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4.1 Introduction

About 70% of the Earth’s surface is covered by water and about 40% of the
world’s population lives within 100 km of the coast and estuaries. It is thus not
surprising that ocean waves, directly or indirectly, affect human activities and
have been a constant subject of interest. They continue to fascinate us by their
beauty, the broad range of phenomena that can be observed at various length
scales, as well as the numerous applications most notably in oceanography and
coastal engineering. For example, information on ocean waves is fundamental to
the safe and economic design of ships, offshore structures, and coastal edifices, to
better understanding air-sea interactions, ocean circulation and thus to improving
weather forecasting. It is key to better understanding extreme wave phenomena
such as tsunamis and rogue waves. It is needed for more efficient extraction of
wave power which has drawn increasing attention in recent years as a potential
source of renewable energy. The persistence of many open problems such as the
phenomenon of wave breaking, which are still poorly understood, as well as the
need for more accurate models to tackle the increasingly complex challenges raised
by our modern society, also drive research in this area.

Although the mathematical study of ocean waves (or more generally water
waves) goes back to the eighteenth century, the nonlinear problem remains chal-
lenging both analytically and computationally. It is only in the past two decades
that significant progress has been made in the rigorous analysis of the full equa-
tions. A major difficulty has to do with the fact that, in the classical formulation,
surface water waves are described by a free-boundary value problem. Not only
does the usual nonlinearity of fluid dynamics enter the boundary conditions, the
boundary itself (i.e. the free surface) is also to be found as part of the solution,
and the velocity field depends nonlocally on the moving boundary of the fluid do-
main. In some cases, water waves may be viewed as a perturbation relative to the
trivial geometry of a flat surface. This enables the derivation of reduced models
for weakly nonlinear waves, which are more amenable to analysis and simulation.
The water wave problem is notorious for its wealth of reduced models that arise
in various asymptotic limits. Many of these models happen to have a universal
character and appear in other areas of nonlinear science such as optics, plasma
physics, and quantum physics. Consideration of these limiting regimes, includ-
ing the development of perturbation methods to derive and analyze the resulting
equations, has produced an enormous literature.

A well-known approach in this regard is to adopt a Hamiltonian point of
view, based on the remarkable result of Zakharov [101] that the water wave prob-
lem has a canonical Hamiltonian formulation in terms of two conjugate variables,
namely the surface elevation and the velocity potential evaluated at the free sur-
face. This approach provides a unified framework where perturbation calculations
are performed following common rules from Hamiltonian transformation theory.
These include canonical transformations and reduction to normal forms. While
Zakharov’s idea has been around for some time, most studies in this framework ei-
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ther focus on the deep-water regime [52, 89] or show calculations preferably in the
Fourier space [77, 104]. Furthermore, while transformation theory is a basic well-
established tool for finite-dimensional Hamiltonian systems, it is less understood
in the context of partial differential equations (PDEs) and infinite-dimensional
Hamiltonian systems. This extension is an active area of research in mathematical
analysis and significant progress has been made in recent years [55, 66]. There
are important implications considering that Hamiltonian PDEs are widespread in
science and engineering.

The main objective of this chapter is to give an overview of recent work by
the authors and collaborators in developing a systematic perturbation method
to derive asymptotic models for nonlinear water waves, which are all Hamilto-
nian PDEs. Most of these results have been obtained in the past decade and half,
and concern both the shallow-water and deep-water scaling limits. Zakharov’s
Hamiltonian formulation of the governing equations, together with the Dirichlet–
Neumann operator as introduced by Craig and Sulem [40], provides the basis for
this asymptotic analysis. From a modeling point of view, reduced models should
retain important structural properties of the original system, including energy
conservation. It is thus desirable that they retain a Hamiltonian structure. Except
for a number of generic examples such as the Korteweg–de Vries and nonlinear
Schrödinger equations, many existing models (especially at high truncation order
or in complex physical settings) are not known to be Hamiltonian PDEs. For this
purpose, we introduce a set of canonical transformations that are relevant to lim-
iting scaling regimes in the water wave problem, and develop associated rules to
determine their effects on the Hamiltonian and symplectic structure of the sys-
tem. These transformation rules are directly applicable in the physical space and
allow a systematic point of view to be retained throughout the asymptotic pro-
cedure. As a consequence, a Hamiltonian model with a well-defined symplectic
structure is obtained at each level of approximation. We illustrate the versatility
of this approach by applying it to modeling surface gravity waves in the asymp-
totic shallow-water and deep-water regimes. Because three-wave resonances do
not occur for deep-water gravity waves, all cubic terms may be eliminated from
the Hamiltonian, as they are not relevant to the wave dynamics in this case. We
discuss how this elimination can be implemented in the present framework via
normal form transformations. We also take this opportunity to review rigorous
mathematical results on the initial value problem for water waves, considering
that the same basic formulation involving the Dirichlet–Neumann operator has
played a key role in recent breakthroughs [79].

This chapter is organized as follows. Section 4.2 presents the basic mathe-
matical formulation for surface gravity waves, including the Hamiltonian form of
the governing equations and an analysis of the Dirichlet–Neumann operator. Sec-
tion 4.3 describes the normal form transformations to eliminate non-resonant cubic
and quartic terms, and discusses their mapping properties. Section 4.4 lays out the
general procedure to derive reduced models in this Hamiltonian setting, including
a description of canonical transformations that are relevant to the shallow-water



116 Chapter 4. The Water Wave Problem and Hamiltonian Transformation. . .

and deep-water scaling limits. This approach is applied to the derivation of the
Boussinesq and Korteweg–de Vries equations for long waves on shallow water, and
the nonlinear Schrödinger equation for near-monochromatic waves on deep water.
Because the latter equation only describes the wave envelope, a procedure for re-
construction of the actual free surface is also presented. Section 4.5 gives a review
on the local and global existence theory for the water wave problem, providing a
summary of how analytic tools have evolved, starting from the pioneering work
of Nalimov [82] in the early seventies and leading to groundbreaking results in
the last fifteen years. Finally, Sect. 4.6 outlines two different numerical methods
to solve the full nonlinear equations for surface gravity waves. The first one fo-
cuses on steadily progressing wave solutions in a moving reference frame, while
the second one considers the general time evolution problem by solving the Hamil-
tonian form of the governing equations. An application to the head-on collision
of two solitary waves on shallow water is discussed, including a comparison with
laboratory measurements.

This chapter is based on lectures given by Walter Craig at the summer school
on Waves in Flows that took place in Prague in August 2018. Walter passed away
on January 18, 2019 and it is with great sadness that we (P. G. and C. S.) lost
our long-time collaborator and dear friend. We will forever be grateful to Walter
for his inspiration and friendship.
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Figure 4.1: Two-dimensional sketch of the fluid domain
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4.2 Water Waves and Hamiltonian PDEs

4.2.1 Physical Derivation of the Governing Equations

We consider the motion of a free surface on top of a d-dimensional body of water
under the influence of gravity (d = 2 or 3). Gravity acts as a restoring force
to disturbances at the free surface (see Fig. 4.1). Surface tension could also be
incorporated into this formulation but it is neglected here. The fluid domain is
defined by

Ω = {(x, y) : x ∈ R
d−1,−h < y < η(x, t)} ,

where we assume that the bottom is uniform (located at constant depth y = −h),
namely

Γb = {(x, y) : x ∈ R
d−1, y = −h} ,

and the free surface is given as the graph of a function η, namely

Γ = {(x, y) : x ∈ R
d−1, y = η(x, t)} .

For an incompressible and inviscid flow, the fluid velocity field u(x, y, t) in Ω obeys
Euler’s equations

∇ · u = 0 , (4.1)

∂tu+ (u · ∇)u+
1

ρ
∇P − g = 0 , (4.2)

which are associated with mass and momentum conservation, respectively. More-
over, assuming that the flow is irrotational involves the additional constraint

∇× u = 0 . (4.3)

In these equations, ∇ = (∂x, ∂y)
� is the spatial gradient, ρ is the fluid density,

P(x, y, t) is the fluid pressure, and g = (0,−g)� is the acceleration due to gravity.
Noting that (u · ∇)u = ∇|u|2/2 in this case, Eq. (4.2) can be expressed as

∂tu+∇
(
|u|2
2

+
P
ρ
+ gy

)
= 0 .

In the absence of wind and surface tension, the boundary conditions on Γ are the
dynamic condition

P = Pa , (4.4)

where Pa denotes the constant atmospheric pressure, and the kinematic condition

∂tη =
√

1 + |∂xη|2 u · n . (4.5)

Equation (4.4) prescribes the continuity of normal stress across Γ, while Eq. (4.5)
reflects the fact that the free surface moves according to the flow. On Γb (which
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is taken to be a rigid boundary and hence there is zero fluid flux across it), the
impermeability condition amounts to

u · n = 0 . (4.6)

In (4.5) and (4.6), the vector n denotes the unit outward normal to the boundary
of the fluid domain.

The irrotationality condition (4.3) implies that u = ∇ϕ where the scalar func-
tion ϕ(x, y, t) represents the velocity potential. In terms of ϕ, Eqs. (4.1) and (4.2)
take the form

Δϕ = 0 ,

and

∇
(

∂tϕ +
|∇ϕ|2
2

+
P
ρ
+ gy

)
= 0 ,

the latter implying

∂tϕ +
|∇ϕ|2
2

+
P
ρ
+ gy = C(t) , (4.7)

where C is an arbitrary function of t, which can be discarded without loss of
generality. This is equivalent to absorbing it into the definition of ϕ via the gauge
transformation

ϕ → ϕ +

∫ t

C(τ) dτ .

Evaluating (4.7) on Γ leads to

∂tϕ +
|∇ϕ|2
2

+
Pa

ρ
+ gη = 0 ,

by virtue of (4.4). Similarly to C, the constant pressure term Pa/ρ can also be
discarded, yielding

∂tϕ +
1

2
|∇ϕ|2 + gη = 0 .

This equation plays the same role as the dynamic condition (4.4) on Γ and is also
called Bernoulli’s condition. Substituting ϕ in (4.5) and (4.6), and collecting all
the equations, we obtain the boundary value problem

Δϕ = 0 , in Ω , (4.8)

∂tη = ∂yϕ − ∂xη · ∂xϕ , on Γ , (4.9)

∂tϕ = −gη − 1

2
|∇ϕ|2 , on Γ , (4.10)

∂yϕ = 0 , on Γb , (4.11)

which is referred to as the potential-flow formulation of Euler’s equations for sur-
face gravity water waves. To derive (4.9) and (4.11), we have used the fact that

n =
(−∂xη, 1)

�√
1 + |∂xη|2

,



4.2. Water Waves and Hamiltonian PDEs 119

on Γ and n = −ey on Γb. Typical boundary conditions in the horizontal hyperplane
are periodic boundary conditions (over a given periodic cell Td−1) or vanishing
boundary conditions at infinity.

