0 D 

2(r−s −1) η2(r−s ) −1 G 2 s +1 (η) , 

nd, for j = 2 r − 1 > 0 , 

 2 r−1 (η) = 

1 

(2 r − 1)! 
D 

2(r−1) Dη2 r−1 D 

−
r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
G 0 D 

2(r−s −1) η2(r−s ) −1 G 2 s (η) 

−
r−2 ∑ 

s =0 

1 

(2(r − s − 1))! 
D 

2(r−s −1) η2(r−s −1) G 2 s +1 (η) , 

here D = −i ∂ x and G 0 = D tanh (hD ) are Fourier multiplier opera-

ors. In the infinite-depth limit ( h → ∞ ), G 0 reduces to | D |. Accord-

ngly, the HT can also be expanded as a power series 

(η) = 

∞ ∑ 

j=0 

K j (η) , (23) 

here, for j = 2 r > 0 , 

 2 r (η) = − 1 

(2 r)! 
K 0 D 

2(r−1) ∂ x η
2 r ∂ x 

−
r−1 ∑ 

s =0 

1 

(2(r − s ))! 
D 

2(r−s −1) ∂ x η
2(r−s ) G 2 s (η) 

−
r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
K 0 D 

2(r−s −1) η2(r−s ) −1 G 2 s +1 (η) , (24) 

nd, for j = 2 r − 1 > 0 , 

 2 r−1 (η) = 

1 

(2 r − 1)! 
D 

2(r−1) η2 r−1 ∂ x 

−
r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
K 0 D 

2(r−s −1) η2(r−s ) −1 G 2 s (η) 

−
r−2 ∑ 

s =0 

1 

(2(r − s − 1))! 
D 

2(r−s −2) ∂ x η
2(r−s −1) G 2 s +1 (η) , 

(25) 

y virtue of the relation K(η) ξ = −∂ −1 
x G (η) ξ , where K 0 =

 tanh (hD ) is the HT for a uniform strip of thickness h . In the

nfinite-depth limit, K 0 reduces to i sgn( D ) but (24) and (25) re-

ain unchanged. The HT of ξ is defined up to an additive constant

n (21) but again this constant may be absorbed into ξ t by simply

edefining ξ . 

Recursion formulas (24) and (25) can be closed to allow the var-

ous K j ’s to be re-used as vector operations on ξ , yielding 

 2 r (η) = − 1 

(2 r)! 
K 0 D 

2(r−1) ∂ x η
2 r ∂ x 
+ 

r−1 ∑ 

s =0 

1 

(2(r − s ))! 
D 

2(r−s −1) ∂ x η
2(r−s ) ∂ x K 2 s (η) 

+ 

r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
K 0 D 

2(r−s −1) η2(r−s ) −1 ∂ x K 2 s +1 (η) , 

(26) 

or j = 2 r > 0 , and 

 2 r−1 (η) = 

1 

(2 r − 1)! 
D 

2(r−1) η2 r−1 ∂ x 

+ 

r−1 ∑ 

s =0 

1 

(2(r − s ) − 1)! 
K 0 D 

2(r−s −1) η2(r−s ) −1 ∂ x K 2 s (η) 

+ 

r−2 ∑ 

s =0 

1 

(2(r − s − 1))! 
D 

2(r−s −2) ∂ x η
2(r−s −1) ∂ x K 2 s +1 (η) , 

(27) 

or j = 2 r − 1 > 0 . As a result, the G j ’s no longer appear explicitly

n (26) and (27) . We point out that Wahlén [46] also used a series

xpansion for K but the corresponding K j ’s were not determined

xplicitly from a closed and separate recursion formula. Moreover,

he focus of this previous study was on asymptotics and thus it did

ot produce any numerical result. 

These series expansions of the DNO and HT play a central role

n our numerical approach as discussed in the next section. They

equire however that η be a single-valued graph of x and thus

verturning waves, with a multivalued profile, are not permitted

26] . Such a formulation has been successfully used in other con-

exts, e.g. in perturbation calculations for surface gravity waves in

ingle- and double-layer fluids [12–15,25,27,46] , as well as in di-

ect numerical simulations with uniform or variable water depth

11,17,28,30,49] . 

