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Determination of cancellous bone density using low frequency

acoustic measurements
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In this article we offer a novel method for interrogating cancellous bone using
ultra sound measurements. The problem is first modelled in terms of the acoustic
pressure in the water bath surrounding the bone sample, the pore pressure and
the displacement of the elastic matrix describing the cancellous bone specimen.
The fluid pressure in the water tank is represented in terms of a boundary integral
equation. Source points are placed on a parallel line on one side of the bone;
whereas, receivers are placed on the other side of the bone. Sensitivity tests are
run for two frequencies which show that the corresponding inverse problem leads
to reasonable good results.
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1. Introduction

Cancellous bone is a two component material consisting of a calcified bone matrix with
interspinal fatty marrow. Hence mathematical models of poroplastic media are applicable.
McKelvie and Palmer [1], Williams [2], and Hosokawa and Otani [3] discussed the
application of Biot’s model for a poroplastic medium to cancellous bone. Use of this
model requires determination of the parameters upon which it depends. This can be an
expensive process. In this article we investigate whether these parameters can be
ascertained by acoustic interrogation.

2. The Biot model applied to cancellous bone

The Biot–Stoll [4,5,6] model treats a poroplastic medium as an elastic frame with
interspinal pore fluid. Cancellous bone is anisotropic, however, as pointed out by
Williams, if the acoustic waves passing through it travel in the trabecular direction an
isotropic model may be acceptable. We will simulate a two-dimensional version of the
experiments described in McKelvie and Palmer and Hosokawa and Otani. See also in this
regard [7,8]. The motion of the frame and fluid within the bone are tracked by position
vectors u¼ [u1, u2] and U¼ [U1,U2]. The constitutive equations used by Biot are those of
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a linear elastic material with terms added to account for the interaction of the frame and

interstitial fluid

�x1x1 ¼ 2�ex1x1 þ �eþQ�,

�x2x2 ¼ 2�ex2x2 þ �eþQ�,

�x1x2 ¼ �ex1x2 , �x2x1 ¼ �ex2x1 ,

s ¼ Qeþ R�,

ð1Þ

where the solid and fluid dilatations are given by

e ¼ r � u ¼
@u1
@x1
þ
@u2
@x2

, � ¼ r �U ¼
@U1

@x1
þ
@U2

@x2
: ð2Þ

The strains are defined by

ex1x1 ¼
@u1
@x1

, ex1x2 ¼ ex2x1 ¼
@u1
@x2
þ
@u2
@x1

, ex2x2 ¼
@u2
@x2

: ð3Þ

The parameter �, the complex frame shear modulus is measured. The other parameters �,
R and Q occurring in the constitutive equations are calculated from the measured or

estimated values of the parameters given in Table 1 using the formulas:

� ¼ Kb �
2

3
�þ

Kr � Kbð Þ
2
�2�KrðKr � KbÞ þ �

2K2
r

D� Kb
,

R ¼
�2K2

r

D� Kb
,

Q ¼
�Kr 1� �ð ÞKr � Kbð Þ

D� Kb
,

ð4Þ

where

D ¼ Krð1þ �ðKr=Kf � 1ÞÞ: ð5Þ

The bulk and shear moduli Kb and � are often given imaginary parts to account for frame

inelasticity. Equations (1), (2) and (3) and an argument based upon Lagrangian dynamics

Table 1. Parameters in the Biot model.

Symbol Parameter

�f Density of the pore fluid
�r Density of frame material
Kb Complex frame bulk modulus
� Complex frame shear modulus
Kf Fluid bulk modulus
Kr Frame material bulk modulus
� Porosity
� Viscosity of pore fluid
k Permeability
	 Structure constant
a Pore size parameter
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are shown in [4,9] to lead to the following equations of motion for the displacements u, U

and dilatations e, �:

�r2uþ r½ð�þ �ÞeþQ�� ¼
@2

@t2
ð�11uþ �12UÞ þ b

@

@t
ðu�UÞ,

r½Qeþ R�� ¼
@2

@t2
ð�12uþ �22UÞ � b

@

@t
ðu�UÞ:

ð6Þ

Here �11 and �22 are density parameters for the solid and fluid, �12 is a density coupling

parameter, and b is a dissipation parameter. These are calculated from the inputs of

Table 1 using the formulas:

�11 ¼ ð1� �Þ�r � �ð�f �m�Þ,

�12 ¼ �ð�f �m�Þ,

�22 ¼ m�2,

b ¼
F a

ffiffiffiffiffiffiffiffiffiffiffiffi
!�f=�

p� �
�2�

k
,

where

m ¼
	�f
�

,

and the multiplicative factor F(
), which was introduced in [4] to correct for the invalidity

of the assumption of Poiseuille flow at high frequencies, is given by

Fð
Þ ¼
1

4


Tð
Þ

1� 2Tð
Þ=i

, ð7Þ

where T is defined in terms of Kelvin functions:

Tð
Þ ¼
ber0ð
Þ þ ibei0ð
Þ

berð
Þ þ ibeið
Þ
:

The bone specimen is assumed to oscillate harmonically in time: u(x, y, t)¼ u(x, y)ei!t,

U(x, y, t)¼U(x, y)ei!t. Substituting these representations into (6) gives

�r2uþ r½ð�þ �ÞeþQ�� þ p11uþ p12U ¼ 0,

r½Qeþ R�� þ p12uþ p22U ¼ 0,
ð8Þ

where

p11 :¼ !2�11 � i!b, p12 :¼ !2�12 þ i!b, p22 :¼ !2�22 � i!b: ð9Þ

3. Boundary value problem

A bone specimen is placed in a water tank. The region occupied by the bone specimen

and the water are �b and �w, respectively. In �w, we have in the two-dimensional
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case the differential equations for fluid pressure P and the fluid displacement

Uw :¼ ðUw
1 ,U

w
2 Þ, i.e.

�r2P� k20P ¼ �q �ðx; x0; k0Þ, ð10Þ

rP� �w!2Uw ¼ qrx�ðx, x0, k0Þ, ð11Þ

where �(x, x0, k0) is the harmonic Green’s function with a fixed source point located at

x0¼ (x0, y0); see the Appendix, Equation (31).
In the bone specimen �b, in order to formulate a well-posed boundary value problem,

one must modify the present form of the Biot Equation (8), since there are not enough

transmission conditions for the components of displacements fields u1, u2, U1 and U2.

The main idea here is to replace the unknowns U1 and U2 by a single known s in the

equations. To see this, we first express � and U in terms of s from (1) and (8),

� ¼
1

R
ðs�QeÞ, U ¼ �

1

p22
ðrsþ p12uÞ: ð12Þ

By taking the divergence of the second equation of (8), we obtain

r2sþ p12 eþ p22 � ¼ 0,

which reduces to

r2 sþ
p22
R

sþ p12 �
p22Q

R

� �
e ¼ 0, ð13Þ

by making use of (12). Similarly, the first equation of (8) can be written in the form:

�r2uþ r �þ ��
Q2

R

� �
eþ

Q

R
�
p12
p22

� �
s

� �
þ p11 �

p212
p22

� �
u ¼ 0: ð14Þ

Equations (13) and (14) then form the modified Biot equations for u and s in the bone

specimen �b. These equations should be satisfied by u and s together with boundary

conditions on the interface between bone and water. These are:

. Continuity of the flux: From (11)

�w!2 �n �Uþ ð1� �Þn � uð Þ ¼ �w!2n �Uw � n � rP� qrx�ðx, x0Þð Þ,

and thus

�w!2
h
1� �ð1þ

p12
p22
Þ

i
n � u�

�

p22

@s

@n

� �
� n � rP� qrx�ðx,x0Þð Þ ¼ 0: ð15Þ

Here n is the exterior normal to �b, which points into the water.
. Continuity of the aggregate pressure

�‘, j nj þ s n‘ ¼ �Pn‘, ð16Þ

since an expansion of the bone induces a compression in the water. Here

�‘, j ¼ �x‘xj denotes the components of the stress tensor in (1).
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. Continuity of pore pressure:

s ¼ ��P: ð17Þ

. Vanishing of the tangential frame stress �12� �21¼ 0 which is equivalent to

@u1
@x2
þ
@u2
@x1
¼ 0: ð18Þ

In addition, it is understood that the pressure P is also required to satisfy the two-

dimensional Sommerfeld radiation condition at infinity. We have so far giving the precise

formulation of the exterior transmission problem (ETP) consisting of the partial

differential Equations (13 and 14) for the unknowns u, s in �b and the Equation (10)

for the unknown P in �w together with transmission conditions (15–18) and the radiation

condition at infinity.
From the computational point of view, it is more convenient to reduce the problem

(ETP) to a non-local problem in a finite computational domain such as �b. For this

purpose, we now reduce the Helmholtz Equation (10) to a boundary integral equation by

using the Green representation of P in �w. More precisely, we seek a solution of (10) in the

form of a simple-layer potential in terms of the unknown density function ’:

Pðx, x0Þ :¼ �qGðx, x0; k0Þ �

Z
@�b

Gðx, 
; k0Þ’ðx0, 
Þds
, x 2 �w,

where G(x, x0, k0) is free-space Helmholtz–Green’s function given by

Gðx, x0, k0Þ :¼
i

4
H
ð1Þ
0 ðk0 kx� x0kÞ,

with x¼ (x, y), x0¼ (x0, y0). (See Appendix Equation (33).) Clearly, the unknown density

function ’ is related to the unknowns u and U via the transmission conditions (15–18).
If the bone sample, @�b, has positive orientation, then letting x!X2 @�b we obtain

from condition (16) that

�r � uþ 2�
@u1
@x1
þQ�

� �
þ s ¼ qGðX,x0; k0Þ þ

Z
@�b

GðX, 
; k0Þ’ðx0, 
Þds
, ð19Þ

and

�r � uþ 2�
@u2
@x2
þQ�

� �
þ s ¼ qGðX, x0; k0Þ þ

Z
@�b

GðX, 
; k0Þ’ðx0, 
Þds
: ð20Þ

Note that in deriving these equations, we have tacitly employed the condition (18). In

view of the similarity of the Equations (19) and (20), a substraction of the two equations

leads to the simple relation:

@u1
@x1
�
@u2
@x2
¼ 0: ð21Þ

Hence in computation, we may use (21) and either (19) or (20), but not both. Here the term

" should be replaced by � ¼ ð1=RÞðs�QeÞ in (12).
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Next, the flux continuity condition (15) leads to the natural boundary condition for s:

�w!2 1� � 1þ
p12
p22

� �� �
n � u�

�

p22

@s

@n

� �
þ q

@

@ nX
GðX, x0; k0Þ þ �ðX, x0, k0Þð Þ

¼
1

2
’ðx0,XÞ �

Z
@�b

’ðx0, 
Þ
@GðX, 
; k0Þ

@ nX
ds
: ð22Þ

Finally, from the representation formula for P, the condition (17) leads to a boundary
integral equation for ’:

�

Z
@�b

GðX, 
; k0Þ’ðx0, 
Þds
 � sþ �qGðX, x0; k0Þ ¼ 0: ð23Þ

It is worthy mentioning that the right-hand sides of all the Equations (19), (20), (22)
and (23) contain no singularities, since for the first three equations the source point x0 is in
�b, whereas for Equation (22), the singularity is cancelled, because of the last term on the
right-hand side.

Before we formulate what is called the non-local problem for ETP, some
observations are in order. We observe that the transmission conditions (19) and (20)
can be considered as natural boundary conditions for the displacement fields u for
given s and ’, whereas condition (22) is a natural condition for the stress s, if u and ’
are known. From the variational formulation point of view, both equations define the
relevant Dirichlet–Neumann maps. On the other hand, the condition (23) only relates
the trace of the stress s and the known density function ’, which may be considered as
a boundary integral equation for ’ for the given stress s. With these observations, we
are now in a position to state the non-local problem for (ETP):
Find the four unknowns u1, u2, s, ’. The first three unknowns are required to satisfy the
Biot equations (13–14) and the boundary conditions (or rather the transmission conditions)
either (19) or (20), (21) and (22), where the density ’ may be considered as an unknown
parameter subject to the constraint (23).

We note that if ’ is given, then we have an uncoupled system for displacement fields u1,
u2, s. On the other hand, if the displacement fields u1, u2 and the stress s are known, then
the unknown density function ’ is required to satisfy the standard Fredholm boundary
integral equation of the first kind (23). In general this is a coupled system for the five
unknowns, and can only be treated by numerical methods, which is the content of the next
section.

4. Numerical approximation

We consider the simple situation where the bone specimen is a square of dimension L�L.
The domain is discretized into a uniform Cartesian grid consisting of N�N points. We
solve the coupled system of equations (13), (14), (19), (21) (or (20), (21)), (22) and (23) by
using a finite-difference method.

More specifically, the derivatives in the equations are approximated by 2nd-order finite-
difference schemes: central difference schemes are used for the bulk equations, while
backward or forward difference schemes are used for the boundary conditions (depending
on the square’s edge or corner under consideration). An exception is made for the
discretization of the tangential derivatives along the edges, which are approximated only by
1st-order backward difference schemes. This choice is motivated by two reasons: to keep the
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implementation relatively simple (as compared to 2nd-order backward/forward formulas

which would require special treatment near corners) and to avoid solving a badly

ill-conditioned linear system (as compared to 2nd-order central formulas whichwould imply

having zeros on the main diagonal of the resulting coefficient matrix).
The quadrature of the boundary integrals in (19) (or (20)), (22) and (23) is based on

constant interpolation of the solution between grid points, which gives a reasonably good

approximation given the simple geometry of the problem. For simplicity H¼ 0 in �.