This system of equations admits a number of invariants of motion, due to
the inviscid character of the flow [10]. These include the energy

H =

∫
Ω

(
1

2
|u|2 + gy

)
dV = K + P ,

=

∫
Rd−1

∫ η

−h

1

2
|u|2 dydx +

∫
Rd−1

∫ η

−h

gy dydx ,

=

∫
Rd−1

∫ η

−h

1

2
|∇ϕ|2 dydx +

∫
Rd−1

1

2
gη2 dx , (4.12)

where the first integral K represents kinetic energy, while the second integral
P represents potential energy. Note that the constant contribution from the y-
integration of the gravity term in P can be discarded because H is conserved in
time and thus is determined up to a constant level. Other invariants of motion are
the volume

V =

∫
Rd−1

∫ η

−h

dydx =

∫
Rd−1

η dx , (4.13)

where again the constant contribution from the y-integration can be omitted, and
the impulse (i.e. the horizontal momentum)

I =

∫
Rd−1

∫ η

−h

∂xϕ dydx .

Because ∫ η

−h

∂xϕdy = ∂x

(∫ η

−h

ϕdy

)
− ϕ(x, η, t)∂xη , (4.14)

by Leibniz’s rule, the expression of I reduces to

I = −
∫
Rd−1

ϕ(x, η, t)∂xη dx . (4.15)

The total x-derivative in (4.14) does not contribute after integration by virtue of
the (periodic or vanishing) boundary conditions.

This formulation of the water wave problem has the following remarkable
property, which was first discovered by Zakharov [101, 103] and will be discussed
in a subsequent section.

Theorem 4.2.1. Equations (4.8)–(4.11) possess a canonical Hamiltonian struc-
ture in terms of Darboux coordinates, with Hamiltonian H given by the conserved
energy (4.12).

For this purpose, we first review basic notions on Hamiltonian systems, with
an emphasis on Hamiltonian PDEs.
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4.2.2 General Notions on Hamiltonian Systems

A Hamiltonian system is associated with a Hamiltonian function H : M → R

where M is the phase space. We restrict ourselves to phase spaces that are Hilbert
spaces, denoting the inner product between two vectors v1, v2 ∈ V(M) by 〈v1, v2〉.
The symplectic structure is given by a two-form ω on M, which can be represented
by the inner product

ω(v1, v2) = 〈v1, J−1v2〉 ,

where the invertible operator J satisfies J−� = −J−1 due to the antisymmetry of
two-forms, namely

〈J−1v1, v2〉 = −〈v1, J−1v2〉 .

The Hamiltonian vector field XH that describes the initial value problem

∂tv = XH , v(0) = v0 , (4.16)

follows from the relation

dH(v1) = ω(v1, XH) , ∀v1 ∈ V(M) . (4.17)

The inner product can be used to define the gradient of functions on M; in par-
ticular, gradvH is defined via the Gâteaux derivative

dH(v1) =
d

ds
H(v + sv1)

∣∣∣
s=0

= 〈gradvH, v1〉 , ∀v1 ∈ V(M) . (4.18)

Identifying (4.18) with (4.17) implies that XH = JgradvH, therefore Hamilton’s
equations of motion take the form

∂tv = JgradvH . (4.19)

With this at hand, it is straightforward to show that the Hamiltonian is conserved
over time. Indeed, we have

dH

dt
= 〈gradvH, ∂tv〉 = 〈gradvH, JgradvH〉 ,

=
1

2
〈gradvH, JgradvH〉+ 1

2
〈gradvH, JgradvH〉 ,

=
1

2
〈gradvH, JgradvH〉 − 1

2
〈JgradvH, gradvH〉 ,

= 0 ,

due to the skew symmetry of J . Similarly, the Poisson brackets between H and
other functions F are defined by

{H, F} =
dF

dt
= 〈gradvF, ∂tv〉 = 〈gradvF, JgradvH〉 .
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This definition implies that, if {H, F} = 0 (i.e. F Poisson commutes with H),
then dF/dt = 0 and consequently F is an invariant of motion for the Hamiltonian
system (4.16). In particular, {H, H} = dH/dt = 0 (i.e. H Poisson commutes with
itself) as shown above.

We denote the solution map, or the flow, for the initial value problem (4.16)
by v(t) = χt(v0). From the classical theory of ordinary differential equations
(ODEs), whenever the Hamiltonian vector field XH ∈ C1(M,V(M)), meaning
that the Hamiltonian H ∈ C2(M,R), then the flow is defined and unique, at
least locally in time. We point out, however, that this regularity condition rarely
holds when Eq. (4.16) is described by a PDE, and much effort has been devoted
to the study of well-posedness and properties of the solution map for numerous
examples of evolution equations. Furthermore, it is not clear that the property of
being a Hamiltonian system is of crucial importance in this effort. Nonetheless,
because of its interest in various special cases and because Hamiltonian PDEs
appear naturally in many areas of physics, it is reasonable to take seriously the
analogy between Hamiltonian dynamical systems and PDEs.

4.2.3 Examples of Hamiltonian PDEs

To illustrate the basic concepts introduced above, we review well-known examples
of Hamiltonian PDEs. These will be relevant to a subsequent discussion on reduced
models for water waves. It is assumed that suitable boundary and initial conditions
are specified in each case.

Quasilinear Wave Equation

Consider a scalar field p(x, t) satisfying the equation

∂2
t p = Δp − ∂pQ(p, x) , x ∈ Ω ⊆ R

d−1 . (4.20)

This can be written in the form (4.19) with

v =

(
p
q

)
, J =

(
0 1

−1 0

)
,

and

H =

∫
Ω

(
1

2
q2 +

1

2
|∇p|2 + Q(p, x)

)
dx .

More specifically, the second-order equation (4.20) is equivalent to a system of
first-order equations

∂tp = q ,

∂tq = Δp − ∂pQ ,

such that q = gradqH and Δp − ∂pQ = −gradpH.
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The gradient is taken with respect to the L2(Ω) inner product, which also
dictates what Hilbert space should be proposed for M. In particular, by definition,

〈gradpH, p1〉 =
∫
Ω

p1(gradpH) dx =
d

ds
H(p + sp1)

∣∣∣
s=0

, (4.21)

=
d

ds

∫
Ω

(
1

2
q2 +

1

2
|∇(p + sp1)|2 + Q(p + sp1, x)

)
dx
∣∣∣
s=0

,

=
d

ds

∫
Ω

(
1

2
q2 +

1

2
|∇(p + sp1)|2 + Q(p, x) + sp1∂pQ + . . .

)
dx
∣∣∣
s=0

,

=

∫
Ω

(∇p · ∇p1 + p1∂pQ) dx =

∫
Ω

(−p1Δp + p1∂pQ) dx ,

via integration by parts, for any p1 ∈ V(M) and with vanishing boundary condi-
tions. Hence, by identification, gradpH = −Δp + ∂pQ as claimed above.

Considering that the Laplacian Δ is an unbounded operator, the initial value
problem should be posed only on an appropriate subdomain of M. Note the char-
acteristic skew-symmetric form of the operator J in this case. We will say that a
Hamiltonian system with J of this form is in Darboux coordinates.

Boussinesq System

Long waves on shallow water can be described by coupled nonlinear equations of
the form

∂tp = −∂x

(
q + ∂qQ

)
,

∂tq = −∂x

(
p ∓ 1

3
∂2
xp + ∂pQ

)
, x ∈ T ,

where Q(p, q) is a nonlinear function of p and q. The variable q(x, t) is related to
the vertical displacement of the water surface, while the variable p(x, t) is related
to a horizontal velocity of the fluid. This is a Hamiltonian system of the form (4.19)
with

v =

(
p
q

)
, J =

(
0 −∂x

−∂x 0

)
,

and

H =

∫
T

(
1

2
p2 +

1

2
q2 ± 1

6
(∂xp)2 + Q(p, q)

)
dx . (4.22)

It can be checked that

gradpH = p ∓ 1

3
∂2
xp + ∂pQ , gradqH = q + ∂qQ .

The − sign in (4.22) is ill-posed (the “bad” Boussinesq system), while the + sign is
well-posed (the “good” Boussinesq system) [80]. Completely integrable nonlinear
cases include Q(p, q) = p3 [102] and Q(p, q) = p2q/2 [76, 86].
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In the absence of dispersion (i.e. in the absence of derivatives of p in the
equations and Hamiltonian), the Boussinesq system reduces to the shallow-water
equations. The mathematically rigorous study of the shallow-water limit was ini-
tiated by Kano and Nishida [74]. The work of Lannes [79] extended these results
from analytic spaces to Sobolev spaces, and to more subtle limiting situations such
as the Green–Naghdi system.

Korteweg–de Vries Equation

The Korteweg–de Vries (KdV) equation was first derived as a model for water
waves, following a reduction of the Boussinesq system. It is a classic example of a
completely integrable infinite-dimensional nonlinear system, which admits explicit
analytical solutions and arises in many scientific areas. For this reason, it has been
extensively studied and has been extended to various settings, including other
types of nonlinearity. A generalized KdV equation can be written as

∂tp =
1

3
∂3
xp − ∂x

(
∂pQ(p, x)

)
, x ∈ T ,

which can cast into Hamiltonian form (4.19) by choosing v = p, J = −∂x and

H =

∫
T

(
1

6
(∂xp)

2 + Q(p, x)

)
dx .

Completely integrable cases include Q(p, x) = p3 and Q(p, x) = p4. The rigorous
analysis of the water wave problem in the KdV limit can be found in work by
Kano and Nishida [75], Craig [24], and Schneider and Wayne [87].

Nonlinear Schrödinger Equation

The nonlinear Schrödinger (NLS) equation was first derived to describe the mod-
ulation of periodic waves on deep water [101]. It is another example of a universal
model for wave propagation in nonlinear media, and its study has also produced
an abundant literature [90]. A generalized NLS equation can be written as

i∂tu = −1

2
Δu + ∂uQ(u, u, x) , x ∈ T

d−1 , (4.23)

for the complex envelope u(x, t) of periodic waves. The symbol .̄ denotes complex
conjugation. This is a Hamiltonian PDE in the sense of (4.19) with

v =

(
u
u

)
, J =

(
0 −i
i 0

)
,

and

H =

∫
Td

(
1

2
|∇u|2 + Q(u, u, x)

)
dx . (4.24)
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This system gives two equivalent equations, one for u and another for its com-
plex conjugate u. Similar to (4.21), it is clear that Eq. (4.23) is given by ∂tu =
−igraduH, considering that |∇u|2 = ∇u · ∇u in (4.24). The NLS equation often
admits a gauge symmetry under phase translation, in which case Q(u, u, x) =
Q(|u|2, x). Completely integrable cases include Q(|u|2, x) = ±|u|4/2 for d = 2.
The rigorous justification of the NLS approximation for two-dimensional water
waves was addressed by Totz and Wu [93] and Düll et al. [50] in the infinite- and
finite-depth case, respectively.

In the following, we will introduce a unified perturbation approach based on
the Hamiltonian formulation of the water wave problem, and we will present a
detailed derivation of such models in appropriate scaling limits.

4.2.4 Zakharov’s Hamiltonian for Water Waves

Zakharov [101] showed that the boundary value problem (4.8)–(4.11) can be recast
as a closed Hamiltonian system in canonical form

(
∂tη
∂tξ

)
= J

(
gradηH
gradξH

)
, J =

(
0 1

−1 0

)
, (4.25)

for the two Darboux coordinates η(x, t) and

ξ(x, t) = ϕ(x, η(x, t), t) ,

the latter being the trace of the velocity potential at the free surface. As shown
below, it is a lower-dimensional system of equations compared to (4.8)–(4.11) in
the sense that it involves “surface” variables alone, whose spatial dependence is
only on the horizontal hyperplane. The Hamiltonian H in (4.25) is given by the
energy (4.12). The equivalence between the two systems (4.8)–(4.11) and (4.25) is
far from being obvious, in part because the fluid velocity depends nonlocally on
the moving boundary of the domain and the variable ξ does not appear explicitly
in the original formulation (4.8)–(4.11).