. Numerical methods 

.1. Space discretization 

For space discretization, we assume periodic boundary condi-

ions in x (with 0 ≤ x ≤ L ) and use a pseudo-spectral method based

n the fast Fourier transform (FFT). This is a particularly suitable

hoice for computing the DNO since each term in its Taylor series

22) consists of concatenations of Fourier multipliers with powers

f η. 

More specifically, both functions η and ξ are expanded in trun-

ated Fourier series 

η
ξ

)
= 

∑ 

k 

(̂ ηk ̂ ξk 

)
e i kx . 

patial derivatives and Fourier multipliers are evaluated in the

ourier space, while nonlinear products are calculated in the phys-

cal space on a regular grid of N collocation points. For example,

f we wish to apply the zeroth-order operator G 0 to a function ξ
n the physical space, we transform ξ to the Fourier space, apply

he diagonal operator k tanh ( hk ) to the Fourier coefficients ̂ ξk , and

hen transform back to the physical space. 

In practice, the Taylor series of the DNO and HT are also trun-

ated to a finite number of terms, 

 (η) ≈ G 

M (η) = 

M ∑ 

j=0 

G j (η) , K(η) ≈ K 

M (η) = 

M ∑ 

j=0 

K j (η) , (28) 

ut thanks to analyticity properties of the DNO, a small number of

erms (typically M < 10 � N ) are sufficient to achieve highly accu-

ate results [38] . The convergence of (28) will be further examined
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in Section 4.1 . Given the direct relation between G and K , it is nat-

ural to use the same truncation order M in both series. The compu-

tational cost for evaluating (28) is estimated to be O ( M 

2 N log N ) via

the FFT. Aliasing errors are removed by zero-padding in the Fourier

space [4] . 

There are alternate ways of determining the DNO and HT. We

may first evaluate (23) together with (26) and (27) for K and then

simply compute G via G = −∂ x K. Conversely, we might apply the

inverse operator −∂ −1 
x to G after calculating it from (22) . While

there is a singularity (or at least some indetermination) for k = 0

since ∂ −1 
x corresponds to (i k ) −1 in the pseudo-spectral framework,

this difficulty could be overcome by “manually” setting the zeroth

Fourier coefficient of K ( η) ξ to zero, because the HT is defined up

to an additive constant which may be omitted as mentioned ear-

lier. From a general perspective, both series expansions (22) and

(23) are of interest in their own right. In particular, evaluating the

HT via the closed formulas (26) and (27) is straightforward and

avoids any issue at k = 0 . This provides a new recursive procedure

for efficiently computing the HT in boundary value problems with

an irregular domain, independently of the DNO [34] . 

3.2. Time integration 

Time integration of (20) and (21) is performed in the Fourier

space so that the linear terms can be solved exactly by the inte-

grating factor technique [17] . For this purpose, we separate the lin-

ear and nonlinear parts in (20) and (21) . Setting v = (η, ξ ) � , these

equations can be expressed as 

∂ t v = L v + N (v ) , (29)

where the linear part L v is defined by 

L v = 

(
0 G 0 

−g 0 

)(
η
ξ

)
, 

and the nonlinear part N (v ) is given by 

N (v ) = 

⎛ ⎜ ⎝ 

[
G (η) − G 0 

]
ξ

− 1 
2(1+ η2 

x ) 

[ 
ξ 2 

x − (G (η) ξ ) 2 − 2 ξx ηx G (η) ξ
] 

+ γ ηξx − γ K(η) ξ

⎞ ⎟ ⎠ 

. 

Via the change of variables 

 v k (t) = �(t ) ̂  w k (t ) , 

in the Fourier space, involving 

�(t) = 

⎛ ⎝ 

cos 
(
t 
√ 

gG 0 

) √ 

G 0 
g 

sin 

(
t 
√ 

gG 0 

)
−
√ 

g 
G 0 

sin 

(
t 
√ 

gG 0 

)
cos 

(
t 
√ 

gG 0 

)
⎞ ⎠ , 

system (29) takes the form 

∂ t ̂  w k = �(t) −1 ̂ N k 

[
�(t) ̂  w k 

]
, 

which only contains nonlinear terms and is solved numerically in

time using the fourth-order Runge–Kutta scheme with constant

step �t . By converting back to ̂  v k , this scheme reads 

 v n +1 
k 

= �(�t) ̂  v n k + 

�t 

6 

�(�t) 
(

f 1 + 2 f 2 + 2 f 3 + f 4 

)
, (30)

