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Abstract: An overview of a Hamiltonian framework for the description of nonlinear modulation
of surface water waves is presented. The main result is the derivation of a Hamiltonian version
of Dysthe’s equation for two-dimensional gravity waves on deep water. The reduced problem is
obtained via a Birkhoff normal form transformation which not only helps eliminate all non-resonant
cubic terms but also yields a non-perturbative procedure for surface reconstruction. The free surface
is reconstructed from the wave envelope by solving an inviscid Burgers’ equation with an initial
condition given by the modulational Ansatz. Particular attention is paid to the spatial form of this
model, which is simulated numerically and tested against laboratory experiments on periodic groups
and short-wave packets. Satisfactory agreement is found in all these cases.

Keywords: deep-water gravity waves; Dysthe equation; Hamiltonian systems; modulation theory;
numerical simulations

1. Introduction

Because the cubic nonlinear Schrödinger (NLS) equation for water waves had been
shown to have a limited range of applicability, Dysthe [1] extended this model to the
next order in the perturbation analysis. The resulting equation is now widely used in the
water wave community because of its efficiency and ability to describe realistic waves,
in particular with moderately large steepnesses. Among the new features are effects from
the wave-induced mean flow which lead to improvement in the stability properties of
finite-amplitude waves. Due to its higher-order nonlinear terms, Dysthe’s equation is also
able to capture the asymmetric development of propagating wave packets. Originally
derived in the context of gravity waves on deep water, it has since been extended to
various other settings and has produced a large literature: e.g., finite depth [2], gravity-
capillary waves [3], exact linear dispersion [4], dissipation [5], higher order [6], just to cite
a few references. Interest in Dysthe’s equation lies in the fact that it is more amenable
to mathematical analysis and numerical simulation than the full water wave equations,
while being able to capture salient features of weakly nonlinear wave packets. In particular,
the associated computational cost is significantly less compared to that from direct (fully
nonlinear) numerical solvers [7–10].

In this asymptotic regime, solutions are sought as mild modulations of monochro-
matic waves. Besides the wave steepness, another small parameter is associated with the
spectral width relative to the dominant carrier wavenumber (the so-called narrowband
approximation), and accordingly evolution equations are written for the complex wave
envelope. Such models have typically been derived via the method of multiple scales from
the full water wave equations [1,2,5], or as a reduction of the Fourier integro-differential
equation that was first proposed by Zakharov [11] and later refined by Krasitskii [12] for
resonantly interacting water waves in the small-amplitude limit [3,4,13]. These studies
provide a formal derivation and analysis of Dysthe’s equation, and it is only recently that
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rigorous results on its well-posedness have been obtained [14,15]. The rigorous justifica-
tion of envelope equations for water waves has so far been proved for the NLS equation
only [16,17]. This mathematical question remains an open problem for Dysthe’s equation.

Despite these advances, early versions of Dysthe’s equation share a fundamental
shortcoming: unlike the NLS Equation [18], they are not Hamiltonian partial differential
equations whereas the full water wave equations are. From a modeling point of view,
it is desirable that a reduced model inherits important properties of the original system.
Regardless of whether the modulational analysis is carried out from the full water wave
equations or from Zakharov’s equation, an envelope model is not guaranteed to be Hamil-
tonian unless there is a way to ensure that a symplectic structure is retained together with
some conserved energy.

Progress in this direction has recently been made by Gramstad and Trulsen [19] and
Craig et al. [20] who proposed Hamiltonian versions of Dysthe’s equation. Gramstad and
Trulsen [19] used Krasitskii’s refined version of Zakharov’s equation as a basis for their mod-
ulational analysis of three-dimensional gravity waves on arbitrary depth. Craig et al. [20]
considered the two-dimensional problem of gravity waves on deep water and combined
results from [21–25] to derive such models. Their formal approach involves a reduction
of the basic Hamiltonian to Birkhoff normal form at fourth order, followed by a series of
canonical transformations together with a procedure of homogenization. In particular,
the normal form transformation helps eliminate all non-resonant cubic terms, which leads
to a simple and elegant expression for the reduced Hamiltonian. These calculations are
facilitated by the fact that the Dirichlet–Neumann operator has an explicit Taylor expansion,
as devised by Craig and Sulem [7].

Another important step in the solution process for such approximations is the re-
construction of the free surface from the wave envelope, which is performed at a post-
processing stage but yet affects the predictions’ accuracy. In classical (i.e., non-Hamiltonian)
derivations of Dysthe’s equation as well as in the alternate derivation by Gramstad and
Trulsen [19], this reconstruction is carried out perturbatively in terms of a Stokes’ expansion
based on the Ansatz for the solutions’ form. Contributions are included up to an order
that is consistent with the order of approximation for Dysthe’s equation. By contrast,
Craig et al. [20] proposed a non-perturbative approach for surface reconstruction which
requires solving a nonlinear partial differential equation (PDE) associated with the Birkhoff
normal form transformation. This PDE for the surface elevation takes the generic form of
an inviscid Burgers’ equation. Higher-order harmonics of the surface wave spectrum are
automatically generated from the carrier component through nonlinear interactions accord-
ing to this PDE. As a consequence, the entire solution process in this approach fits within a
Hamiltonian framework, meaning that both the envelope equation and the nonlinear PDE
for surface reconstruction possess a well-defined Hamiltonian structure. Preliminary tests
in [20] show very good agreement between this approximation and numerical simulations
of the full water wave equations for the temporal evolution of Benjamin–Feir instability of
Stokes waves on deep water.

Furthermore, Craig et al. [20] provided an alternate spatial form of their Hamiltonian
model in which the role of the spatial and temporal variables is interchanged. Spatial forms
of Dysthe’s equation have also received much attention in the literature as they are more
suitable for comparison with time series recorded by fixed probes along the wave tank
in laboratory experiments, or recorded by an array of buoys in field experiments [26–28].
Such a manipulation of the independent variables is applied to the envelope equation
as well as to the procedure for surface reconstruction, which here requires a nontrivial
adjustment of Burgers’ equation associated with the Birkhoff normal form transformation.