In subsequent work, Craig and Sulem [40] made the key observation that the
dependence on η can be made more explicit by introducing the Dirichlet–Neumann
operator (DNO)

G(η) : ξ 
−→
√
1 + |∂xη|2 (n · ∇ϕ)

∣∣
y=η

, (4.26)

which is the singular integral operator that takes Dirichlet data ξ on Γ, solves
Laplace’s equation (4.8) subject to (4.11), and returns the corresponding Neu-
mann data (i.e. the normal fluid velocity on Γ). This operation is linear in ξ but
depends nonlinearly on η. It is also an inherent assumption of the Hamiltonian
formulation (4.25) and of the definition (4.26) of the DNO that the function η rep-
resenting the free surface be a graph of x, which implies that overturning waves
(with a multi-valued profile) are not permitted here.
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With this at hand, the right-hand sides of (4.25) can be expressed in terms
of surface variables alone. By the chain rule, we have

∂tξ = ∂tϕ + (∂tη)(∂yϕ)
∣∣
y=η

, (4.27)

and
∂xξ = ∂xϕ + (∂xη)(∂yϕ)

∣∣
y=η

. (4.28)

Recognizing that
G(η)ξ = ∂yϕ − ∂xη · ∂xϕ

∣∣
y=η

,

from the definition (4.26) of the DNO, and combining it with (4.28), leads to

∂yϕ
∣∣
y=η

= G(η)ξ + ∂xη · ∂xϕ
∣∣
y=η

= G(η)ξ + ∂xη ·
(
∂xξ − (∂xη)(∂yϕ)

)∣∣
y=η

,

hence

∂yϕ
∣∣
y=η

=
G(η)ξ + ∂xη · ∂xξ

1 + |∂xη|2
. (4.29)

Substituting this expression back into (4.28) yields

∂xϕ
∣∣
y=η

= ∂xξ −
∂xη

1 + |∂xη|2
(
G(η)ξ + ∂xη · ∂xξ

)
, (4.30)

=
∂xξ − (∂xη)G(η)ξ + |∂xη|2∂xξ − (∂xη · ∂xξ)∂xη

1 + |∂xη|2
,

from which we obtain

|∂xϕ|2 + (∂yϕ)
2
∣∣
y=η

=
|∂xξ|2 + (G(η)ξ)2 − (∂xη · ∂xξ)

2 + |∂xη|2|∂xξ|2
1 + |∂xη|2

,

= |∂xξ|2 + (G(η)ξ)2 − (∂xη · ∂xξ)
2

1 + |∂xη|2
. (4.31)

Substituting (4.29) into (4.27) gives

∂tϕ
∣∣
y=η

= ∂tξ −
G(η)ξ

1 + |∂xη|2
(
G(η)ξ + ∂xη · ∂xξ

)
, (4.32)

where we have used the identity

∂tη = G(η)ξ , (4.33)

by virtue of the kinematic condition (4.9). With (4.31) and (4.32) in mind, the
dynamic condition (4.10) can be written as

∂tξ = −gη − |∂xξ|2
2

+

(
G(η)ξ + ∂xη · ∂xξ

)2
2(1 + |∂xη|2)

. (4.34)
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Equations (4.33) and (4.34) are the full expressions of the Hamiltonian formula-
tion (4.25) for surface gravity water waves.

Similarly, the Hamiltonian (4.12) can be expressed as a lower-dimensional
integral in terms of surface variables alone. Restricting our attention to the kinetic
part, we note that

K =

∫
Rd−1

∫ η

−h

1

2
|∇ϕ|2 dydx =

∫
Rd−1

∫ η

−h

1

2

(
∇ · (ϕ∇ϕ)− ϕΔϕ

)
dydx ,

where the last term vanishes due to (4.8). Then using the divergence theorem, we
obtain

2K =

∫
Rd−1

∫ η

−h

∇ · (ϕ∇ϕ) dydx =

∫
Γ

(ϕ∇ϕ) · n dS +

∫
Γb

(ϕ∇ϕ) · n dS ,

where the surface integral along Γb vanishes as a result of (4.11). It readily follows
from (4.26) that

2K =

∫
Γ

(ϕ∇ϕ) · n dS =

∫
Γ

ϕ(∇ϕ · n) dS ,

=

∫
Rd−1

ϕ(n · ∇ϕ)
∣∣
y=η

√
1 + |∂xη|2 dx =

∫
Rd−1

ξG(η)ξ dx ,

hence

H =
1

2

∫
Rd−1

(
ξG(η)ξ + gη2

)
dx , (4.35)

which is Zakharov’s Hamiltonian given explicitly in terms of the two conjugate
variables η and ξ. As for the impulse (4.15), it can be converted to

I = −
∫
Rd−1

ξ∂xη dx =

∫
Rd−1

η∂xξ dx , (4.36)

via integration by parts.

4.3 Dirichlet–Neumann Operator and Its
Analysis

The DNO plays a key role in the present formulation and analysis. We recall
here some of its properties as these will be relevant to our subsequent discussion.
The reader is referred to [79] for a more detailed presentation of the DNO. Let
η ∈ C1(Rd−1). Then G(η) satisfies the following properties:

1. G(η) is a continuous operator from H1(Rd−1) to L2(Rd−1), and more generally
from Hs(Rd−1) to Hs−1(Rd−1).

2. G(η) is self-adjoint and positive semi-definite, with G(η)1 = 0.
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3. As an operator G(η) : H1(Rd−1) → L2(Rd−1), it depends analytically upon
η ∈ BR(0) ⊆ C1(Rd−1) for some nonzero value of R.

Here, Hs(Rd−1) denotes the Sobolev space of order s equipped with the norm

‖f‖2Hs(Rd−1) =
∑

0≤|α|≤s

‖Dαf‖2L2(Rd−1) .

The latter property entails questions related to the boundedness of singular inte-
grals on hypersurfaces. It was proved in the case d = 2 by Coifman and Meyer [20]
and in the case d ≥ 2 by Craig et al. [39]. In particular, it implies the existence of
a convergent Taylor expansion for the DNO. This will be discussed in more detail
in a subsequent section.

4.3.1 Legendre Transform

In the water wave problem, the surface elevation η is a natural choice of dynamical
variable and acts as the “angle” variable in the Hamiltonian formulation. On the
other hand, the choice of the “action” variable ξ, which is canonically conjugate
to η, is less obvious. Using the DNO, we show that this “action” variable can be
easily deduced from first principles of classical mechanics. This is accomplished by
expressing the Lagrangian as

L = K − P ,

through an analogy with classical mechanics. In terms of η and the corresponding
tangent-space variable η̇ = ∂tη, the Lagrangian takes the form

L =
1

2

∫
Rd−1

ϕ(n · ∇ϕ)
∣∣
y=η

√
1 + |∂xη|2 dx − 1

2

∫
Rd−1

gη2 dx ,

=
1

2

∫
Rd−1

(
η̇G(η)−1η̇ − gη2

)
dx ,

given the fact that

η̇ =
√

1 + |∂xη|2 (n · ∇ϕ)
∣∣
y=η

= G(η)ϕ(x, η, t) ,

based on (4.9) and (4.26). The inverse of G(η) can be defined because ϕ(x, η, t) =
G(η)−1η̇ is determined up to an additive constant that is irrelevant to the dynam-
ics. The two canonical conjugate variables then follow from the Legendre transform

(
η, gradη̇L

)
=
(
η, G(η)−1η̇

)
= (η, ξ) ,

which is precisely the choice of Darboux coordinates introduced by Zakharov [101].
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4.3.2 Shape Derivative of H

It is easy to see that

gradξH = G(η)ξ ,

since H is quadratic in ξ and G(η) is self-adjoint. On the other hand, it is a
more subtle calculation to show that gradηH coincides with the right-hand side
of (4.34). We provide here such a calculation along the lines of that given in [26].
Noting that

gradηH = gradηK + gradηP = gradηK + gη ,

the gradient of the kinetic energy K with respect to η is the tricky part. Consider a
fluid domain Ω with free surface η and a family of nearby domains Ω1 with nearby
free surfaces η1 = η + δη, where 0 < δ  1. Denote the corresponding outward
unit normals by n and n1. We consider the Dirichlet integrals

K(η, ξ) =
1

2

∫
Rd−1

ξG(η)ξ dx , K1 = K(η1, ξ) =
1

2

∫
Rd−1

ξG(η1)ξ dx ,

for which we impose that the traces of the velocity potentials ϕ1 on η1 and ϕ on
η coincide, i.e.

ϕ(x, η, t) = ξ(x, t) = ϕ1(x, η1, t) ,

while we vary the boundary curve from η to η1. This is to say that we take the
partial derivative of K with respect to variations of the domain, while fixing the
boundary conditions of the velocity potential. For this purpose, the boundary
values of ϕ on η1 can be expressed as

ϕ(η1) = ϕ(η) + δη ∂yϕ + O(δ2) ,

and thus

ϕ1(η1)− ϕ(η1) = −δη ∂yϕ + O(δ2) , (4.37)

where we have dropped the dependence on x and t for convenience. Furthermore,
considering a harmonic function ϕ defined in a neighborhood that includes Ω∪Ω1,
the difference of boundary integral expressions for the Dirichlet integrals is given
by

∫
Γ1

ϕ(n1 · ∇ϕ) dS −
∫
Γ

ϕ(n · ∇ϕ) dS =

∫
Ω1

|∇ϕ|2dV −
∫
Ω

|∇ϕ|2dV ,

=

∫
Ω1\Ω

|∇ϕ|2dV ,

�
∫
Γ

|∇ϕ|2 δηdx , (4.38)
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according to Green’s first identity. The variation of the kinetic energy with fixed
boundary data ξ is calculated as the limit δ → 0 of

K1 − K =
1

2

∫
Rd−1

ξG(η1)ξ dx − 1

2

∫
Rd−1

ξG(η)ξ dx ,

=
1

2

∫
Γ1

ϕ1(n1 · ∇ϕ1) dS − 1

2

∫
Γ

ϕ(n · ∇ϕ) dS ,

=

∫
Γ1

(ϕ1 − ϕ)(n1 · ∇ϕ1) dS − 1

2

∫
Γ1

ϕ1(n1 · ∇ϕ1) dS

+

∫
Γ1

ϕ(n1 · ∇ϕ1) dS − 1

2

∫
Γ

ϕ(n · ∇ϕ) dS ,

which reduces to

K1 − K =

∫
Γ

−δη ∂yϕ(n · ∇ϕ) dS +
1

2

∫
Γ1

ϕ(n1 · ∇ϕ) dS

−1

2

∫
Γ

ϕn · ∇(δη ∂yϕ) dS +
1

2

∫
Γ

δη ∂yϕ(n · ∇ϕ) dS

−1

2

∫
Γ

ϕ(n · ∇ϕ) dS + O(δ2) ,

by using (4.37). Because the operator n·∇ is self-adjoint (similar to the DNO), the
third and fourth integrals on the right-hand side above cancel out after integration
by parts. Then appealing to (4.38) yields

K1 − K =
1

2

∫
Γ

|∇ϕ|2 δηdx −
∫
Γ

δη ∂yϕ(n · ∇ϕ) dS + O(δ2) .