where 

f 1 = 

̂ N k 

(̂
 v n k 

)
, 

f 2 = �

(
−�t 

2 

) ̂ N k 

[
�

(
�t 

2 

)(̂ v n k + 

�t 

2 

f 1 

)]
, 

f 3 = �

(
−�t 

2 

) ̂ N k 

[
�

(
�t 

2 

)(̂ v n k + 

�t 

2 

f 2 

)]
, 
f 4 = �(−�t) ̂  N k 

[ 
�(�t) 

(̂
 v n k + �t f 3 

)] 
, 

or the solution at time t n +1 = t n + �t . By definition, the integrat-

ng factor �( t ) is the fundamental matrix of the linear system

 t ̂  v k = L ̂

 v k . Here all its entries are real-valued and, in the limit k

 0, they reduce to 

(t) = 

(
1 0 

−gt 1 

)
. 

o obtain (30) , we used the fact that �( t ) is a semigroup and sat-

sfies 

(a + b) = �(a )�(b) , �(a ) −1 = �(−a ) . 

hese identities can be easily checked by direct calculation. In

ur simulations, we typically selected a time step in the range

t = 0 . 001 –0.01 (with M = 6 and N = 1024 ) as a good compro-

ise between accuracy, stability and computational cost. As a ref-

rence, this range of values for �t is thousands/hundreds times

maller than the linear wave period τ = 2 π/ω 	 7 for γ = 0 , h = 1

nd k = 1 . Given the fourth-order accuracy of our time-integration

cheme, these values of �t are quite reasonable. 

It should be pointed out that, unlike G ( η) ξ , the zeroth-order

i.e. linear) contribution γ K 0 ξ was not extracted from γ K ( η) ξ to

e included in the integrating factor for a number of reasons. First,

t would lead to a fundamental matrix �( t ) with complex-valued

ntries that are singular for k = 0 . Second, because γ K 0 ξ is a di-

gonal linear term in the equation for ξ t and because K 0 remains

ounded as k → ∞ , so do the corresponding temporal frequencies.

he stiffness associated with γ K 0 ξ is thus rather mild and we did

ot feel the need for applying a special treatment. 

In cases of large-amplitude or highly deformed waves, we found

t necessary to apply filtering in order to stabilize the numeri-

al solution so that it can be computed over a sufficiently long

ime. Otherwise, spurious high-wavenumber instabilities tend to

evelop, eventually leading to the computation breakdown. This is-

ue may be related to ill-conditioning of the DNO in its series form

see Section 4.1 ) and may also be promoted by the specific nonlin-

arity of the problem. As a remedy, we apply a hyperviscosity-type

lter of the form 

xp 

( 

−36 

∣∣∣∣ k 

k max 

∣∣∣∣36 
) 

, 

o the Fourier coefficients ̂ ηk and 

̂ ξk at each time step, where k max 

enotes the largest wavenumber of the resolved wave spectrum.

uch a filter has been commonly employed in direct numerical

imulations of nonlinear fluid flows by spectral methods [31] , and

ts form ensures that only energy levels at high wavenumbers are

ignificantly affected. Therefore, if a sufficiently fine resolution is

pecified, this filtering technique can help suppress spurious insta-

ilities while preserving the overall solution. It has been success-

ully used in our previous computations of irrotational water waves

28,49] . 

. Numerical results 

In this section, we present several tests to assess the perfor-

ance of our numerical model. We first check the convergence of

he HT series as a function of physical and numerical parameters.

e then apply our model to simulating rotational wave dynamics

n two distinct limiting regimes: Stokes waves on deep water and

olitary waves on shallow water. For such computations in the time

omain, we examine the wave profile evolution as well as the con-

ervation of invariants of motion. Because the present paper is fo-

used on the development and testing of our numerical approach,
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Fig. 1. Relative L ∞ error on the HT as a function of M for a sinusoidal surface profile 

η of varying amplitude a with wavenumber (a) k = 1 and (b) k = 10 . The spatial 

resolution is N = 1024 . 
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e only show illustrative examples and postpone a more in-depth

tudy to a future publication. 