In the present paper, after giving an overview of this Hamiltonian approach and
reviewing recent results by Craig et al. [20], we propose an improved strategy for the
surface computation. Focusing on the spatial dynamics (with the spatial and temporal
variables switched), we further introduce a dimensionless rescaled form of the equations
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to facilitate comparison with laboratory experiments. We perform numerical simulations
and test them under various wave conditions.

On a related note, we also point out recent work by Dyachenko et al. [29–31] on a
special reduction of Zakharov’s equation for two-dimensional gravity waves on deep water
(which has been referred to as the compact or super compact equation). This reduction is
made possible in this case by taking advantage of explicit analytical expressions of 4-wave
resonances and by identifying exact cancellation of terms. The resulting simpler form is
similar to that for Dysthe’s equation (while being free of the narrowband approximation)
and still possesses a Hamiltonian structure. It is thus better suited than Zakharov’s equation
for analysis and computation, and numerical results have indicated that it is able to describe
large-amplitude rogue waves and even waves reaching near the breaking point. A spatial
Hamiltonian version of this compact equation can also be derived, as shown in [29,32].

The remainder of this paper is organized as follows. Section 2 introduces the basic
mathematical formulation for two-dimensional gravity waves on deep water, including
the Hamiltonian form of the governing equations and the Birkhoff normal form transfor-
mation to eliminate all non-resonant cubic terms. Section 3 describes the main steps in
our Hamiltonian perturbation approach, including the modulational Ansatz to specify the
special form of solutions in this asymptotic regime, the resulting Hamiltonian equation for
temporal dynamics of the wave envelope, and the corresponding procedure for surface
reconstruction. Section 4 presents the spatial version of this approximation together with its
dimensionless rescaled form. Numerical simulations of our spatial model are then shown
in Section 5 where it is compared to the classical formulation. Tests against laboratory
experiments on periodic groups and short-wave packets are also presented, for which
satisfactory agreement is obtained. Finally, concluding remarks are given in Section 6.

2. Governing Equations
2.1. Hamiltonian Formulation

Consider a two-dimensional fluid of infinite depth

S(η) = {x ∈ R,−∞ < y < η(x, t)} ,

bounded above by a free surface {y = η(x, t)}. The variables (x, y) denote the horizontal
and vertical coordinates respectively, and the variable t denotes time. For an incompress-
ible, inviscid and irrotational flow, the velocity potential ϕ(x, y, t) satisfies the boundary
value problem

∇2 ϕ = 0 in S(η) , (1)

∂tη + (∂xη)(∂x ϕ)− ∂y ϕ = 0 at y = η(x, t) , (2)

∂t ϕ +
1
2
|∇ϕ|2 + gη = 0 at y = η(x, t) , (3)

∂y ϕ→ 0 as y→ −∞ , (4)

where g is the acceleration due to gravity and ∇ = (∂x, ∂y)> is the spatial gradient.
The Laplace problem (1)–(4) can be reduced from one posed inside the entire fluid

domain to one posed on the free surface alone. As proposed by Craig and Sulem [7], a key
ingredient is to introduce the Dirichlet–Neumann operator (DNO)

G(η)ξ = (−∂xη, 1)> · ∇ϕ
∣∣
y=η

, (5)
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which takes Dirichlet data ξ(x, t) = ϕ(x, η(x, t), t) at the free surface, solves Laplace’s
Equation (1) for ϕ with boundary condition (4), and returns the corresponding Neumann
data (i.e., the surface normal velocity). Equations (1)–(4) then reduce to

∂tη = G(η)ξ , (6)

∂tξ = −gη − 1
2(1 + (∂xη)2)

[
(∂xξ)2 − (G(η)ξ)2 − 2(∂xη)(∂xξ)G(η)ξ

]
, (7)

which constitute a closed Hamiltonian system for the two conjugate variables η and ξ
in Zakharov’s formulation of the water wave problem [7,11]. These can be cast into
canonical form

∂t

(
η
ξ

)
= J
(

δη H
δξ H

)
=

(
0 1
−1 0

)(
δη H
δξ H

)
, (8)

where the 2× 2 matrix J represents the symplectic structure of the system, and the Hamiltonian

H(η, ξ) =
1
2

∫ [
ξG(η)ξ + gη2

]
dx , (9)

coincides with the total energy and is an invariant for the temporal dynamics. All integrals
are evaluated over R but this notation is omitted for convenience.

Due to analyticity properties for a sufficiently regular free surface [33], the DNO can
be written via a convergent Taylor series expansion

G(η) =
∞

∑
j=0

Gj(η) , (10)

about the quiescent state η = 0. Each term Gj is homogeneous of degree j in η and is
determined recursively [7]. The first three terms in this expansion are

G0 = |D| ,
G1(η) = DηD− G0ηG0 ,

G2(η) = −1
2

(
|D|2η2G0 + G0η2|D|2 − 2G0ηG0ηG0

)
,

where D = −i∂x (so that its Fourier symbol is k). The reader is referred to [9,21,24,34–36]
for other applications of this formulation to long-wave perturbation calculations as well as
direct numerical simulations of nonlinear wave phenomena.

With this observation, the Hamiltonian can be decomposed as

H = H2 + H3 + H4 + . . .

where
H2(η, ξ) =

1
2

∫ (
ξG0ξ + gη2

)
dx ,

H3(η, ξ) =
1
2

∫
ξG1(η)ξ dx =

1
2

∫
ξ(DηD− G0ηG0)ξ dx ,

= −1
2

∫
η
[
(Dξ)2 + (G0ξ)2

]
dx ,

H4(η, ξ) =
1
2

∫
ξG2(η)ξ dx = −1

4

∫
ξ
(
|D|2η2G0 + G0η2|D|2 − 2G0ηG0ηG0

)
ξ dx ,

= −1
2

∫
η
[
η(G0ξ)(D2ξ)− (G0ξ)G0(ηG0ξ)

]
dx ,



Fluids 2021, 6, 103 5 of 20

represent the quadratic, cubic and quartic contributions respectively, in terms of (η, ξ). The
first contribution H2 describes the linear behavior while the next contributions H3 and H4
describe nonlinear mechanisms of 3-wave and 4-wave interactions, respectively.

Our Hamiltonian approach amounts to applying a sequence of canonical transfor-
mations to the Hamiltonian (9) of the system, and to its symplectic structure (8). As a
consequence, a Hamiltonian model is obtained at each level of approximation.