Finally, we arrive at

K1 − K =

∫
Rd−1

δη

(
|∂xξ|2

2
+

(G(η)ξ)2 − (∂xη · ∂xξ)
2

2(1 + |∂xη|2)

−G(η)ξ + ∂xη · ∂xξ

1 + |∂xη|2
G(η)ξ

)
dx + O(δ2) ,

=

∫
Rd−1

δη

(
|∂xξ|2

2
−
(
G(η)ξ + ∂xη · ∂xξ

)2
2(1 + |∂xη|2)

)
dx + O(δ2) ,

via (4.26), (4.29), and (4.31). Identification with

K1 − K =

∫
Rd−1

δη (gradηK) dx + O(δ2) = 〈gradηK, δη〉+ O(δ2)

confirms that

gradηK =
|∂xξ|2

2
−
(
G(η)ξ + ∂xη · ∂xξ

)2
2(1 + |∂xη|2)

, (4.39)

hence ∂tξ = −gradηH = −gη − gradηK as stated in (4.34).
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Equation (4.39) allows us to write the shape derivative gradηG(η)ξ as an
operator acting on δη defined by

δη 
−→ gradηG(η)ξ · δη = −G(η)
(
δη ∂yϕ

∣∣
y=η

)
− ∂x ·

(
δη ∂xϕ

∣∣
y=η

)
,

where ∂yϕ
∣∣
y=η

and ∂xϕ
∣∣
y=η

(the components of the fluid velocity evaluated at

the free surface) are given by (4.29) and (4.30), respectively. Indeed, it follows
from (4.39) that

〈ξ, gradηG(η)ξ · δη〉 =
∫
Rd−1

δη

(
|∂xξ|2 −

(
G(η)ξ + ∂xη · ∂xξ

)2
1 + |∂xη|2

)
dx ,

=

∫
Rd−1

δη
(
|∂xξ|2 −

(
G(η)ξ + ∂xη · ∂xξ

)
∂yϕ
∣∣
y=η

)
dx .

Integrating by parts and using the fact that G(η) is self-adjoint, we find

〈ξ, gradηG(η)ξ · δη〉 = −
∫
Rd−1

ξ∂x · (δη ∂xξ) dx

−
∫
Rd−1

ξ
[
G(η)
(
δη ∂yϕ

∣∣
y=η

)
− ∂x ·

(
δη (∂xη) ∂yϕ

∣∣
y=η

)]
dx ,

= −
∫
Rd−1

ξ
[
G(η)
(
δη ∂yϕ

∣∣
y=η

)
+ ∂x ·

(
δη ∂xϕ

∣∣
y=η

)]
dx ,

which, by identification, yields the above formula for gradηG(η)ξ · δη.

4.3.3 Invariants of Motion

It can be checked that the energy (4.35) is conserved over time for the Hamiltonian
formulation (4.25). Indeed, given v = (η, ξ)�, we have

dH

dt
= {H, H} = 〈gradvH, JgradvH〉 ,

=

∫
Rd−1

(
(gradηH)(gradξH)− (gradξH)(gradηH)

)
dx ,

= 0 .

Similarly, the volume (4.13) is conserved because

dV

dt
= {H, V } ,

=

∫
Rd−1

(
(gradηV )(gradξH)− (gradξV )(gradηH)

)
dx ,

=

∫
Rd−1

∂tη dx =

∫
Rd−1

G(η)ξ dx ,

=

∫
Rd−1

ξG(η)1 dx = 0 ,

due to Property 2 of the DNO.



4.3. Dirichlet–Neumann Operator and Its Analysis 131

Verifying the conservation of the impulse (4.15) is a nontrivial task and, for
this purpose, it is preferable to work directly with the original definition, yielding

dI

dt
=

d

dt

(∫
Rd−1

∫ η

−h

∂xϕdydx

)
=

∫
Rd−1

(
(∂tη)(∂xϕ)

∣∣
y=η

+

∫ η

−h

∂txϕdy

)
dx ,

=

∫
Rd−1

(
(∂tη)(∂xϕ)

∣∣
y=η

+ ∂x

∫ η

−h

∂tϕdy − (∂xη)(∂tϕ)
∣∣
y=η

)
dx .

Again, the total x-derivative does not contribute because of the boundary condi-
tions. Noting that I ∈ R

d−1, it is more convenient to proceed with a component-
wise calculation. Substituting (4.9) and (4.10) for ∂tη and ∂tϕ, respectively, leads
to

dIj
dt

=

∫
Rd−1

[
(∂yϕ)(∂jϕ)− (∂jη)(∂jϕ)

2 − (∂�η)(∂�ϕ)(∂jϕ)

+(∂jη)
(1
2
|∇ϕ|2 + gη

)]
y=η

dx , (4.40)

=

∫
Rd−1

[
(∂yϕ)(∂jϕ)−

1

2
(∂jη)(∂jϕ)

2 +
1

2
(∂jη)(∂�ϕ)

2

+
1

2
(∂jη)(∂yϕ)

2 − (∂�η)(∂�ϕ)(∂jϕ) +
1

2
g∂jη

2
]
y=η

dx ,

where ∂j and ∂� denote the partial derivatives with respect to the horizontal
coordinates xj and x�, respectively, in the case d > 2. The gravity term integrates
to zero for the same reason as above. Realizing that the above integral is a surface
integral of the form

∫
Γ
F · n dS with

F =

(
1

2
(∂jϕ)

2 − 1

2
(∂�ϕ)

2 − 1

2
(∂yϕ)

2, (∂�ϕ)(∂jϕ), (∂yϕ)(∂jϕ)

)�
,

and because

∇ · F = (∂j , ∂�, ∂y)
� · F = (∂jϕ)(∂

2
j + ∂2

� + ∂2
y)ϕ = (∂jϕ)Δϕ = 0 ,

by virtue of (4.8), this implies that dIj/dt = 0 according to the divergence theorem.
Alternatively, the conservation of I can be expressed by the Poisson brackets

dI

dt
= 0 = {H, I} .

Although the calculation is less straightforward in this case, it can be recognized
that

{H, I} =

∫
Rd−1

(
(gradηI)(gradξH)− (gradξI)(gradηH)

)
dx ,

=

∫
Rd−1

(
(∂xξ)(∂tη)− (∂xη)(∂tξ)

)
dx ,

=

∫
Rd−1

[
(∂xξ)G(η)ξ + (∂xη)

(
|∂xξ|2

2
−
(
G(η)ξ + ∂xη · ∂xξ

)2
2(1 + |∂xη|2)

+ gη

)]
dx
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is a version of (4.40) that is written explicitly in terms of the surface variables η
and ξ, for which we have used (4.33) and (4.34).

4.3.4 Taylor Expansion of G

Exploiting Property 3 of the DNO, Craig and Sulem [40] devised a perturbative
approach for computing it based on a Taylor series expansion

G(η) =
∞∑
j=0

Gj(η) , (4.41)

about the quiescent state η = 0. Each Taylor term Gj is homogeneous of degree
j in η and is determined recursively. This derivation was first given in the case
d = 2 [40] and then extended to the case d ≥ 2 by Craig et al. [39] and Nicholls
[83]. We outline here the main steps.

Explicit formulas for the Gj ’s in (4.41) can be obtained by analyzing their
action on suitable harmonic functions. For the boundary conditions that we have
in mind (periodic or vanishing at infinity) and for such a linear equation as (4.8),
we consider elementary solutions of the form

ϕ(x, y) = cosh((h + y)|k|)eik·x ,

which satisfy (4.11) on Γb. Keep in mind that k ∈ R
d−1 and thus |k| denotes its

Euclidian norm. For simplicity, because time is frozen in this calculation, we omit
the dependence on t. We insert this form in the definition (4.26) where

ξ(x) = cosh((h + η)|k|)eik·x ,

∂yϕ
∣∣
y=η

= sinh((h + η)|k|)|k|eik·x ,

∂xϕ
∣∣
y=η

= i cosh((h + η)|k|)keik·x .

We then adopt the representation (4.41) for the DNO and, accordingly, Taylor
expand the hyperbolic functions about η = 0. This yields

⎛
⎝ ∞∑

j=0

Gj(η)

⎞
⎠ ∞∑

j=0

(η|k|)j
j!

cosh(j)(h|k|)eik·x

=

∞∑
j=0

(η|k|)j
j!

|k| sinh(j)(h|k|)eik·x − i(∂xη) ·
∞∑
j=0

(η|k|)j
j!

k cosh(j)(h|k|)eik·x .

Equating terms of the same order in η leads to a recursion formula for each Gj .
At zeroth order (corresponding to η = 0), it is easy to see that

G0 cosh(hk)eik·x = |k| sinh(h|k|)eik·x ,

G0e
ik·x = |k| tanh(h|k|)eik·x ,
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which defines the Fourier symbol of G0 as applied to an elementary Fourier mode
eik·x. We can therefore introduce the symbolic notation

G0f(x) = |D| tanh(h|D|)f(x) , (4.42)

for G0 acting on any sufficiently well-behaved function f(x) that may be written
in terms of a Fourier series or a Fourier transform, with D = −i∂x (so that its
Fourier symbol is k). For this reason, D and G0 are also called Fourier multipliers.