We non-dimensionalize (20) and (21) by using the character-

stic scales L and T as unit length and unit time respectively. In

he deep-water regime, L = 1 /k 0 and T = 1 / 
√ 

gk 0 so that g → 1

nd γ → γ / 
√ 

gk 0 ( k 0 denotes a characteristic wavenumber). In the

hallow-water regime, L = h 0 and T = 

√ 

h 0 /g so that g → 1, h →
 / h 0 and γ → γ

√ 

h 0 /g ( h 0 denotes a characteristic water depth).

or convenience, in the following, we retain the original notation

or all the variables and parameters but the reader should keep in

ind that these now refer to dimensionless quantities. 

.1. Convergence of the HT 

The DNO has been shown to be analytic in η provided the latter

atisfies certain regularity conditions [7] . It follows that the DNO

an be written in terms of a convergent Taylor series expansion

nd the convergence should be exponential with respect to the

runcation order. This property has been investigated numerically

y e.g. [38] and [49] . 

Naturally, we may wonder if this is also true for the series ex-

ansion (23) of the HT. Because the DNO and HT only differ by an

pplication of −∂ −1 
x (or vice versa −∂ x ), it is reasonable to assume

hat they have the same dependence on η and thus share the same

nalyticity property. The recursion formulas for the K j ’s also share

imilarities with those for the G j ’s, and so there may be numerical

ssues related to the convergence of the HT series. The convergence

roof for DNOs by [38,39] should be directly applicable to the HT

n this context. 

Here we address these questions by considering a simple case

here the numerical approximation (28) is compared with an ex-

ct expression of the HT. For this test, time is frozen and the do-

ain (i.e. the free surface) is prescribed. By definition, the stream

unction and generalized velocity potential are conjugate harmonic

unctions, i.e. they both satisfy the Laplace Eq. (8) and are related

y the Cauchy–Riemann Eq. (7) . Accordingly, we can choose the

onochromatic (single-mode) solutions 

 = sinh 

[
k (y + h ) 

]
cos (kx ) , ϕ = cosh 

[
k (y + h ) 

]
sin (kx ) , 

(31) 

ogether with 

= a cos (kx ) , (32) 

or the surface profile. Note that the choice (31) also satisfies the

o-flow condition (5) at the bottom. An exact expression of the HT

an be obtained by inserting (32) into (31) , yielding 

 

E (η) ξ = ψ(x, η) = sinh 

[
k (η + h ) 

]
cos (kx ) . 

he numerical approximation of the HT is computed via the trun-

ated series (28) acting on 

= ϕ(x, η) = cosh 

[
k (η + h ) 

]
sin (kx ) , 

s given by (31) . 

Fig. 1 shows the relative L ∞ error 

rror = 

‖ K 

E (η) ξ − K 

M (η) ξ‖ ∞ 

‖ K 

E (η) ξ‖ ∞ 

, 

etween K 

E ( η) ξ and K 

M ( η) ξ , as a function of M for various ampli-

udes a in cases of a slowly varying surface profile ( k = 1 ) and a

ougher one ( k = 10 ). The computational domain is specified to be

f length L = 2 π and depth h = 1 , and is discretized with N = 1024

rid points (corresponding to grid size �x = 0 . 006 ). A general ob-

ervation is that the lower the amplitude a , the smaller this error

nd the faster the convergence. Smoothness of the surface profile
lso helps improve convergence. Exponential decay is well repro-

uced by the negative slopes in our semilog plots. For k = 1 and

 = 0 . 01 , the error quickly falls down to near machine precision

nd stagnates there past M = 6 . However, as a increases, the con-

ergence is seen to dramatically deteriorate leading to a sharp er-

or growth past M = 6 . This phenomenon is an illustration of the

umerical ill-conditioning of operator expansion methods as pre-

iously reported in numerical studies involving the DNO [38,49] .