2.2. Normal Form Transformations

Because 3-wave resonances are not allowed for deep-water gravity waves, the Hamil-
tonian H(η, ξ) can be simplified by eliminating all non-essential cubic terms through a
suitable canonical transformation [12]. This idea is inherent to the general theory of normal
form transformations for Hamiltonian systems and has been successfully applied to the
water wave problem, starting with the seminal work of Zakharov [11]. Birkhoff normal
form up to a given order m results from a sequence of canonical changes of variables, so
that the Taylor expansion of the transformed Hamiltonian up to order m contains only
essential (i.e., resonant) terms.

In the two-dimensional problem of gravity waves on infinite depth [25], the normal
form transformation for m = 3 can be defined as the flow at s = −1 subject to the
vector field

∂s

(
η
ξ

)
=

(
0 1
−1 0

)(
δηK3
δξ K3

)
, (11)

for some auxiliary Hamiltonian K3, and with initial condition at s = 0 being tied to the
original physical variables (η, ξ). The variable s plays the role of an evolutionary variable
for this auxiliary Hamiltonian system. More specifically, the normal form is defined through
a Taylor expansion of the Hamiltonian about s = 0,

H(η, ξ)
∣∣
s=−1 = H(η, ξ)

∣∣
s=0 −

dH
ds

(η, ξ)
∣∣
s=0 +

1
2

d2H
ds2 (η, ξ)

∣∣
s=0 + . . . ,

= H(η, ξ)
∣∣
s=0 − {K3, H}(η, ξ)

∣∣
s=0 +

1
2
{K3, {K3, H}}(η, ξ)

∣∣
s=0 + . . . ,

= H2(η, ξ)
∣∣
s=0 + H3(η, ξ)

∣∣
s=0 + H4(η, ξ)

∣∣
s=0 − {K3, H2}(η, ξ)

∣∣
s=0

−{K3, H3}(η, ξ)
∣∣
s=0 +

1
2
{K3, {K3, H2}}(η, ξ)

∣∣
s=0 + . . . ,

where K3 is homogeneous of degree 3, Hn is homogeneous of degree n and the Poisson bracket

{K3, Hn} =
∫ [

(δη Hn)(δξ K3)− (δξ Hn)(δηK3)
]
dx ,

is of degree n + 1. All cubic terms are eliminated if

H3(η, ξ)
∣∣
s=0 − {K3, H2}(η, ξ)

∣∣
s=0 = 0 , (12)

which is satisfied for
K3(η, ξ) =

1
2

∫
(−i sgn(D)η)2|D|ξ dx .

Derivatives in the above expansion are related to Poisson brackets through

dH
ds

=
∫ [

(δη H)(∂sη) + (δξ H)(∂sξ)
]
dx = {K3, H} ,

by virtue of (11). The operator −i sgn(D) is the Hilbert transform in a Fourier multiplier
form. Accordingly, it is convenient to introduce(

η̃

ξ̃

)
= P0

(
η
ξ

)
=

(
−i sgn(D) 0

0 −i sgn(D)

)(
η
ξ

)
, (13)
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so that
K3(η̃, ξ̃) =

1
2

∫
η̃2∂x ξ̃ dx , (14)

and

∂s

(
η̃

ξ̃

)
= J0

(
δη̃K3
δ

ξ̃
K3

)
=

(
0 −1
1 0

)(
δη̃K3
δ

ξ̃
K3

)
. (15)

The corresponding symplectic structure is given by J0 = P0 JP>0 = −J. This auxiliary
system produces two equations: one for η̃,

∂sη̃ − η̃∂x η̃ = 0 ,

is an inviscid Burgers’ equation, while the other for ξ̃,

∂s ξ̃ − η̃∂x ξ̃ = 0 ,

is its linearization along Burgers’ flow. The new Hamiltonian then reads

H = H2(η, ξ) + H4(η, ξ)− {K3, H3}(η, ξ) +
1
2
{K3, {K3, H2}}(η, ξ) + R5 ,

= H2(η, ξ) + H4(η, ξ)− 1
2
{K3, H3}(η, ξ) + R5 , (16)

= H2(η, ξ) + H4(η, ξ)− H4(−i sgn(D)η, ξ) + R5 ,

where the leading nonlinear contributions are now quartic terms, and follows from (12)
together with the identity

1
2
{K3, H3}(η, ξ) =

1
2

∫
ξG2(−i sgn(D)η)ξ dx = H4(−i sgn(D)η, ξ) ,

as shown in [25]. By construction, this normal form transformation is canonical and thus
preserves the symplectic structure J in (8). More details on Birkhoff normal forms for the
water wave problem can be found in [11,25,37,38].

3. Hamiltonian Dysthe’s Equation
3.1. Modulational Ansatz

Here we describe the special form of solutions to be sought in this asymptotic regime.
We first make the change to complex symplectic coordinates z(x, t) and z(x, t) as defined by(

z
z

)
= P1

(
η
ξ

)
=

1√
2

(
a(D) ia−1(D)
a(D) −ia−1(D)

)(
η
ξ

)
, (17)

where the symbol .̄ stands for complex conjugation, and

a(D) = 4

√
g

G0
. (18)

System (8) then becomes

∂t

(
z
z

)
= J1

(
δz H
δz H

)
=

(
0 −i
i 0

)(
δz H
δzH

)
,

after adjusting the symplectic structure J1 = P1 JP>1 .
The next calculation involves the modulational Ansatz(

u
u

)
= P2

(
z
z

)
= ε−1

(
e−ik0x 0

0 eik0x

)(
z
z

)
, (19)
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which implies that we are seeking solutions in the form of near-monochromatic waves with
carrier wavenumber k0 > 0 and with slowly varying complex envelope u(X, t) depending
on X = εx. The dimensionless parameter ε = k0 A0 � 1 is a measure of the wave steepness
(A0 denotes a characteristic wave amplitude for the free surface). It is also a measure of the
wave spectrum’s narrowness around k = k0. The resulting equations of motion are

∂t

(
u
u

)
= J2

(
δu H
δu H

)
= ε−1

(
0 −i
i 0

)(
δu H
δu H

)
, (20)

where J2 = εP2 J1P>2 . The additional factor ε in this definition of J2 reflects the change in
symplectic structure from the spatial rescaling x → X = εx and plays a part in defining
the relevant slow time scale for the resulting systems. More details on these canonical
transformations in the context of Hamiltonian models for interfacial flows can be found
in [22,24,39].