At each order j > 0 in η, we find the operator relation

Gj(η) cosh(h|k|) +
j∑

�=0

Gj−�(η)
(η|k|)�

�!
cosh(�)(h|k|)

=
(η|k|)j

j!
|k| sinh(j)(h|k|)− i(∂xη) ·

(η|k|)j−1

(j − 1)!
k cosh(j−1)(h|k|) ,

acting again on eik·x but, for convenience, this factor has now been dropped out.
Noting that the derivatives of the hyperbolic functions satisfy

cosh(j)(h|k|) =
{

cosh(h|k|) , j even ,
sinh(h|k|) , j odd ,

sinh(j)(h|k|) =
{

sinh(h|k|) , j even ,
cosh(h|k|) , j odd ,

we can split the contributions into two parts. For j > 0 even,

Gj(η) cosh(h|k|) = −
j∑

�=2,even

Gj−�(η)
(η|k|)�

�!
cosh(h|k|)

−
j−1∑

�=1,odd

Gj−�(η)
(η|k|)�

�!
sinh(h|k|)

+
(η|k|)j

j!
|k| sinh(h|k|)− i(∂xη) ·

(η|k|)j−1

(j − 1)!
k sinh(h|k|) ,

hence

Gj(η) = −
j∑

�=2,even

Gj−�(η)
(η|k|)�

�!
−

j−1∑
�=1,odd

Gj−�(η)
(η|k|)�

�!
tanh(h|k|)

+
(η|k|)j

j!
|k| tanh(h|k|)− i(∂xη) ·

(η|k|)j−1

(j − 1)!
k tanh(h|k|) ,

which is equivalent to

Gj(η) = −
j∑

�=2,even

Gj−�(η)
η�|D|�

�!
−

j−1∑
�=1,odd

Gj−�(η)
η�|D|�

�!
tanh(h|D|)

+
ηj |D|j

j!
|D| tanh(h|D|) + (Dη) · η

j−1|D|j−1

(j − 1)!
D tanh(h|D|) .
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In this equivalence, it is important to keep in mind that D is an operator acting
on functions of x and therefore its position within each term above matters. By
convention, unless parentheses are specified, operators such as D, |D|, and Gj act
on all that is immediately located on their right side. Because

D · η
j |D|j−1

j!
D = D ·

(
ηj |D|j−1

j!
D

)
= j(Dη) · η

j−1|D|j−1

j!
D +

ηj |D|j−1

j!
|D|2 ,

= (Dη) · η
j−1|D|j−1

(j − 1)!
D +

ηj |D|j
j!

|D| ,

by the product rule of differentiation, we arrive at

Gj(η) = −
j∑

�=2,even

Gj−�(η)
η�|D|�

�!
−

j−1∑
�=1,odd

Gj−�(η)
η�|D|�

�!
tanh(h|D|)

+D · η
j |D|j−1

j!
D tanh(h|D|) ,

and by using (4.42), a full recursive form emerges as

Gj(η) = −
j∑

�=2,even

Gj−�(η)
η�|D|�

�!
−

j−1∑
�=1,odd

Gj−�(η)
η�|D|�−1

�!
G0

+D · η
j |D|j−2

j!
DG0 . (4.43)

Similarly, for j odd,

Gj(η) cosh(h|k|) = −
j−1∑

�=2,even

Gj−�(η)
(η|k|)�

�!
cosh(h|k|)

−
j∑

�=1,odd

Gj−�(η)
(η|k|)�

�!
sinh(h|k|)

+
(η|k|)j

j!
|k| cosh(h|k|)− i(∂xη) ·

(η|k|)j−1

(j − 1)!
k cosh(h|k|) ,

which reduces to

Gj(η) = −
j−1∑

�=2,even

Gj−�(η)
(η|k|)�

�!
−

j∑
�=1,odd

Gj−�(η)
(η|k|)�

�!
tanh(h|k|)

+
(η|k|)j

j!
|k| − i(∂xη) ·

(η|k|)j−1

(j − 1)!
k ,
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and can be cast in the operator form

Gj(η) = −
j−1∑

�=2,even

Gj−�(η)
η�|D|�

�!
−

j∑
�=1,odd

Gj−�(η)
η�|D|�−1

�!
G0

+D · η
j |D|j−1

j!
D . (4.44)

Finally, in light of the self-adjointness of the DNO (Property 2), slightly different
but equivalent formulas can be written by flipping the sequence of application of
the various operators in (4.43) and (4.44), yielding

Gj(η) = G0D · |D|j−2ηj

j!
D (4.45)

−
j∑

�=2,even

|D|�η�
�!

Gj−�(η)−
j−1∑

�=1,odd

G0
|D|�−1η�

�!
Gj−�(η) ,

for j > 0 even, and

Gj(η) = D · |D|j−1ηj

j!
D (4.46)

−
j−1∑

�=2,even

|D|�η�
�!

Gj−�(η)−
j∑

�=1,odd

G0
|D|�−1η�

�!
Gj−�(η) ,

for j odd, where G0(D) = |D| tanh(h|D|). This observation was first made by
Nicholls [83] and has important implications for numerical simulation. We will
come back to this point in a subsequent section. Interestingly, in the infinite depth
limit (h → +∞), G0 reduces to |D| but otherwise Eqs. (4.45) and (4.46) remain
unchanged. Moreover, the overall derivation and expression of these recursion for-
mulas are insensitive to the spatial dimension d.

As an example, the two next-order contributions after G0 are given by

G1(η) = D · ηD − G0ηG0 ,

and

G2(η) =
1

2

(
G0D · η2D − |D|2η2G0

)
− G0ηG1(η) .

Applied to a function f(x) as defined in (4.42), this second-order operator can be
simplified to

G2(η) =
1

2

(
G0D · η2D − |D|2η2G0

)
− G0ηD · ηD + G0ηG0ηG0 ,

= G0η(Dη) · D +
1

2
G0η

2|D|2 − 1

2
|D|2η2G0

−G0η(Dη) · D − G0η
2|D|2 + G0ηG0ηG0 ,

= −1

2

(
G0η

2|D|2 + |D|2η2G0 − 2G0ηG0ηG0

)
.
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For η ∈ C1, each Taylor term Gj is bounded from H1 → L2 because it is related
to a multiple commutator of the form

[
η, . . .

[
η, |D|j

]
︸ ︷︷ ︸

j times

]
∼ |Dη|j .

With this series for the DNO, the Hamiltonian (4.35) is itself analytic (in an
appropriately chosen domain) and possesses a Taylor series expansion about the
equilibrium state (η, ξ) = 0, namely

H(η, ξ) =
1

2

∫
Rd−1

(
ξG0ξ + gη2

)
dx +

∞∑
�=1

1

2

∫
Rd−1

ξG�(η)ξ dx ,

=
∞∑
j=2

Hj(η, ξ) , (4.47)

where Hj is homogeneous of degree j with respect to the variables (η, ξ).

4.4 Birkhoff Normal Forms

This section is devoted to normal form transformations for water waves. We present
an overview based on the pioneering papers by Dyachenko and Zakharov [51] and
Craig and Wolfork [44]. We concentrate mainly on their construction at a formal
level and refer to the more recent works of Craig and Sulem [41, 42] for their
analytic properties. We consider the case of gravity waves in a two-dimensional
channel in either finite or infinite depth. Our starting point is the Hamiltonian
formulation of the water wave problem. The quadratic part of H is

H2(η, ξ) =
1

2

∫
Rd−1

(
ξG0ξ + gη2

)
dx ,

while the j-th term of its Taylor series about equilibrium

Hj(η, ξ) =
1

2

∫
Rd−1

ξGj−2(η)ξ dx

is associated with j-wave interactions. The stationary solution (η, ξ) = 0, corre-
sponding to a fluid at rest, is an elliptic stationary point in dynamical systems
terms.

4.4.1 Significance of the Normal Form

The goal of Birkhoff normal form transformations is to eliminate non-resonant
terms from the Hamiltonian, so that the original equations will only retain essen-
tial nonlinearities. The theory of normal forms produces a series of near-identity
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transformations which remove the non-resonant terms in the Hamiltonian degree
by degree. It is a central step in many approaches to analytic studies of water wave
equations, including questions of long-time existence of solutions for small initial
data [12, 13] and the construction of periodic, quasi-periodic solutions [8, 14, 15].
In the following, we restrict ourselves to the two-dimensional problem (d = 2). To
retain the structure of a Hamiltonian system in Darboux coordinates, we consider
canonical transformations

τ : v =

(
η
ξ

)

−→ w , (4.48)

in a neighborhood of the origin, so that the new equations become

∂tw = J gradwH̃(w) , H̃(w) = H(τ−1(w)) .

We can also iterate the process of transformation. The transformed Hamiltonian
is said to be in Birkhoff normal form up to order n ≥ 3 if the Taylor expansion of
the Hamiltonian H up to order n contains only resonant terms

H̃(w) = H2(w) +
(
Z3 + · · ·+ Zn

)
+ Rn+1 , (4.49)

where each Zj retains only resonant terms such that

{H2, Zj} = 0 .

The new Hamiltonian H̃(w) is conserved by the flow χ̃t(w). Resonant terms
Z3+ · · ·+Zn describe an averaged system, which often has particular solutions of
interest. For example, the remaining resonant terms after the third-order Birkhoff
normal form transformation take the form of coupled resonant triads, related to
the classical Wilton ripples. In [41, 42], a special effort was made to give a rigor-
ous setting to normal form transformations of third and fourth order. On a formal
level, this reduction to Birkhoff normal forms of order n = 4 for the water wave
Hamiltonian in the case of infinite depth was carried out in [25, 44, 51], with the
conclusions that Z3 = 0 and that Z4 has an expression in terms of action variables
alone, despite the family of Benjamin–Feir resonances. This transformation proce-
dure and reduction to Birkhoff normal form is part of the theory of averaging for
dynamical systems. Consider x ∈ T on a torus with periodic boundary conditions
and introduce the Fourier transform variables and complex symplectic coordinates

(ηk, ξk) :=
1√
|T|

∫
T

e−ikx(η(x), ξ(x)) dx ,

zk :=
1√
2

(
akηk + i a−1

k ξk
)
, ak = 4

√
g

|k| tanh(h|k|) . (4.50)

Define the action-angle variables in the form

zk =
√

pke
iθk , pk = |zk|2 .
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A Hamiltonian H(p) expressed in action variables alone is said to be integrable if

∂tθ = gradpH(p) , θ(t) = θ(0) + t gradpH(p) ,

∂tp = −gradθH(p) = 0 , p(t) = p(0) .

Such flows conserve each pk, hence every Sobolev norm

‖z(t)‖2r =
∑
k

〈k〉2r|zk(t)|2 =
∑
k

〈k〉2rpk = ‖z(0)‖2r .

4.4.2 Complex Symplectic Coordinates and Poisson
Brackets

We consider a periodic setting, i.e.

η(x + 2πk, t) = η(x, t) , ξ(x + 2πk, t) = ξ(x, t) ,

writing η and ξ as Fourier series

η(x) =
1√
2π

∑
k

ηk eikx , ξ(x) =
1√
2π

∑
k

ξk eikx .

Since volume is conserved, we can assume, without loss of generality, that the
zeroth Fourier coefficient η0 vanishes. We now introduce the complex symplectic
coordinates, in the general setting. In a finite-depth channel, the dispersion relation
is

ω2
k = gk tanh(hk) .

Because η and ξ are real functions, the reality conditions are expressed as

z−k =
1√
2
(akηk − i a−1

k ξk) ,

or equivalently,

ηk =
1√
2
a−1
k (zk + z−k) , ξk =

1√
2 i

ak(zk − z−k) .

The Hamiltonian has an expansion in the form

H(η, ξ) = H2 + H3 + · · ·+ Hn + Rn+1 , (4.51)

where

H2 =
1

2

∑
k

(
k tanh(hk)|ξk|2 + g|ηk|2

)
,

H3 =
1

2
√
2π

∑
k1+k2+k3=0

(−k1k3 − G
(0)
k1

G
(0)
k3

) ξk1
ηk2

ξk3
,
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and G
(0)
k = G0(k) = k tanh(hk). Note that the zeroth Fourier coefficient ξ0 of ξ

does not appear in the Hamiltonian.
When h → +∞ (infinite depth), the dispersion relation reduces to

ω2
k = g|k| ,

and the coefficients ak are defined as

a2
k =

(
g

|k|

)1/2

.

In both cases, the quadratic part H2 of the Hamiltonian written in the variables
zk reduces to

H2 =
∑
k

ωk|zk|2 ,

while the cubic (third-order) part H3 is

H3 =
1

8
√

π

∑
k1+k2+k3=0

(k1k3 +G1G3)
a1a3

a2
(z1 − z−1)(z2 + z−2)(z3 − z−3) , (4.52)

where for simplicity, in this and subsequent formulas, we use the notation that

zj = zkj
, aj = akj

, Gj = G
(0)
kj

, and ωj = ωkj
.