uch methods rely heavily on cancellations of terms to ensure se-

ies boundedness but, in practice, terms are not canceled exactly

ue to round-off errors which are then amplified through the re-

ursive process. This issue is less pronounced for k = 10 , possibly

ecause the convergence is slower in this case. For such a rough

urface, errors vary more monotonically with respect to M and,

nly if a is large enough (say a = 0 . 2 ), some error growth is dis-

ernible past M = 2 . Note that the sudden loss of convergence as

 increases is also observed when fixing a and k while varying N ,

s depicted in Fig. 2 . The larger N , the smaller the critical value

f M above which errors quickly grow. This is consistent with the

act that the number and order of Fourier multipliers in (26) and

27) increase with M , and their presence tends to amplify numeri-

al errors most severely in the highest Fourier modes. 
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Fig. 2. Relative L ∞ error on the HT as a function of M for a sinusoidal surface profile 

η of amplitude a = 0 . 2 and wavenumber k = 1 with varying resolution N . 
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4.2. Stokes waves on deep water 

We now turn our attention to the Benjamin–Feir instability

(BFI) of Stokes waves in the presence of a linear shear current. For

this purpose, we solve (20) and (21) with initial conditions of the

form 

η(x, 0) = 

[ 
1 + A cos (qx ) 

] 
η0 (x ) , 

ξ (x, 0) = 

[ 
1 + A cos (qx ) 

] 
ξ0 (x ) , (33)

where ( η0 , ξ 0 ) denote a Stokes wave solution to (8) –(11) with

γ = 0 , which is computed by Fenton’s method [22] . The Stokes

wave is defined by its amplitude a and carrier wavenumber κ ,

and its steepness is given by ε = κa . The parameters A and q in

(33) represent the amplitude and wavenumber of the initial side-

band perturbation. This is a physically relevant setting that may

correspond to swell waves propagating into an oceanic area dom-

inated by a strong background current. In the irrotational water

wave problem, it is well known that Stokes waves are unstable

to sideband perturbations on deep water [3] . It is thus of inter-

est to investigate the effects of constant vorticity on Stokes wave

evolution, in particular whether vorticity can enhance or prevent

the BFI. Both signs of γ are considered here. We specify a spatial

domain of length L = 2 π and infinite depth h = ∞ , which is dis-

cretized with N = 1024 collocation points. The temporal resolution

is given by �t = 0 . 001 and the truncation order is set to M = 6

based on the previous convergence tests. This value of M should

be more than enough to describe the BFI since this phenomenon is

predominantly governed by four-wave resonant interactions (which

correspond to M = 2 ). 

We run simulations of (20) and (21) up to t = 10 0 0 � τ start-

ing from (33) with (a, κ) = (0 . 005 , 10) and (A, q ) = (0 . 1 , 1) such

that ε = 0 . 05 . The sideband wavenumber q = 1 corresponds to the

maximum of the growth rate 

σ = ε 2 
√ 

gκ

(
q 

2 

√ 

2 κε 

)√ 

1 −
(

q 

2 

√ 

2 κε 

)2 

, 

as predicted by a weakly nonlinear analysis based on the nonlinear

Schrödinger (NLS) equation [3] . This initial disturbance serves to

suitably trigger the BFI by promptly exciting the potentially most

unstable mode. Nevertheless, for such a smooth perturbation of
 moderately steep Stokes wave, this instability still takes a long

ime to develop. Figs. 3 and 4 show snapshots of η at the initial

ime t = 0 for γ = 0 and at the time of maximum growth (when

he wave profile exhibits the highest crest) for various values of

he vorticity ( γ = 0 , ± 0.5, ± 1, ± 2). For the sake of comparison,

e use the same initial condition in all these cases and only con-

ider the time interval 0 ≤ t ≤ 10 0 0. The waves travel from left to

ight in the positive x -direction. Note that γ > 0 corresponds to

rimarily co-propagating currents (directed rightward) because it

ontributes positively to the horizontal fluid velocity u = ϕ x − γ y

or y < 0, while γ < 0 represents primarily counter-propagating

urrents (directed leftward). 