3.2. Envelope Equation for Temporal Dynamics

Naturally, the Hamiltonian (16) is also modified through the changes of variables (17)
and (19). The first transformation (17) performs a diagonalization of the quadratic part

H2 =
∫

z ω(D)z dx ,

in terms of normal modes (z, z) and the linear dispersion relation

ω(D) = (gG0)
1/2 = (g|D|)1/2 ,

for deep-water gravity waves. The second transformation (19) sets the stage for the
expansion of H in powers of ε. These calculations are facilitated by the fact that the DNO
admits a Taylor expansion with an explicit form for its Taylor terms.

Due to the multiscale nature of this problem (fast oscillations in x and slow modulation
in X), it is important to understand the action of Fourier multiplier operators on multiscale
functions. The following result from [40] describes this action.

Theorem 1. Let α(D) be a Fourier multiplier. For sufficiently smooth functions f (X), we have

α(D)
(

eik0x f (X)
)

= eik0xα(k0 + εDX) f (X) ,

= eik0x

(
n

∑
j=0

εj

j!
∂

j
kα(k0)Dj

X f (X) + O(εn+1)

)
.

As an example,

G0

(
eik0x f (X)

)
= eik0x|k0 + εDX | f (X) ,

= eik0x(k2
0 + 2εk0DX + ε2D2

X)
1/2 f (X) ,

= eik0x(k0 + εDX + . . . ) f (X) .

Furthermore, the presence of multiple scales needs to be appropriately dealt with in
order to extract the nontrivial dynamics of the slowly varying wave envelope. The scale
separation lemma of Craig et al. [21,23] is used to address this homogenization problem for
our Hamiltonian system. As a result, terms with fast oscillations essentially homogenize
to zero and thus do not contribute to the effective Hamiltonian, which implies that only
4-wave resonances (i.e., terms with the same number of u and u) are relevant among all
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possible quartic interactions in H4 because the corresponding fast oscillations exactly cancel
out. The following expressions for the leading terms in (16) are obtained,

H2(η, ξ) = ε
∫

u ω(k0 + εDX)u dX ,

H4(η, ξ) =
ε3

4

∫ [
k3

0|u|4 +
3
2

εk2
0|u|2

(
uDXu + uDXu

)]
dX ,

H4(−i sgn(D)η, ξ) = − ε3

4

∫ [
k3

0|u|4 +
3
2

εk2
0|u|2

(
uDXu + uDXu

)
− 2εk2

0|u|2|DX ||u|2
]

dX ,

up to fourth order in ε. We draw the reader’s attention to the extra term in H4(−i sgn(D)η, ξ)
as compared to H4(η, ξ), which will be further discussed below.

If we Taylor expand the dispersion relation ω(k0 + εDX) in ε, and retain terms of order
up to O(ε4), then the Hamiltonian (16) further reduces to

H = H2(η, ξ) + H4(η, ξ)− H4(−i sgn(D)η, ξ) ,

=
ε

2

∫
u
(

ω0 + εω′0DX +
ε2

2
ω′′0 D2

X +
ε3

6
ω′′′0 D3

X

)
u + c.c.

+ε2k3
0|u|4 +

3
2

ε3k2
0|u|2

(
uDXu + uDXu

)
− ε3k2

0|u|2|DX ||u|2 dX + O(ε5) ,

= ε
∫

ω0|u|2 + εω′0 Im(u∂Xu) +
ε2

2
ω′′0 |∂Xu|2 + ε2

2
k3

0|u|4

+
ε3

6
ω′′′0 Im

[
(∂Xu)(∂2

Xu)
]
+

3
2

ε3k2
0|u|2 Im(u∂Xu)

− ε3

2
k2

0|u|2|DX ||u|2 dX + O(ε5) , (21)

where ω0 = ω(k0) =
√

gk0 and

ω′0 =
dω

dk
(k0) =

ω0

2k0
, ω′′0 =

d2ω

dk2 (k0) = −
ω0

4k2
0

, ω′′′0 =
d3ω

dk3 (k0) =
3ω0

8k3
0

.

Initials ‘c.c.’ in (21) stand for the complex conjugate of all the preceding terms on the
right-hand side of this equation, and Im(·) denotes the imaginary part.

We deduce from (20) that the evolution equation for u is given by

∂tu = −iε−1δu H ,

= −iω0u− εω′0∂Xu + i
ε2

2
ω′′0 ∂2

Xu− iε2k3
0|u|2u (22)

+
ε3

6
ω′′′0 ∂3

Xu− 3ε3k2
0|u|2∂Xu + iε3k2

0u|DX ||u|2 ,

which is a Hamiltonian counterpart to Dysthe’s equation for deep-water gravity waves [1],
associated with the Hamiltonian (21).

The prefactor ε−1 in (20) should not be alarming because it suitably cancels out with
the prefactor ε in (21). The operator DX is substituted with ∂X = iDX wherever appropriate
in (21) and (22). The cubic NLS equation is recovered if all O(ε3) terms in (22) are neglected.
The nonlocal term, which involves the Fourier multiplier

|DX | = sgn(DX)DX = −i sgn(DX)∂X ,

in connection with the Hilbert transform, is a characteristic feature of Dysthe’s equation
and represents effects from the wave-induced mean flow [1,22]. By “mean flow”, we
refer to the lowest harmonic that is a slowly varying function of space. This nonlocal
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term naturally arises here from the expansion of H4(−i sgn(D)η, ξ) which is itself a direct
consequence of the normal form transformation. It takes a simple explicit form, which
differs from previous formulations of Dysthe’s equation where it is coupled to the solution
of an auxiliary Laplace problem for the unperturbed domain [4].

3.3. Reconstruction of the Free Surface

Because Equation (22) only solves for the wave envelope, another step is required
in order to determine the actual shape of the free surface from knowledge of the wave
envelope. In modulation theory, this reconstruction is typically a perturbative calculation
in terms of a Stokes’ expansion based on the modulational Ansatz. Contributions from up
to the third harmonics of the wave spectrum are typically included in this expansion.