We define the Poisson brackets of K(η, ξ) and H(η, ξ) in the usual way as

{K, H} =

∫ 2π

0

(
(gradηH)(gradξK)− (gradξH)(gradηK)

)
dx . (4.53)

In terms of the Fourier coefficients of the (real) functions η and ξ, and assuming
H, K are real,

{K, H} =
∑
k

(
(∂ηk

H)(∂ξkK)− (∂ξkH)(∂ηk
K)
)

,

=
∑
k

(
(∂ηk

H)(∂ξ−k
K)− (∂ξkH)(∂η−k

K)
)

,

=
∑

k1+k2=0

(
(∂η2

H)(∂ξ1
K)− (∂ξ2H)(∂η1

K)
)

,

=
∑

k1+k2=0

(
(∂η2

H)(∂ξ1K)− (∂ξ2H)(∂η1
K)
)

.

In terms of the zk variables,

{K, H} =
1

i

∑
k1+k2=0

(
(∂z−1

K)(∂z2H)− (∂z−2
H)(∂z1K)

)
, (4.54)
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or equivalently,

{K, H} =
1

i

∑
k

(
(∂zkH)(∂zk

K)− (∂zk
H)(∂zkK)

)
.

Indeed, the partial differential operators complexify in the standard way,

∂zk =
1√
2
(ak∂ηk

− i a−1
k ∂ξk) , ∂z̄−k

=
1√
2
(ak∂ηk

+ i a−1
k ∂ξk) ,

and the left-hand side of (4.54) is then rewritten as

1

2i

∑
k1+k2=0

(
(a1∂η1

+ i a−1
1 ∂ξ1)K (a2∂η2

− i a−1
2 ∂ξ2)H

−(a1∂η1
− i a−1

1 ∂ξ1)K (a2∂η2
+ i a−1

2 ∂ξ2)H
)

=
∑

k1+k2=0

(
(∂ξ1K)(∂η2

H)− (∂η1
K)(∂ξ2H)

)
.

4.4.3 Resonances

A term in the Hamiltonian H(zk, z−k) is resonant at order n when

�∑
j=1

ωj −
n∑

j=�+1

ωj = 0 ,

and k1 + · · · + k� + k�+1 + · · · + kn = 0. We do not include k = 0 in the sums
because we have assumed that the zeroth modes of η and ξ vanish.

Proposition 4.4.1. In the pure gravity case, there are no resonant triads.

Equivalently, there are no triplets (k1, k2, k3), with kj being nonzero, positive
or negative integers, such that k1 + k2 + k3 = 0 and ω1 ± ω2 ± ω3 = 0 for any
choice of sign. This is due to the increasing and concave character of the dispersion
relation ωk for finite and infinite depth. This means that formally Z3 = 0.

Remark 4.4.2. On the other hand, in the presence of surface tension σ, there
are possible nontrivial resonant triads. These resonant interactions are related to
Wilton ripples, in reference to observations by Wilton [95]. In the case of a periodic
domain, generically these resonant triads do not appear, but for certain choices
of parameters (g, h, σ) there can be a finite number of such triads. The maximum
wave number kj involved in a resonant triad is bounded by a constant C(g, h, σ)
that depends locally and uniformly upon these parameters.

At the next order in the expansion of the water wave Hamiltonian (n = 4),
and in the case of pure gravity waves on infinite depth, Dyachenko and Zakharov
[51] and Craig and Worfolk [44] made the remarkable observation that, in addition
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to Z3 = 0, Z4 has an expression in terms of action variables alone, despite the
family of Benjamin–Feir resonances. Precisely, in deep water h → +∞ with d = 2
and frequencies ωk =

√
g|k|,

ω1 ± ω2 ± ω3 ± ω4 = 0 , k1 + k2 + k3 + k4 = 0 ,

have integrable solutions

ω1 + ω2 − ω3 − ω4 = 0 , {k1, k2} = {k3, k4} ,

and non-integrable Benjamin–Feir resonant interactions

k1 : k2 : k3 : k4 = n2 : (n + 1)2 : n2(n + 1)2 : −(n2 + n + 1)2 ,

ω1 : ω2 : ω3 : ω4 = n : −(n + 1) : −n(n + 1) : (n2 + n + 1) .

We will discuss this property in Sect. 4.4.6.

4.4.4 Formal Transformation Theory and Birkhoff Normal
Form

The transformation τ is defined by (4.48) which gives rise to the reduced Hamil-
tonian (4.49) and will be constructed as the flow at time s = −1 associated with
an auxiliary Hamiltonian K such that

∂sχs = XK(χs) ,

with
χs(w)

∣∣
s=0

= w , H̃(w) = H(χs(w))
∣∣
s=−1

.

This is a canonical transformation preserving the Hamiltonian character of the
system. The Taylor series expansion near s = 0 of the new Hamiltonian H̃ is

H̃(v) = H(χs(v))
∣∣
s=0

− dH

ds
(χs(v))

∣∣
s=0

+
1

2

d2H

ds2
(χs(v))

∣∣
s=0

− . . . ,

where terms in this expansion are given by

H(χs(v))
∣∣
s=0

= H(v),

dH

ds
(χs(v))

∣∣
s=0

=

∫ 2π

0

(
(gradηH)(∂sη) + (gradξH)(∂sξ)

)
dx ,

=

∫ 2π

0

(
(gradηH)(gradξK)− (gradξH)(gradηK)

)
dx ,

= {K, H} .

Similar formulas for the higher s-derivatives can be obtained, yielding

H̃(v) = H(v)− {K, H}(v) + 1

2
{K, {K, H}}(v) + . . .
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Returning to the expansion (4.51) in the original variables, the transformed Hamil-
tonian becomes

H̃(v) = H2(v) + H3(v) + . . .

−{K, H2}(v)− {K, H3}(v)− {K, H4}(v)− . . .

+
1

2
{K, {K, H2}}(v) +

1

2
{K, {K, H3}}(v) + . . . (4.55)

If K is homogeneous of degree n, and Hj homogeneous of degree j, then {K, Hj}
will be of degree n + j − 2. Thus, if we construct an auxiliary Hamiltonian K3

homogeneous of degree 3 satisfying the relation

H3 − {K3, H2} = 0 , (4.56)

we will have eliminated all cubic terms in the transformed Hamiltonian H̃. Equa-
tion (4.56) is referred to as the third-order cohomological equation.

4.4.5 Solving the Third-Order Cohomological Equation

A central property of the complex symplectic coordinates (zk, z−k) is that they
diagonalize the coadjoint operator coadH2

:= {H2, ·}, that is, the linear operation
of taking Poisson brackets with H2. Indeed, the Poisson brackets of H2 acting on
monomials of the form zk1

zk2
z−k3

are simply a multiplicative factor.

Lemma 4.4.3.

{H2, z1z2z−3} =
1

i
(ω1 + ω2 − ω3) z1z2z−3 .

Proof. Let H2 =
∑

k ωk|zk|2 and K = z1z2z−3, then

∂zkH2 = ωkzk , ∂zk
H2 = ωkzk ,

and thus
∂zkK = (z2δ1k + z1δ2k)z−3 , ∂zk

K = z1z2δk(−3) .

Consequently,

{K, H2} =
1

i

(
ωkzk(z1z2δk(−3))− ωkzk(z2δ1k + z1δ2k)z−3

)
,

=
1

i

(
ω3z1z2z−3 − ω1z1z2z−3 − ω2z1z2z−3

)
,

= i (ω1 + ω2 − ω3) z1z2z−3 .

That is, z1z2z−3 is an eigenvector of coadH2
with eigenvalue −i(ω1 + ω2 − ω3).

Monomials associated with zero eigenvalues correspond to resonant terms. �
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The next proposition states that it is indeed possible to solve the cohomolog-
ical equation (4.56) explicitly, removing all cubic terms except, if they are present,
the resonant terms of H3.

Proposition 4.4.4. The cohomological equation (4.56) has a unique solution,
given in complex symplectic coordinates by the expression

K3 =
1

8i
√

π

∑
k1+k2+k3=0

(k1k3 + G1G3)
a1a3

a2

z1z2z3 − z−1z−2z−3

ω1 + ω2 + ω3
(4.57)

−
∑

k1+k2+k3=0

2(k1k3 + G1G3)
a1a3

a2

z1z2z−3 − z−1z−2z3
ω1 + ω2 − ω3

+
∑

k1+k2+k3=0

(k1k3 + G1G3)
a1a3

a2

z1z−2z3 − z−1z2z−3

ω1 − ω2 + ω3
+ R ,

where the three sums are performed for triads (k1, k2, k3), with k1 + k2 + k3 = 0
excluding the resonant terms for which the corresponding denominator vanishes.
The term R consists of a finite sum of exceptional terms, that is, of the non-
resonant terms of K3 for which (k1, k2, k3) possesses a resonant triad. Generically,
R = 0. This is the case in particular, in the absence of surface tension and for
infinite depth.

Proof. Write H3 as given by (4.52) in the form of a linear combination of third-
order monomials in zk and z−k and look for K3 in the form of a linear combination
of the same monomials. Then identify the coefficients, which is possible as long
as the corresponding multiplicative factor (ω1 ± ω2 ± ω3) does not vanish. We
also use symmetry considerations to regroup terms. The term R on the right-hand
side of (4.57) contains terms of the first and last sums in (4.57) corresponding to
triads for which the denominator ω1 + ω2 − ωk of the second sum vanishes, and
terms of the first and second sums in (4.57) corresponding to triads for which the
denominator ω1 − ω2 − ωk of the third sum vanishes. �

It is useful for the analysis to rewrite K3 in the variables (η, ξ).

Proposition 4.4.5. In these variables, K3 takes the form

K3 =
1√
2π

∑
k1+k2+k3=0

k1k3 + G1G3

d(ω1, ω2, ω3)

[
a2
1ω1(ω

2
1 − ω2

2 − ω2
3) η1η2ξ3 (4.58)

+
a2
1a

2
3

a2
2

ω1ω2ω3 η1ξ2η3 +
1

2a2
2

ω2(ω
2
1 − ω2

2 + ω2
3) ξ1ξ2ξ3

]
+ R ,

where the denominator d(ω1, ω2, ω3) is given by

d(ω1, ω2, ω3) = (ω1 + ω2 + ω3)(ω1 + ω2 − ω3)(ω1 − ω2 + ω3)(ω1 − ω2 − ω3) .
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4.4.6 Normal Forms for Gravity Waves on Infinite Depth

In this section, we consider the pure gravity wave problem in a channel of infinite
depth (h → +∞). In this case, expressions for K3 and other quantities simplify
significantly and the third-order normal form transformation defining our new sys-
tem of coordinates is expressed in terms of the time-one flow of Burgers’ equation.
We give below details of the calculations.

First, we notice that in (4.58), G1 = |k1| and G3 = |k3|, thus

k1k3 + G1G3 = k1k3(1 + sgn(k1)sgn(k3)) ,

and it vanishes when k1, k3 are of opposite signs. Recalling that ωk =
√

g|k|, we see
that in sectors of the space of wavenumbers (k1, k2, k3) ∈ Z

3 where k1+k2+k3 = 0
and k1 and k3 have the same sign, the expression (ω2

1 − ω2
2 + ω2

3) that appears in
the last term on the right-hand side of (4.58) vanishes. Indeed,

ω2
1 − ω2

2 + ω2
3 = g(|k1| − |k2|+ |k3|) .