We see that a co-propagating current tends to stabilize the

tokes wave; the larger γ , the stronger the stabilizing effect. For

= +1 and γ = +2 , the BFI seems to be inhibited. The wave expe-

iences a recurring sequence of small-amplitude modulations and

emodulations about its initial configuration. As a result, the ini-

ial wave profile is overall preserved (modulo translation) up to

t least t = 10 0 0 . The corresponding graphs are not shown here

or convenience since they look almost identical to Fig. 3 a. On

he other hand, a counter-propagating current (moving in oppo-

ite direction to the Stokes wave) tends to promote and enhance

ts instability. The larger | γ |, the sooner the Stokes wave becomes

nstable and the higher it grows. This wave amplification can be

uite significant as indicated in Fig. 4 . For γ = −1 and γ = −2 ,

he wave reaches an elevation a max = 0 . 016 and a max = 0 . 025 at

 = 586 and t = 376 respectively, which corresponds to a factor of

= 3 . 2 and α = 5 compared to the initial unperturbed wave am-

litude a = 0 . 005 . As a reference, the maximum wave growth ob-

erved in Fig. 3 b for γ = 0 is α = 2 . 4 ( a max = 0 . 012 ), which agrees

ith the NLS prediction 

= 

a max 

a 
= 1 + 2 

√ 

1 −
(

q 

2 

√ 

2 κε 

)2 

= 2 . 4 , 

or κ = 10 , ε = 0 . 05 and q = 1 . In the case γ = −2 , the wave fo-

using at t = 376 is so strong that the computer code breaks down

hortly afterward. These computations support the fact that wave-

urrent interactions constitute a possible mechanism for rogue

ave formation [33] . Similar numerical results were obtained by

6] and [23] . 

As an illustration, Fig. 5 plots the time evolution of errors 

rror = 

∣∣∣H − H 0 

H 0 

∣∣∣ , 

∣∣∣ I − I 0 
I 0 

∣∣∣ , | V − V 0 | , 

n energy H , impulse I and volume V respectively, for γ = ±1 . The

uantities H 0 , I 0 and V 0 denote their initial values at t = 0 . Note

hat, for V , we simply examine the absolute error rather than the

elative error because V 0 is essentially zero for such a periodic

ave train as the Stokes wave. The integrals in the definition of

 , I and V are evaluated by the trapezoidal rule. We see that all

hree invariants of motion are very well conserved in our numeri-

al simulations, with the errors on V remaining near machine pre-

ision. The errors on H and I are a few orders of magnitude higher

han those for V , and they tend to coincide, probably because the

omputation of H and I involves several quantities including η and

x while that for V only involves η. Another observation is that the

rrors for γ = +1 are a bit lower and their variation is smoother

han those for γ = −1 . This is consistent with previous observa-

ions from Fig. 3 and reflects the fact that “not much is going

n” in the presence of a co-propagating current. As expected, for

= −1 , the errors on H and I exhibit more variation near t = 586

hen the maximum wave growth occurs. 
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Fig. 3. Snapshots of η at (a) t = 0 ( γ = 0 ), (b) t = 956 ( γ = 0 ), (c) t = 994 ( γ = +0 . 5 ) and (d) t = 740 ( γ = −0 . 5 ) for an initially perturbed Stokes wave of amplitude 

a = 0 . 005 and wavenumber κ = 10 on deep water. 
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.3. Solitary waves on shallow water 

Finally, we consider the propagation of solitary waves on shal-

ow water with constant vorticity. These long coherent waves are

nown to have strong stability properties in the irrotational case

11] . Therefore, we simply perform simulations with initial condi-

ions given by a single solitary-wave solution of (8) –(11) for γ = 0 ,

nd examine their evolution as they travel through the rotational

eld. This initial condition is computed by Tanaka’s method [43] ,

nd propagates steadily without change of shape and speed in

he absence of vorticity. The domain length and depth are set to

 = 150 and h = 1 , with a spatial resolution of N = 1024 grid points

corresponding to �x = 0 . 146 ). The spatial domain is specified long

nough to accommodate the broad support of shallow-water soli-

ary waves, hence a very fine grid size is not needed to accu-

ately resolve their profile. Accordingly, the time step is chosen to

e �t = 0 . 01 but the truncation order is kept at M = 6 to ensure

hat we capture well the nonlinear character of such solutions. This
alue of M has been found to be suitable from our prior numerical

ork on solitary waves [11,29] . 