Finally, the resulting linear system is solved by a direct method (Gaussian elimination).
As an example, for a point X( j, l ) located on the left edge of the bone specimen (except

the corners), the discretized form of (19) is given by

�þ 2��
Q2

R

� �h
�u1ð jþ 2, lÞ þ 4u1ð jþ 1, l Þ � 3u1ð j, l Þ

i

þ 2 ��
Q2

R

� �h
u2ð j, l Þ � u2ð j, l� 1Þ

i
þ 2�x 1þ

Q

R

� �
sð j, l Þ

¼ 2q�xGðX, x0; k0Þ þ 2
X

2@�b

GðX, 
; k0Þ’ðx0, 
Þð�xÞ2, ð24Þ
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Figure 1. Relative error on P for �¼ 0.7, 0.83, 0.9 and !¼ 2�� 104.
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Figure 2. Relative error on P for �¼ 0.7, 0.83, 0.9 and !¼ 2�� 5� 104.
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where

GðX, 
; k0Þ ¼

i

4
H
ð1Þ
0 ðk0 kX� 
kÞ if X 6¼ 
,

i

8�
�x log

2

�x

� �
þ 1

� �
if X ¼ 
,

8>><
>>:

ð25Þ

and �x is the grid spacing.

5. Numerical experiments

To validate the model, we perform a sensitivity test on the parameter � (porosity). More

precisely, for a given �, we compute the pressure P at 11 receiving points outside the bone

specimen, and we do so for different resolutions in order to compare the results. We should

mention that, in clinical practice, it would be possible to wrap the member with a series of

receiving and source points which would lead to a more accurate determination of the

porosity. The center of the square (bone specimen) is located at x1¼ x2¼ 5L/2, a single

source is positioned at x1¼L, x2¼ 5L/2 and the receiving points are positioned at x1¼ 4L,

equally spaced between L� x2� 4L.
The physical parameters we use are (in dimensional units): L¼ 0.01, �f¼ 950,

�r¼ 1960, Kf¼ 2� 109, Kr¼ 2� 1010, �¼ 1.5 and a¼ 0.001. For the sensitivity test, the

reference high resolution is N¼ 41 and this is compared with simulations of lower

resolution N¼ 25. The comparison is performed by computing the relative error on P

between the two resolutions and over the 11 receiving points, i.e.

Error ¼

P11
j¼1 P 41

j � P 25
j

	 
2� �1=2

P11
j¼1 P 41

j

	 
2� �1=2 , ð26Þ

where P25 and P41 are the pressures for resolutions N¼ 25 and N¼ 41, respectively.
Figure 1 shows the results for �¼ 0.7, 0.83, 0.9 and !¼ 2�� 104, while Figure 2 shows

the results for the same set of � but a larger frequency !¼ 2�� 5� 104. In Figure 1, the

reference �’s do not coincide exactly with the minimum of the curves but the values are

nevertheless relatively close. The agreement becomes better as ! increases, especially for

large � (Figure 2). The results would certainly improve if higher resolutions were used.

However we could not specify resolutions much larger than N¼ 41 due to the memory

limitations of our computer. Overall the outcome of the sensitivity test on � is satisfactory.
The comparison of the results of the two frequencies also suggests that there are

so-called good frequencies and bad frequencies. Choosing a pulsed signal would allow

many frequencies to be used and the appropriated weighted norm could also be tried. We

believe this to be the case and that is the purpose of a future investigation.
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Appendix

Gradient of the pressure

To derive the correct integral equations which describe our problem, we must first go back to the
interaction with fluid and poro-elastic solid equations. In the fluid we have the Navier–Stokes
equations holding for V ¼ _U

�w
@V

@t
¼ �rPþ �w 4Vþ

1

3
rðr � VÞ

� �
þ F,

@�w

@t
þ �w0r � V ¼ 0 where �0 ¼ a constant,

P ¼ c2�w,
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where �w0 is a constant reference density. If we assume that �w
¼ 0 then the system reduces to

�w
@V

@t
¼ �rPþ F, ð27Þ

r � V ¼ �
1

�w0 c
2

@P

@t
, ð28Þ

which may be combined to form the equation:

��Pþ r � F ¼ �
1

c2
@2P

@t2
ð29Þ

We now consider the time-harmonic case and assume P¼ p(x)e�i!t, @2P=@t2 ¼ �!2pðxÞe�i!t,
r �F¼ (r � f )e�i!t, from which we have

4pþ k2p ¼ 
, where k2 ¼
!2

c2
, and 
 ¼ r � f:

The relationship between pressure may then be found using (27), i.e.