Then, in the region of (k1, k2, k3) ∈ Z
3 where k1 + k2 + k3 = 0 and k1 and k3 have

the same sign,
|k1|+ |k3| = |k1 + k3| = |k2| .

Lemma 4.4.6. In the region of the wavenumber lattice (k1, k2, k3) ∈ Z
3 where k1+

k2+k3 = 0 and k1 and k3 have the same sign, the expression for the denominator
reduces to

d(ω1, ω2, ω3) = −4g2k1k3 .

Proof.

d123 := d(ω1, ω2, ω3) =
(
(ω1 + ω2)

2 − ω2
3

)(
(ω1 − ω2)

2 − ω2
3

)
,

= (ω2
1 + ω2

2 − ω2
3)

2 − 4ω2
1ω

2
2 ,

= g2
(
(|k1|+ |k2| − |k3|)2 − 4|k1||k2|

)
.

If k1 > 0, k3 > 0, then k2 < 0 and

1

g2
d123 = (k1 − k2 − k3)

2 + 4k1k2 = (2k1)
2 + 4k1k2 = −4k1k3 .

Similarly, if k1 < 0, k3 < 0, then k2 > 0 and

1

g2
d123 = (−k1 + k2 + k3)

2 + 4k1k2 = (−2k1)
2 + 4k1k2 = −4k1k3 .

�
Proposition 4.4.7. The expression for K3 simplifies to

K3 = − 1

4
√
2π

∑
k1+k2+k3=0

(1+ sgn(k1)sgn(k3))(−2|k3|η1η2ξ3 + |k2|η1ξ2η3) . (4.59)
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Proof. We start from (4.58) that expresses K3 in terms of variables (η, ξ) and
we implement the above observations, that is: (i) the sum over k1 + k2 + k3 = 0
reduces the sectors in wavenumbers such that k1 and k3 have the same sign; (ii) in
this region the denominator d(ω1, ω2, ω3) = −4g2k1k3; (iii) the last term in (4.58)
vanishes. We also use the identities ω2

k = g|k|, a2
kωk = g, ωk/a2

k = |k|. This leads
to

K3 = − 1

4
√
2π

∑
k1+k2+k3=0

(sgn(k1)sgn(k2) + sgn(k2)sgn(k3))

×
(
2|k3|η1η2ξ3 − |k2|η1ξ2η3

)
,

= − 1

4
√
2π

∑
k1+k2+k3=0

(
2sgn(k1)η1 sgn(k2)η2|k3|ξ3 + 2η1 sgn(k2)η2k3ξ3

−sgn(k1)η1k2ξ2η3 − η1k2ξ2 sgn(k3)η3

)
.

In the region of (k1, k2, k3) ∈ Z
3 where k1 + k2 + k3 = 0 such that k1 > 0, k3 > 0

and k2 < 0,

|k1| − |k2| − |k3| = k1 + k2 − k3 = −2k3 = −2|k3| ,

while in the region of the (k1, k2, k3) plane where k1 + k2 + k3 = 0 and k1 < 0,
k3 < 0, and k2 > 0,

|k1| − |k2| − |k3| = −k1 − k2 + k3 = 2k3 = −2|k3| ,

which leads to (4.59). �
A further simplification of the Hamiltonian K3 arises from a simple identity.

Lemma 4.4.8. For any (k1, k2, k3) ∈ Z
3 such that k1 + k2 + k3 = 0, we have the

equality
sgn(k1)sgn(k2) + sgn(k2)sgn(k3) + sgn(k3)sgn(k1) = −1 .

Proof. In each of the sectors, either two wavenumbers are positive and the other
one is negative, or the opposite. The equality is true in all cases. In the case where
one wavenumber vanishes, the other two have opposite signs. �
Theorem 4.4.9. The expression for K3 is given by

K3 = − 1

2
√
2π

∑
k1+k2+k3=0

sgn(k1)sgn(k2) η1η2|k3|ξ3 . (4.60)

In coordinates from physical space rather than Fourier space, this expression for
K3 becomes

K3 =
1

2

∫ 2π

0

(−i sgn(D)η)2|D|ξ dx . (4.61)
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Proof. Using Lemma 4.4.8,

K3 = − 1

4
√
2π

∑
k1+k2+k3=0

(sgn(k1)sgn(k2) + sgn(k2)sgn(k3))

×
(
2|k3|η1η2ξ3 − |k2|η1ξ2η3

)
,

= − 1

4
√
2π

∑
k1+k2+k3=0

(
2sgn(k1) η1 sgn(k2) η2|k3|ξ3 + 2η1 sgn(k2) η2k3ξ3

−sgn(k1) η1k2ξ2η3 − η1k2ξ2 sgn(k3) η3

)
.

By symmetry considerations, the two last terms on the right-hand side of the
above equation are the same, thus

K3 = − 1

4
√
2π

∑
k1+k2+k3=0

(
2sgn(k1) η1 sgn(k2) η2|k3|ξ3

+2η1 sgn(k2) η2k3ξ3 − 2sgn(k1) η1k2ξ2η3

)
,

= − 1

4
√
2π

∑
k1+k2+k3=0

(
2sgn(k1) η1 sgn(k2) η2|k3|ξ3

+2η1 sgn(k2) η2k3ξ3 − 2sgn(k1) η1η2k3ξ3

)
.

By symmetry, the two last terms on the right-hand side of this equation are the
same but of opposite sign, and therefore cancel out, leading to

K3 = − 1

2
√
2π

∑
k1+k2+k3=0

sgn(k1) η1 sgn(k2) η2|k3|ξ3 ,

which is precisely (4.60). We rewrite K3 as

K3 =
1

2
√
2π

∑
k1+k2+k3=0

(−i sgn(k1))η1 (−i sgn(k2))η2 |k3|ξ3 .

Returning to physical-space coordinates, it gives the expression (4.61). �

Third-Order Normal Form and Burgers’ Equation

We are now able to write the third-order normal form transformation that defines
our new coordinates, obtained as the solution map at s = −1 of the Hamiltonian
flow (

∂sη
∂sξ

)
=

(
0 1

−1 0

)(
gradηK3

gradξK3

)
:= XK3

,
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with the (initial) condition at s = 0 being the original variables (η, ξ). Equivalently,
in Fourier space,

∂sη−k = gradξkK3 ,

∂sξ−k = −gradηk
K3 .

From (4.60), we compute

∂ξkK3 =
1

2
√
2π

∑
k1+k2+k=0

|k|(−i sgn(k1))η1 (−i sgn(k2))η2 ,

leading to

∂sηk =
1

2
√
2π

∑
k1+k2=k

|k|(−i sgn(k1))η1 (−i sgn(k2))η2 .

Equivalently in the physical-space coordinates,

∂sη =
1

2
|D|(−i sgn(D)η)2 .

It is convenient to introduce the new variables

η̃ = −i sgn(D)η , ξ̃ = −i sgn(D)ξ ,

where the operator −i sgn(D) is the Hilbert transform associated with the infinite
lower half-plane. Using −i sgn(D)|D| = −∂x, the auxiliary Hamiltonian K3 can
be rewritten as

K3 =
1

2

∫ 2π

0

(η̃)2∂xξ̃ dx , (4.62)

and the quantity η̃ satisfies Burgers’ equation

∂sη̃ = grad
˜ξK3 = −1

2
∂x(η̃)

2 ,

which is to say

∂sη̃ + η̃∂xη̃ = 0 .

We now turn to

∂ηk
K3 =

1√
2π

∑
k+k1+k2=0

(−i sgn(k))(−i sgn(k1))η1|k2|ξ2 ,

so that

∂sξk =
1√
2π

∑
k1+k2=k

(−i sgn(k))(−i sgn(k1))η1|k2|ξ2 ,
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or equivalently in the physical space,

∂sξ = (−i sgn(D)
(
(−i sgn(D)η)|D|ξ

)
,

which after Hilbert transformation reduces to

∂sξ̃ = −gradη̃K3 = −η̃∂xξ̃ .

Theorem 4.4.10. The Hamiltonian system that defines the third-order Birkhoff
normal form transformation τ3 takes the form of two coupled PDEs

∂sη̃ + η̃∂xη̃ = 0 , (4.63a)

∂sξ̃ + η̃∂xξ̃ = 0 , (4.63b)

where (η̃, ξ̃) are the Hilbert transforms of (η, ξ). The first equation for η̃ is Burgers’

equation. The second equation for ξ̃ is its linearization along Burgers’ flow.

An important related PDE question concerns the mapping properties of the
transformation τ3, in particular whether this transformation is well defined, and
on which Banach spaces.

Theorem 4.4.11. There exists R0 > 0 such that for any R < R0, on every
neighborhood BR(0) ⊆ Er = Hr

η ⊕ Hr
ξ (r > 3/2), the canonical Birkhoff normal

form transformation τ3 is well defined and continuous,

τ3 : BR(0) −→ B2R(0) ,

τ−1
3 : BR/2(0) −→ BR(0) .

The Jacobian of this transformation is given by the variational equations for
(δη, δξ),

∂t(δη) = −η̃∂x(δη)− (δη)∂xη̃ ,

∂t(δξ) = −η̃∂x(δξ)− (δη)∂xξ̃ .

Theorem 4.4.12. The mapping τ3 is smooth on the scale of Hilbert spaces, in
particular the Jacobian

∂vτ3 : Hr−1
η ⊕ Hr−1

ξ −→ Hr−1
η ⊕ Hr−1

ξ

is continuous.

Remark 4.4.13. There is a contrast between the energy spaces Hr
η⊕H

r+1/2
ξ for the

linearized equations of water waves and the function spaces in which system (4.63)
is well-posed. The evolution given by (4.63) is well defined for η ∈ Hr (r > 3/2)
and the function ξ is simply transported along the characteristics defined by the
evolution of η, thus the regularity of η and ξ coincides.
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Fourth-Order Normal Form

After reduction to the third-order normal form, the transformed Hamiltonian (4.55)
becomes

H̃(w) = H2(w) + H4(w)− 1

2
{K3, H3}(w) + R5 .

Since K3 is homogeneous of degree 3, its Poisson brackets with H3 (homogeneous
of degree 3) are of degree 4 and combine with H4 to give the quartic contributions

in the transformed Hamiltonian H̃. We denote the new quartic (fourth-order) term
by

H+
4 = H4 −

1

2
{K3, H3} .

Recalling that

H4 =
1

2

∫
ξG2(η)ξ dx ,

where

G2(η) = −1

2

(
D2η2|D|+ |D|η2D2 − 2|D|η|D|η|D|

)
,

the next proposition shows that H+
4 takes a very special form.

Proposition 4.4.14. The fourth-order term H+
4 is given by

H+
4 = H(4)(η, ξ)− H(4)(η̃, ξ) .

This expression can be further simplified.

Proposition 4.4.15.