We run simulations of (20) and (21) up to t = 500 starting from

n irrotational solitary wave of height a = 0 . 3 (relative to h = 1 ).

gain, the same initial condition is used in all cases being consid-

red and wave propagation is prescribed to go from left to right.

ig. 6 shows snapshots of η at various times for γ = 0 , ± 0.5. In

he presence of a co-propagating current, the solitary wave is seen

o gradually decrease in amplitude and broaden in width. How-

ver, an equilibrium state seems to be reached around t = 50 for

= +0 . 5 , after which time the wave height stagnates at a max �
.2 < a and the wave shape remains overall preserved. Small fluc-

uations are discernible due to interaction of the pulse with the

ow-amplitude ambient radiation. The latter is produced during the

arly stages when the initial solitary wave enters the rotational

eld, and then it contaminates the entire domain via the peri-

dic boundary conditions. Note that the two pulses at t = 50 and

 = 500 look close together but the solution has actually traveled
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Fig. 4. Snapshots of η at (a) t = 586 ( γ = −1 ) and (b) t = 376 ( γ = −2 ) for an initially perturbed Stokes wave of amplitude a = 0 . 005 and wavenumber κ = 10 on deep 

water. 

Fig. 5. Time evolution of errors on energy H (thick solid line), impulse I (dashed line) and volume V (thin solid line) for an initially perturbed Stokes wave on deep water in 

the presence of a linear shear current with vorticity (a) γ = +1 and (b) γ = −1 . 
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several times through the computational domain during this time

interval because of the periodic boundary conditions. On the other

hand, for γ = −0 . 5 , the counter-propagating current is so strong

that the solitary wave quickly steepens and grows to reach a height

a max = 0 . 516 at t = 25 . This most likely leads to wave breaking and

the computer code breaks down shortly afterward. Unlike the pre-

vious situation with a Stokes wave where intense focusing occurs

sporadically after a succession of modulations and demodulations,

the present case shows a solitary wave that is continually ampli-

fied as it travels against a strong opposing current. 

Results are slightly different if | γ | is smaller, as depicted in

Fig. 7 . For γ = −0 . 3 , the counter-propagating current only causes

the wave height to increase up to a max � 0.4 > a and, after

t � 50, a near-steadily progressing pulse emerges and coexists

with smaller ambient radiation. This is similar to what happens
n the case γ = +0 . 5 during the late stages ( Fig. 6 b and c), but

ere the emerging pulse is taller than the initial solitary wave. For

= +0 . 3 , the scenario is even closer to that for γ = +0 . 5 (both

nvolving a co-propagating current), with the difference that the

merging wave height is much less than the initial one because

f the weaker vorticity, and so these results are not shown here

or convenience. As with Stokes waves, the extent to which a soli-

ary wave is amplified (or reduced) is directly related to the vor-

ical strength. Our direct time-dependent simulations also suggest

hat, if | γ | is not too large, there exist large-amplitude rotational

olitary waves that would travel steadily without change of speed

nd shape in the absence of disturbances. Moreover, they seem to

e stable since they remain mostly unaffected by the surround-

ng radiation. These results support the theoretical predictions of

24,32] and [48] on the existence of solitary waves with vorticity,
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Fig. 6. Snapshots of η at (a) t = 0 ( γ = 0 ), (b) t = 50 ( γ = +0 . 5 ), (c) t = 500 ( γ = +0 . 5 ) and (d) t = 25 ( γ = −0 . 5 ) for an initial solitary wave of height a = 0 . 3 on shallow 

water. 
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m  
s well as the recent computations of [36] based on the (weakly

ispersive) Green–Naghdi equations. 

To further quantify the effects of vorticity, we perform a direct

omparison between an irrotational solitary wave computed by

anaka’s method and our rotational solution for a given amplitude.

wo cases are presented in Fig. 8 for a max = 0 . 2 ( γ = +0 . 5 ) and

 max = 0 . 4 ( γ = −0 . 3 ). On each graph, the two curves are superim-

osed in such a way that their central crests coincide. Snapshots of

he rotational solution are chosen at a late time after relaxation to

he equilibrium state. We observe that, if γ < 0 (resp. γ > 0), the

otational solitary wave tends to be thinner (resp. broader) than

he irrotational one. Similar differences in wave shape were high-

ighted by [1] and [36] in the context of long-wave models. Al-

hough the fluctuations due to interaction with the ambient radi-

tion are more apparent in the lower-amplitude solution ( a max =
 . 2 ), it is clear from Fig. 8 that a co-propagating current ( γ > 0)

as a broadening effect on the surface wave profile. Finally, the

onservation of H , I and V is illustrated in Fig. 9 for γ = ±0 . 3 . Time

volution of the relative error is plotted for each of these quanti-

m  
ies. Again, we see that all three of them are very well conserved,

ith the errors on V being considerably lower (near machine pre-

ision) than those for H and I . The latter errors can certainly be

mproved by specifying finer discretizations in space and time, but

hey are found to be quite satisfactory for the present purposes. 