Our reconstruction procedure differs from the traditional method in that it inverts the
transformations associated with our modulational Ansatz and with the third-order normal
form. At any instant t, the original η is recovered by solving the inviscid Burgers’ equation

∂sη̃ − η̃∂x η̃ = 0 , (23)

for s ∈ (−1, 0] with initial condition

η(x, t)
∣∣
s=−1 =

ε√
2

a−1(D)
[
u(X, t)eik0x + u(X, t)e−ik0x

]
, (24)

where u obeys (22) and η is related to η̃ through (13). The choice of this initial condition
is motivated by the special form of wave packets (17) and (19) we are modeling in this
asymptotic regime. The final solution of (23) at s = 0 is meant to represent the original
physical variable η. From (24), higher-order contributions from lower (i.e., mean flow)
and higher harmonics are generated through nonlinear interactions according to (23). The
short interval s ∈ (−1, 0] ensures that the smooth and small initial condition (24) cannot
yet develop into a shock.

As a consequence, the entire solution process including the surface reconstruction
is carried out within the Hamiltonian framework. This approach was validated in [20]
against direct numerical simulations of the full nonlinear Equations (6) and (7), as applied
to the Benjamin–Feir instability of Stokes waves. The agreement was found to be slightly
better than that obtained from predictions by the classical Dysthe’s equation.

4. Alternate Model for Spatial Dynamics
4.1. Envelope Equation

In view of comparing with laboratory experiments where time series of the surface
elevation are typically recorded by probes at fixed locations along the wave tank, much
consideration has also been given to the spatial version of Dysthe’s equation as indicated
by the numerous studies in the literature [26–28]. Such a model is established by switching
the role of the X- and t-variables in the previous envelope equation, with X acting as an
evolutionary variable for wave propagation along the wave tank.

Because we are unaware of any Hamiltonian formulation for the spatial dynamics
associated with the basic Equations (1)–(4), we proceed by applying the standard method
to (22). Let

v(X, t) = u(X, t)eiω0t , (25)

so that

∂Xv = −2
ω0

gε
∂tv− iε

g
4ω2

0
∂2

Xv− 2iε
ω0k3

0
g
|v|2v

+ε2 g2

8ω4
0

∂3
Xv− 6ε2 ω0k2

0
g
|v|2∂Xv + 2iε2 ω0k2

0
g

v|DX ||v|2 . (26)
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Then using (26) recursively, all X-derivatives on its right-hand side can be replaced by
t-derivatives up to a certain order. This implies

∂2
Xv = 4

ω2
0

g2ε2 ∂2
t v + 4i

ω0

g2ε2 ∂3
t v + 8i

ω2
0k3

0
g2 ∂t(|v|2v) + . . . ,

∂3
Xv = −8

ω3
0

g3ε3 ∂3
t v + . . . ,

and after inserting these expressions back in (26), we obtain

∂Xv = −2
ω0

gε
∂tv−

i
gε

∂2
t v− 2iε

ω0k3
0

g
|v|2v

+16ε
k3

0
g
|v|2∂tv + 2ε

k3
0

g
v2∂tv + 4iε

k3
0

g
v|Dt||v|2 , (27)

which is the spatial version of (22). The coefficient ε−1 in (27) can be removed by reintro-
ducing the original spatial variable x = X/ε, which yields

∂xv = −2
ω0

g
∂tv−

i
g

∂2
t v− 2iε2 ω0k3

0
g
|v|2v

+16ε2 k3
0

g
|v|2∂tv + 2ε2 k3

0
g

v2∂tv + 4iε2 k3
0

g
v|Dt||v|2 . (28)

The temporal counterpart to D is defined by Dt = i∂t so that its Fourier symbol
is ω. The variable u is recovered by inverting (25). As is common for the spatial Dysthe’s
equation [26–28], there is no ∂3

t v term in (28). We note however an additional nonlin-
ear term of the form v2∂tv and, partly for this reason, the Hamiltonian nature of (22) is
not retained by (28). This result is not viewed as undesirable because, as stated earlier, it
does not contradict any basic Hamiltonian formulation for the spatial dynamics of water
waves. Furthermore, because wave-tank experiments are usually susceptible to dissipa-
tive effects [26,34,41], it is not clear whether a Hamiltonian model would be relevant in
this context. Despite the absence of a conserved Hamiltonian, the L2 norm (also called
wave action)

M =
∫
|v|2 dt ,

is an invariant for the spatial dynamics of (28). This property can be proved by a
direct calculation.

4.2. Reconstruction of the Free Surface

When using (28), it is also required to adjust the procedure for surface reconstruction
accordingly. For (23), conversion of ∂x η̃ to ∂tη̃ is not straightforward given the complicated
nature of (6) and (7). We use the approximation

∂x η̃ ' − k0

ω0
∂tη̃ , (29)

with η̃ obeying simple advection at the linear phase speed ω0/k0. We choose (29) for
right-moving solutions to be consistent with the advection part in (22). The new form of
Burgers’ equation is

∂sη̃ +
k0

ω0
η̃∂tη̃ = 0 , (30)

where
η̃ = −i sgn(D)η ' −i sgn(Dt)η .
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For the initial condition (24), we first Taylor expand it as

η(x, t)
∣∣
s=−1 =

ε√
2

[
eik0xa−1(k0 + εDX)u(X, t) + e−ik0xa−1(−k0 + εDX)u(X, t)

]
,

=
ε√
2

[
eik0x

(
a−1

0 − εa′0a−2
0 DX

)
u + e−ik0x

(
a−1

0 + εa′0a−2
0 DX

)
u
]
+ . . . ,

=
ε√
2

a−1
0

(
eik0xu + e−ik0xu

)
− ε2
√

2
a′0a−2

0

(
eik0xDXu + e−ik0xDXu

)
,

=
√

2εa−1
0 Re

(
eik0xu

)
−
√

2ε2a′0a−2
0 Re

(
eik0xDXu

)
,

and then convert it to

η(x, t)
∣∣
s=−1 =

√
2εa−1

0 Re
(

eiθv
)
− 2
√

2ε
ω0

g
a′0a−2

0 Re
[

ieiθ
(

∂tv +
i

2ω0
∂2

t v
)]

+ . . . ,

by virtue of (25) and (27). For simplicity, we denote a0 = a(k0), a′0 = a′(k0) and θ =
k0x−ω0t. Parity conditions imply that a(k0) = a(−k0) and a′(−k0) = −a′(k0), with

a′(k) = − a(k)
4k

.