@V

@t
¼

1

�w
�rPþ Fð Þ,

which for time-harmonic motion reduces to

�w!2Uw ¼ rp� fð Þ:

From this we get the interface condition

�wn �U ¼
@p

@n
� n � f: ð30Þ

If 
(x)¼ �(x,X0), then we may choose

fðxÞ ¼
1

2�
rx log x� x0ð Þ �H x, x0ð Þ
� �

, ð31Þ

where H (x, x0) is an arbitrary harmonic function. How we choose the harmonic function determines
n � f on the boundary. One possible choice is to take

�ðx, x0Þ :¼
1

2�
log kx� x0kð Þ �H x, x0ð Þð Þ,

as the Laplacian Green’s function. This function vanishes on the boundary whose normal derivatives
must be computed. Other choices are possible, i.e. the Laplacian Neumann function, whose normal
derivative on the boundary is equal to ð1=LÞ, where L is the perimeter of the boundary and whose
Dirichlet boundary values must be computed, etc.

Integral equations

For the solution of Equation (10) in the water �w, we now employ the method of boundary integral
equations. Let

Gðx, 
; k0Þ :¼
i

4
Hð1Þ0 ðk0kx� 
kÞ ð32Þ

denote the fundamental solution of the Helmholtz equation with H
ð1Þ
0 being the modified Bessel

function of the first kind. Then we may seek a solution of (10) in the form:

Pðx, x0Þ ¼

Z
�w

Gðx, 
; k0Þf ð
, x0Þds
 �

Z
�

Gðx, 
; k0Þ’ð
Þds
, x 2 �w, ð33Þ
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for fixed source point x02�w, where f(
, x0)¼�q�(
, x0) is the point source term. The first term on
the right-hand side is the Newton potential which reduces to �qG(x, x0; k0), while the second term
is the simple-layer potential with the unknown density function ’ to be determined. By the standard
argument in potential theory [10], we arrive at the boundary integral equation of the first kind for the
unknown density ’:

Pðx, x0Þ ¼ �qGðx, x0; k0Þ � V’ðxÞ, x 2 �, ð34Þ

where V is the simple-layer boundary integral operator defined by

V’ðxÞ :¼

Z
�

Gðx, 
; k0Þ’ð
Þds
:

As was shown in [10], G(x, 
; k0) admits an asymptotic development

Gðx, 
; k0Þ ¼ Gðx, 
Þ �
1

2�
ðlogðk0 þ �0Þ þ Sk0 ðx, 
Þ,

where

�0 ¼ c0 � log 2� i
�

2
with c0 ¼ 0:5772 (Euler’s constant),

Sk0 ðx, 
Þ ¼ �
1

2�
ðlogðk0kx� 
kÞ

X1
m¼1

amðk0kx� 
kÞ
2m

þ
X1
m¼1

bmðk0kx� 
kÞ
2m,

am ¼
�1

22mðm!Þ2
, bm ¼ ð�0 � 1� 1=2 � � � � 1=mÞam:

Here

Gðx, 
Þ ¼ �
1

2�
log kx� 
k

is the fundamental solution for the Laplacian (or �� rather). Based on the asymptotic development,
it can be shown that

V’ðxÞ ¼ V0’ðxÞ þOðk0 log k
2
0Þ, x 2 �, ð35Þ

where

V0’ðxÞ :¼ �
1

2�

Z
�

logðkx� 
kÞ’ð
Þds
:

This shows that for low frequency, we may approximate V by using V0 in order to simplify the
computation as used in our numerical experiments.

In the same manner, by taking the normal derivative of the pressure P on �, we obtain
a boundary integral equation of the second kind,

1

2
I� K 0

� �
’ ¼

@

@n
Pþ q

@

@n
Gðx, x0; k0Þj�, x 2 �, ð36Þ

where K 0 is the adjoint of the double-layer boundary integral operator given by

K 0’ðxÞ :¼

Z
�

@

@nx
Gðx, 
; k0Þ’ð
Þds
, x 2 �:
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Again K 0 can be approximated in terms of the corresponding adjoint operator for the Laplacian,

K 00’ðxÞ :¼

Z
�

@

@nx
Gðx, 
Þ’ð
Þds
, x 2 �:

For interested readers, we refer the details to [11] and [10], where one may also find mapping
properties of related boundary integral operators.

Applicable Analysis 1225