. Conclusions 

We have proposed a direct numerical solver for the full time-

ependent equations describing two-dimensional nonlinear water 

aves over arbitrary (uniform) depth with nonzero constant vor-

icity, based on the Hamiltonian formulation of [45] and [9] . As

n extension of the numerical approach of [17] , our solver reduces

he original Laplace problem to a lower-dimensional computation

nvolving surface variables alone. This is accomplished by introduc-

ng the DNO and associated HT which are expressed in terms of a

onvergent Taylor series expansion about the unperturbed geome-

ry of the fluid domain. Each term in these Taylor series is deter-

ined recursively and computed efficiently by a pseudo-spectral

ethod using the FFT. In particular, we have derived a new recur-
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Fig. 7. Snapshots of η at (a) t = 50 and (b) t = 500 for an initial solitary wave of height a = 0 . 3 on shallow water in the presence of a linear shear current with vorticity 

γ = −0 . 3 . 

Fig. 8. Comparison between an irrotational solitary wave computed by Tanaka’s method (solid line) and our rotational solution (dashed line) for (a) a max = 0 . 2 ( γ = +0 . 5 ) 

at t = 310 and (b) a max = 0 . 4 ( γ = −0 . 3 ) at t = 465 . On each graph, the two curves are re-centered at x = 0 . 

Fig. 9. Time evolution of errors on energy H (thick solid line), impulse I (dashed line) and volume V (thin solid line) for an initial solitary wave on shallow water in the 

presence of a linear shear current with vorticity (a) γ = +0 . 3 and (b) γ = −0 . 3 . 
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ion formula to evaluate the HT in its series form, where each term

s given as a sum of concatenations of Fourier multipliers with

owers of the surface elevation. 

We have performed extensive tests to assess the convergence

f this Taylor series for the HT, with respect to various physical

nd numerical parameters. Our tests confirm the exponential con-

ergence with the order of truncation M but, as reported in prior

ork on the DNO, there is an optimal value of M above which the

onvergence quickly deteriorates. This numerical issue is attributed

o ill-conditioning of the series expansion in the sense that round-

ff errors are amplified through the recursive process for determin-

ng the Taylor terms. The finer the spatial resolution or the larger

he wave amplitude/steepness, the smaller this optimal value. 

By transforming the system of partial differential equations into

 system of ordinary differential equations for the Fourier coef-

cients, the pseudo-spectral method for space discretization also

llows stiff linear terms to be solved exactly in time via the inte-

rating factor technique. The remaining terms are solved numeri-

ally in time by a fourth-order Runge–Kutta method without the

eed for using an excessively small time step. The overall scheme

s shown to have excellent conservative properties with such quan-

ities as energy, impulse and volume being very well conserved

ver long times. 

We have applied our numerical model to simulating nonlin-

ar solutions in two distinct limiting regimes: Stokes waves on

eep water and solitary waves on shallow water. A co-propagating

ackground current ( γ > 0) is found to have a stabilizing, and

ven attenuating, effect on surface wave dynamics. If γ is large

nough, the BFI of Stokes waves may be completely inhibited while

olitary waves are significantly reduced in amplitude. A counter-

ropagating current ( γ < 0) on the other hand tends to amplify

urface waves. In particular, it promotes and enhances the BFI of

tokes waves (by making it happen sooner with a larger wave

rowth). If the opposing current is too strong, wave breaking even-

ually occurs and the computer code breaks down. Our numerical

esults also suggest the existence of stable rotational solitary waves

n the fully nonlinear and fully dispersive setting, if | γ | is not too

arge. 

Recently, there has been growing interest in the water wave

roblem with more general types of vorticity such as compactly

upported vorticity [18,41] . It would be of interest in the fu-

ure to explore the possibility of extending the present numerical

odel to such cases. The Transformed Field Expansion method of

38] would also be an option to consider in order to improve the

umerical convergence of the DNO and HT. 
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