In this initial condition, the parameter x would be assigned the location of a probe
along the wave tank. The symbol Re(·) denotes the real part.

The above expression of η(x, t)
∣∣
s=−1 relies on the scale separation between x and

X, thus allowing the Fourier multiplier a−1(D) to be expanded up to first order in ε.
Equation (27) is invoked to approximate the X-derivative of v by t-derivatives. An alternate,
perhaps simpler, approach consists in switching the x- and t-variables directly in a−1(D)
by virtue of (29), yielding

η(x, t)
∣∣
s=−1 =

ε√
2

a−1
(

k0

ω0
Dt

)(
v eiθ + v e−iθ

)
, (31)

where v solves (28). In general, the latter option should be preferred because it does not
involve any expansion of a−1(D).

4.3. Rescaled Variables

We now consider unscaled versions of (28)–(31) where the perturbation parameter
ε is absorbed back into the variables. To facilitate the comparison with wave-channel
measurements, we change to a coordinate system moving at the linear group velocity via
the dimensionless rescaled variables

η = A0ζ , v = B0V , χ = ε2k0x , τ = εγω0

(
2ω0

g
x− t

)
,

where γ is a scale factor that fits the computational domain into an interval of length 2π
and B0 is a characteristic (real-valued) amplitude for the wave envelope such that

B0 = A0
4

√
g

4k0
=

1√
2

a0 A0 ,

according to (17) and (19). This change of variables reintroduces ε in the same way as
proposed by Lo and Mei [26], and will also allow us to compare our results with their
model, which may be viewed as a spatial form of the classical (non-Hamiltonian) Dysthe’s
equation. Recall that the wave steepness is defined by ε = k0 A0, hence k2

0B2
0 = ε2a2

0/2, and
the group velocity is given by ω′0 = g/(2ω0) for gravity waves on deep water. To a fixed
observer, τ denotes the negative time elapsed and χ represents the distance over which the
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wave group has advanced (i.e., the fetch). In terms of these new variables, the envelope
equation (28) becomes

∂χV = −iγ2∂2
τV − iβ|V|2V − 8εγβ|V|2∂τV

−εγβV2∂τV + 2iεγβV|Dτ ||V|2 , (32)

where β = ω0a2
0/g = 1. The wave envelope is now represented by a complex func-

tion V(τ, χ) of τ and χ. For the surface reconstruction, Burgers’ equation (30) takes the
dimensionless form

∂s ζ̃ − ε2γζ̃∂τ ζ̃ = 0 , (33)

with initial condition

ζ(τ, χ)
∣∣
s=−1 = Re

(
eiθV

)
+ 2εγk0a′0a−1

0 Re
(

ieiθ∂τV
)

, (34)

up to order O(ε), where the phase function now reads θ = τ/(εγ)− χ/ε2. The alternate
choice (31) reduces to

ζ(τ, χ)
∣∣
s=−1 =

1
2
(εγ)1/4|Dτ |1/4

(
eiθV + e−iθV

)
, (35)

after substituting

a−1
(

k0

ω0
Dt

)
= a−1(−εγk0Dτ) ,

with its definition (18). Note that the Fourier multiplier |Dτ |1/4 acts on all the functions
inside the parentheses in (35). For the tests considered in the next section, we found that
(34) and (35) produce similar results and we opted to present those given by (35).

5. Numerical Results

Validation of the Hamiltonian Dysthe’s equation (22) was provided in [20] by com-
paring with time-domain simulations of the full Equations (6) and (7) and of the classical
Dysthe’s equation. In the present study, we focus on the spatial version (28) and test
it against laboratory experiments by Keller [42] on periodic groups and by Su [43] on
short-wave packets. These two different sets of experiments were discussed by Lo and
Mei [26] and were used to validate their spatial version of the classical Dysthe’s equation.
We follow their procedure as described in the previous section, and take this opportunity
to compare with their model as well. The latter takes the dimensionless form

∂χ A = −iγ2∂2
τ A− i|A|2 A− 8εγ|A|2∂τ A + 2iεγA|Dτ ||A|2 , (36)

in terms of the same rescaled variables τ and χ as defined earlier. In this case (as is
common in modulation theory), the free surface is reconstructed perturbatively via the
Stokes’ expansion

ζ(τ, χ) =
1
2

[
A1(τ, χ)eiθ + A2(τ, χ)e2iθ + A3(τ, χ)e3iθ

]
+ c.c. + A0(τ, χ) , (37)

up to the third harmonics, where

A0(τ, χ) = −1
2

ε2γ|Dτ ||A|2 , A1(τ, χ) = A− iεγ∂τ A− 3
8

ε2|A|2 A ,

A2(τ, χ) =
1
2

εA2 − 2iε2γA∂τ A , A3(τ, χ) =
3
8

ε2 A3 .
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5.1. Numerical Methods

Equation (32) is discretized in τ by a pseudo-spectral method based on the fast Fourier
transform F . The computational domain spans the interval 0 ≤ τ ≤ 2π with periodic
boundary conditions and is divided into a regular grid of N collocation points. We denote
the discrete Fourier coefficients Û(κ) of a 2π-periodic function U(τ) by

Û(κ) = F{U(τ)}(κ) , κ = 0,±1,±2, . . . ,±N/2 ,

where κ represents the sideband wavenumbers associated with the variable τ. Integration
over χ is carried out in the Fourier space so that the linear terms are solved exactly by the
integrating factor technique. The nonlinear terms are integrated in χ by using a fourth-order
Runge–Kutta scheme with constant step ∆χ.

The same numerical methods are used to solve Burgers’ Equation (33) with initial
condition (35) for the surface reconstruction. The reader is referred to [9,20,23,36] for more
details on such simulations. In particular, Equation (33) is integrated over s by using the
same step size ∆s = ∆χ. We remark that, although the surface reconstruction requires
solving an additional nonlinear PDE, this calculation is relatively straightforward and is
not necessarily performed at each downstream location χ (only when data on the free
surface are needed at the post-processing stage, e.g., for plotting purposes). Furthermore,
because this PDE is solved over a relatively short interval s ∈ (−1, 0], the associated cost is
insignificant and does not undermine the overall efficiency of this modulational approach.
The whole computation (i.e. solving for the wave envelope and determining the surface
elevation) can be produced by a single self-contained computer program.

Equations (36) and (37) from Lo and Mei [26] are computed by the same numerical
strategy, with exactly the same values for the numerical parameters.

5.2. Comparison with Experiments on Periodic Groups

For small amplitudes, the superposition of two progressive waves with slightly differ-
ent frequencies gives rise to periodic groups whose envelopes move forward at the group
velocity without change of shape. Keller [42] conducted laboratory experiments for such
groups with maximum incident steepness ε up to 0.23. He found that each group tended to
lean forward.

To mimic Keller’s input data, Lo and Mei [26] prescribed the incident condition

A(τ, 0) = 0.483 eiτ + 0.537 e−iτ , (38)

at χ = 0 for (36), so that |Â1(±1, 0)| = 0.5 for the two parent sidebands (κ = ±1) of the
first harmonic A1(τ, 0), as in the laboratory experiment. The initial values of the higher
sidebands were small and are neglected in (38). The physical parameters are g = 9.81 m
s−2, k0 = 8.865 m−1 and ε = k0 A0 = 0.23. The carrier frequency is estimated by the linear
dispersion relation ω0 =

√
gk0. Similarly, we specify the incident condition

V(τ, 0) = 0.494 eiτ + 0.507 e−iτ , (39)

for (32), so that

|V̂1(±1, 0)| = (εγ)1/4
∣∣∣F{e−iθ |Dτ |1/4

(
eiθV

)}
(±1, 0)

∣∣∣ = 0.5 ,

based on the expression (35) of ζ(τ, χ)
∣∣
s=−1. Here we deem the first harmonic V1(τ, χ)

(and its sidebands) to be well approximated in this way because, as suggested by the
scaling factor ε2 of the nonlinear term, Equation (33) is expected to only produce small
contributions to wave harmonics of the free surface over the short interval s ∈ (−1, 0]. We
also point out that, because the variables A and V do not quite represent the same physical
quantity, the numerical coefficients in (38) and (39) are not expected to be identical.
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As shown in Figure 1, the computed surface displacements ζ compare favorably with
the measurements (which are extracted from Figure 1 in [26]). These are limited sets of
data for crests and troughs that were recorded at eight stations within 7.14 m from the
wavemaker. Overall, the phase and asymmetry of the wave groups, which tend to lean
forward, are well reproduced. Discrepancies are noticeable and may be attributed to
experimental errors, physical effects that are not taken into account in the theory (e.g.,
friction, local wave breaking, undertow current in the wave tank), or uncertainty in the
input data. Predictions of ζ based on our simulations of (32) and (36) are also compared in
Figure 1. Recall that the free surface is reconstructed via (33) with (35) for our model (32),
while it is determined by (37) for the spatial form (36) of the classical Dysthe’s equation.
The numerical parameters are γ = 0.229, N = 256 and ∆χ = 0.01. As expected, the two
numerical solutions are indistinguishable (at least to graphical scale) near the wavemaker.
They remain close together, although small discrepancies tend to develop around the
dominant crest as the wave group travels down the tank. Model (32) seems to agree slightly
better with the experiment, as indicated e.g., at x = 6 m (crest at τ ' 3.8) and at x = 6.57 m
(trough at τ ' 3.9).
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Figure 1. Measured (circles) and computed (lines) surface displacements at 8 stations along the
wave tank in Keller’s experiments [42] on periodic groups. The parameters are γ = 0.229, ε = 0.23,
k0 = 8.865 m−1. Predictions from our model (blue line) and the spatial form of the classical Dysthe’s
equation (red line) are compared. The positions x of the probes are 3.14 m, 3.71 m, 4.28 m, 4.86 m,
5.43 m, 6.00 m, 6.57 m, 7.14 m.
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Figure 2a shows the evolution of the parent sidebands (κ = ±1) and higher side-
bands κ = ±3 for the first harmonic of the free surface, again comparing predictions
from (32) with Keller’s measurements (which are extracted from Figure 2 in [26]). The
agreement is good overall and is similar to that found for (36) as illustrated in Figure 2b.
By contrast, predictions from the cubic NLS equation (by neglecting the higher-order
nonlinear terms in Equation (32)) are plotted in Figure 2c and are clearly unsatisfactory.
In particular, the corresponding sidebands κ = +1 and +3 behave quite differently from
the measurements.
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Figure 2. Measured (symbols) and computed (lines) sideband amplitudes of the first harmonic for
Keller’s experiment [42] as shown in Figure 1: κ = −1 (green), κ = +1 (black), κ = −3 (red), κ = +3
(blue). The panels correspond to (a) our model (32), (b) spatial form (36) of the classical Dysthe’s
equation, (c) cubic nonlinear Schrödinger (NLS) model.
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Figure 3 depicts the evolution of the same sidebands for a duration much longer than
that of the experiment. Again, the similarity in results between (32) and (36) persists. We
can recognize a near-recurrence phenomenon as often reported in such situations [44]. All
these results on surface profiles and spectral amplitudes for periodic wave groups are
consistent with Lo and Mei’s observations (see Figures 1–3 in [26]). Finally, the evolution
of the relative error

∆M
M0

=
|M−M0|

M0
,

on the rescaled wave action
M =

∫
|U|2 dτ , (40)

for (32) (U = V) and for (36) (U = A) is illustrated in Figure 4. The integral is computed
via the trapezoidal rule over the periodic interval [0, 2π]. The reference value M0 denotes
the incident value of (40) at χ = 0. Overall, M is well conserved in both cases, despite a
gradual loss of accuracy that is partly due to accumulation of numerical errors. Model (32)
seems to perform slightly better in this regard, displaying a slightly lower error overall.
Note that, although filtering was not used for the tests in Figures 1 and 2, it was needed
for the tests in Figures 3 and 4 (using an exponential low-pass filter as in [9]) so that the
numerical solution can be computed over the longer interval χ ∈ [0, 15] given the relatively
large incident steepness ε = 0.23. Use of filtering likely contributes to the loss of accuracy
as seen in Figure 4. We emphasize that the same filter together with the same values of
numerical parameters were specified in the simulations of (32) and (36), and we point out
that Lo and Mei [26] also used filtering.
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(b)

Figure 3. Computed sideband amplitudes of the first harmonic over a longer χ-interval for the
same parameter values and same color notations as in Figure 2. The panels correspond to (a) our
model (32), (b) spatial form (36) of the classical Dysthe’s equation.
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Figure 4. Relative error on M for the same parameter values as in Figure 2. Predictions from our
model (blue line) and the spatial form of the classical Dysthe’s equation (red line) are compared.

5.3. Comparison with Experiments on Short-Wave Packets

Feir [45] performed laboratory experiments for packets of bell-shaped envelope and
of roughly equal duration but different maximum amplitudes. For low wave slope, the en-
velopes remained symmetrical and flattened with distance. For relatively steep waves
however, the envelopes first steepened forward and then split into two groups with the
smaller group trailing behind. More extensive experiments in a long tank for initially
square envelopes with maximum incident steepness ε = 0.09–0.28 were conducted by
Su [43]. Surface displacements were recorded at eight stations within 106.7 m from the
wavemaker. Su [43] confirmed Feir’s results on the asymmetry of evolution and further
revealed that the separated groups have different frequencies.

We consider a case that was investigated by Su [43] and, following Lo and Mei [26],
the incident condition for (36) is taken to be

A(τj, 0) = C[tanh(j− ja)− tanh(j− jb)] , j = 1, 2, . . . , N , (41)

where C = 0.5 and ja = 124N/256, jb = 134N/256. As so defined, the edges are slightly
smoothed to avoid numerical instability. We specify the incident condition V(τ, 0) for (32)
to be of the same form as (41) with the exception that C = 0.495. In this way, the maxi-
mum amplitude of ζ(τ, 0)

∣∣
s=0 via (33) coincides with the maximum amplitude of ζ(τ, 0)

from (37).
Figure 5 shows the computed free surface ζ at four stations along the wave tank for

ε = 0.09 and ω0/(2π) = 0.96 Hz. The carrier wavenumber is estimated by inverting the
linear dispersion relation k0 = ω2

0/g. Wave profiles from our simulations of (32) and (36)
are again compared in this figure. Discrepancies are barely noticeable for as far as x = 106.7
m. The numerical parameters are γ = 0.0868, N = 1024, ∆χ = 0.001 and filtering was
not needed here. These results closely resemble the computations presented in Figure 5
from [26]. Note the slightly asymmetric envelope between x = 42.7 m and x = 91.5 m,
which is also visible in Su’s records. The wave period is longer in the lower group in front
of the main group. The backward leaning of the main group is associated with nonlinear
modification of the dispersion relation, as pointed out in [26]. A more quantitative analysis
is provided in Table 1 where predictions of the maximum local steepness k0 Am based on our
simulations of (32) and (36) are compared to Su’s measurements at all eight stations (which
are reproduced from Table 1 in [26]). The agreement is good overall. The computations
tend to overestimate the maximum local steepness as the wave travels down the tank,
which is expected considering that dissipation is not accounted for in the theory. Indeed,
dissipative effects on wave propagation are likely to be relevant for such a long tank as
used in [43]. Compared to (36), predictions from (32) are found to be slightly closer to the
experimental data at the three stations farthest downstream.
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Figure 5. Computed surface displacements at four stations along the wave tank in Su’s experi-
ments [42] on short-wave packets. The parameters are γ = 0.0868, ε = 0.09, ω0/(2π) = 0.96 Hz.
Predictions from our model (blue line) and the spatial form of the classical Dysthe’s equation (red
line) are compared. The positions x of the probes are 18.3 m, 42.7 m, 91.5 m, 106.7 m.

Table 1. Measured and computed maximum local steepness k0 Am at eight stations along the wave
tank in Su’s experiments [43] on short-wave packets. The parameters are γ = 0.0868, ε = 0.09,
ω0/(2π) = 0.96 Hz. Predictions from our model (third column) and the spatial form of the classical
Dysthe’s equation (fourth column) are reported.

x (m) Measured Computed Computed
(Equation (32)) (Equation (36))

6.1 0.107 0.123 0.125
18.3 0.120 0.096 0.097
24.4 0.094 0.086 0.089
42.7 0.073 0.075 0.077
61.0 0.066 0.065 0.066
76.3 0.053 0.059 0.060
91.5 0.049 0.057 0.059

106.7 0.047 0.052 0.054

6. Conclusions

We have given an overview of the Hamiltonian modulational approach that has been
advocated in a series of papers by Craig et al. [21–25] and which leads to a Hamiltonian
version of Dysthe’s equation for two-dimensional gravity waves on deep water, as recently
shown in [20]. We have described the main steps in the derivation of the evolution
equation for the complex wave envelope, together with the procedure to reconstruct
the free surface from this wave envelope. Both operations are performed within the
Hamiltonian framework, which ensures some consistency throughout the entire solution
process. A key ingredient in this approach is a Birkhoff normal form transformation that
eliminates all non-resonant cubic terms, and yields a simple and elegant expression for the
reduced Hamiltonian. As a consequence of this reduction, the surface reconstruction is a
non-perturbative calculation but requires solving a nonlinear PDE which, in this problem,
takes the generic form of an inviscid Burgers’ equation.

To facilitate comparison with laboratory experiments, an alternate spatial form of
this Hamiltonian model can be written. This involves switching the role of the spatial
and temporal variables in the equations governing the envelope evolution and the surface
reconstruction. We have proposed an improved strategy for the latter computation, where
a refined choice of the initial condition is specified to solve Burgers’ equation. Focusing on
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the spatial dynamics and following Lo and Mei [26], we have introduced a dimensionless
rescaled form of these equations and performed numerical tests against laboratory experi-
ments by Keller [42] for periodic groups and by Su [43] for short-wave packets. Satisfactory
agreement is obtained in all these tests. We have also validated our numerical results by
comparing with the spatial form of the classical Dysthe’s equation. Predictions from our
new model and its classical counterpart are found to be similar in all the cases considered.

It would be of interest to extend the present methods and models to the finite-depth
case as well as to the three-dimensional setting. Preliminary results in these directions
based on the DNO can be found in [46]. These problems pose additional challenges and
their study is envisioned for future work.
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