H+
4 = −

∑
k1+k2+k3+k4=0

d1234|k1||k4|ξ1η2η3ξ4 , (4.64)

where

d1234 =
1

16π

(
1 + sgn(k2)sgn(k3)

)(
1 + sgn(k1)sgn(k4)

)

×
(
|k1 + k4|+ |k2 + k3| − |k1 + k2| − |k1 + k3| − |k2 + k4| − |k3 + k4|

)
.

The proofs of Propositions 4.4.14 and 4.4.15 with detailed computations can
be found in [42] (Sect. 4.1). The transformed Hamiltonian now reads

H̃(w) = H2(w) + H+
4 (w) + R5 , (4.65)

where H+
4 (w) is given by (4.64). The fourth-order Birkhoff normal form transfor-

mation is more complicated. To construct the next change of variables, we need
to identify the resonant terms Z4 in H+

4 (w). The term [H+
4 ] := Z4 is the average

of H+
4 over the flow of H2. These arise in quartets of wavenumbers (k1, k2, k3, k4)

such that k1 + k2 + k3 + k4 = 0 and ω1 ± ω3 ± ω3 ± ω4 = 0. Two such families of
wavenumbers exist:
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(i) Special resonances, referred to as Benjamin–Feir resonances of the form

[
kj : (j = 1, 2, 3, 4)

]
= q
[
n2, (n + 1)2, n2(n + 1)2,−(n2 + n + 1)2

]
,

[
ωj =

√
g|kj | : (j = 1, 2, 3, 4)

]
=

√
q
[
n, n + 1, n(n + 1), n2 + n + 1

]
,

ω1 − ω2 − ω3 + ω4 = 0 ,

where q ∈ Z\{0} and n ∈ N.

(ii) Generic quartets of wavenumbers (k1,−k1,−k4, k4) and (k1,−k4,−k1, k4)
(k1, k4 are integers of the same sign). These are referred to as benign in
[51] because the resulting Hamiltonian system, truncated to fourth order, is
completely integrable. The structure of solutions to the latter was analyzed
in detail in [44]. In the lattice Z

4, the set of points harboring a potential
resonant term is denoted by

R =
{
(k1, k2, k3, k4) : k1 + k2 + k3 + k4 = 0 , k1k4 > 0 ,

k2 = −k1 and k3 = −k4 or k3 = −k1 and k2 = −k4

}
.

Theorem 4.4.16. Benjamin–Feir resonances are not present in H+
4 . The normal

form transformation that removes the cubic terms also removes all Benjamin–Feir
quartic terms.

Proof. In the expression (4.64) for H+
4 , the sum is performed over (k1, k2, k3, k4)

where two of the wavenumbers are positive and the two others are negative.
This excludes the presence of Benjamin–Feir resonances, as these resonance re-
lations only involve quartets of three positive and one negative wavenumbers, or
vice versa. Thus the wavenumber quartets in R, consisting of those such that
(k1,−k1,−k4, k4) and (k1,−k4,−k1, k4), with sgn(k1k4) > 0, are the only ones
giving rise to fourth-order resonances. �

Now that we have identified the resonant terms in H+
4 , we can construct a

second canonical change of variables that will eliminate the non-resonant fourth-
order terms in the Hamiltonian. Let

τ4 : w′ =

(
η′

ξ′

)

−→
(

η′′

ξ′′

)
= w′′

be the time-one flow associated with a Hamiltonian K,

∂sχs = XK(χs) ,

with

χs(w
′′)
∣∣
s=0

= w′′ , H ′′(w′′) = H ′(χs(w
′′))
∣∣
s=−1

.
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The new Hamiltonian resulting from this change of variables is

H ′′(w′′) = H ′(w′)− {K, H ′}(w′) +
1

2
{K, {K, H ′}}(w′) + . . .

Returning to the expansion (4.65) and dropping the primes

H(w) = H2(w) + H+
4 (w)− {K, H2}(w)− {K, H+

4 }(w) + . . .

We seek an auxiliary Hamiltonian K4 that will define the second change of vari-
ables. It is homogeneous of degree 4 and satisfies the cohomological equation

{K4, H2} = H+
4 − [H+

4 ] ,

where [H+
4 ] := Z4 in order to eliminate non-resonant quartic terms from the

transformed Hamiltonian H, leaving only the resonant terms Z4.
We first express H+

4 as given by (4.64) in terms of the complex symplectic co-
ordinates (zk, z−k) in order to use the property of diagonalization of the coadjoint
operator in these coordinates, e.g.

{H2, z1z2z3z−4} =
1

i
(ω1 + ω2 + ω3 − ω4)z1z2z3z−4 .

The calculation is lengthy and is presented in detail in [42]. The Hamiltonian K4

is obtained as the sum of two contributions,

K4 = KN
4 + KR

4 ,

where

KN
4 =

∑
(k1,k2,k3,k4)∈N
k1+k2+k3+k4=0

d1234

(
|k4|

k1k4 + k2k3
k1k4 − k2k3

η1η2η3ξ4 +
2

g

|k1||k2||k3||k4|
k1k4 − k2k3

ξ1η2ξ3ξ4

)
,

where the sum is performed over the set N = Z
4\R, which we define to be those

(k1, k2, k3, k4) ∈ Z
4 such that k1 + k2 + k3 + k4 = 0 but excluding the quar-

tets (k1,−k1,−k4, k4) and (k1,−k4,−k1, k4) that harbor potential resonant terms.
Note that the denominator k1k4 − k2k3 in the above expression vanishes on the
set R. Indeed, k1k4 − k2k3 = −(k1 + k2)(k1 + k3).

Secondly, we extract the non-resonant terms involving wavenumbers in the
set R, and separate the diagonal and off-diagonal terms denoted by Hdiag

4 and
Hoff

4 , respectively. The result is

KR
4 = Kdiag

4 + Koff
4 ,

with

Kdiag
4 =

1

16πi

∑
k �=0

|k|2
ωk

(
z2kz

2
−k − z2−kz

2
k

)
,
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and

Koff
4 =

1

2πi

∑
k1 �=k4

|k1||k4|min(|k1|, |k4|)
z1z−1z4z−4 − z1z−1z4z−4

ω1 + ω4
,

which can be expressed in terms of Fourier modes of η and ξ.

Integrable Birkhoff Normal Form

We now compute the resonant terms Z4 of order four that remain in the modified
Hamiltonian H+

4 after formal reduction to the fourth-order Birkhoff normal form.
As shown in [44], we will express them in terms of two action variables and check
that the corresponding Hamiltonian system is completely integrable.

We start from H+
4 as given by (4.64), written in complex symplectic co-

ordinates (zk, z−k), and extract the terms that involve monomials of the form
z1z2z−3z4, with conditions on the quartets {kj} that they give rise to resonant
terms, namely either (k1,−k1,−k4, k4) or (k1,−k4,−k1, k4) for nonzero integers
k1, k4. This sum Z4 of resonant terms is

Z4 =
∑

k1,k4∈Z\{0}

1

4
d1234|k1||k4|

a1a4

a2a3
(−4z1z2z−3z−4 + z−1z2z3z−4 + z1z−2z−3z4) ,

with

d1234 =
1

16π
(1 + sgn(k2k3))(1 + sgn(k1k4))

×(|k1 + k4|+ |k2 + k3| − |k1 + k2| − |k1 + k3| − |k2 + k4| − |k3 + k4|) .

After some additional algebraic manipulations as shown in [42], we obtain the
Hamiltonian truncated at order four.

Theorem 4.4.17. After two normal form transformations, the Hamiltonian up
to fourth order reduces to

H̃ =
∑
k

ωk|zk|2 +
1

4π

∑
k

|k|3
(
|zk|4 + |z−k|4 − 4|zk|2|z−k|2

)
(4.66)

+
2

π

∑
|k4|<|k1|,k1k4>0

|k1||k4|2
(
− z−1z−1z4z4 +

1

2
(|z1|2|z4|2 + |z−1|2|z−4|2)

)
.

To recover the Hamiltonian H̃ in action-angle variables as given in [44], we
introduce the quantities

p1(k) =
1

2
(zkzk + z−kz−k) , p2(k) =

1

2
(zkzk − z−kz−k) .
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The action variables for this system are given by the set {p1(k), p2(k)}k∈Z\{0} and
the corresponding angles are defined as

θ1(k) =
1

2
tan−1

(
Im(zkz−k)

Re(zkz−k)

)
, θ2(k) =

1

2
tan−1

(
Im(zkz−k)

Re(zkz−k)

)
,

where Re(·) and Im(·) denote the real and imaginary parts, respectively. The time
evolution of the angles is governed by

∂tθ1 = ∂p1
H̃ , ∂tθ2 = ∂p2

H̃ .

The action variables satisfy p1(−k) = p1(k) and p2(−k) = −p2(k), which implies

|zk|4 + |z−k|4 − 4|zk|2|z−k|2 = −2p21(k) + 6p22(k) ,

and

−z−1z−1z4z4 +
1

2
(|z1|2|z4|2 + |z−1|2|z−4|2)

= 2p1(k1)p2(k4) + p2(k1)p1(k4)− p1(k1)p2(k4) .

After substitution in (4.66), we find

Theorem 4.4.18. The Hamiltonian up to fourth order is completely integrable
and takes the form

H̃ =
∑
k

ωkp1(k)−
1

2π

∑
k

|k|3
(
p1(k)

2 − 3p2(k)
2
)
+

4

π

∑
|k4|<|k1|

p2(k1)p2(k4) ,

= H2(p) + H̃4(p) .

4.5 Model Equations for Water Waves

The water wave problem is notorious for its wealth of model equations that arise in
various asymptotic regimes. As part of this effort, different perturbation methods
have been used by various investigators. In this section, we present a systematic
perturbation approach for obtaining weakly nonlinear Hamiltonian models, and
we apply it to deriving the KdV equation and NLS equation for two-dimensional
gravity waves in the shallow-water long-wave limit and deep-water modulational
limit, respectively. We further illustrate the approach by proposing higher-order
versions of these generic equations. An important consequence is that, at each
level of approximation, the resulting model automatically inherits a Hamiltonian
structure from the original system (4.25).

Generally speaking, it is desirable that a reduced model retains important
structural properties of the original system, including energy conservation. From
the computational side, such a property comes in handy when testing the numerical
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solution of the reduced model, and opens up an avenue for applications in the
exciting field of symplectic integrators for Hamiltonian PDEs [16]. This point of
view also provides a unified theoretical framework for further analysis of such
models (e.g. the stability analysis of solitary wave solutions [59]) as well as a
suitable basis for possible inclusion of additional physical mechanisms. Another
appeal of the proposed strategy is that the calculations are made more convenient
due to the choice of a lower-dimensional formulation of the governing equations,
together with a more explicit dependence on η (the free surface) via the series
form of the DNO.

4.5.1 Linearized Problem

Before we consider models in the weakly nonlinear regime, we first examine the
linearized problem for water waves of infinitesimal amplitude around the quiescent
state η = 0. This is a relatively straightforward analysis by using the closed sys-
tem (4.33)–(4.34) for η and ξ, while neglecting the nonlinear terms. The resulting
equations are (

∂tη
∂tξ

)
=

(
0 G0(D)

−g 0

)(
η
ξ

)
, (4.67)

which can be combined into

∂2
t η + gG0(D)η = 0 . (4.68)

The corresponding Hamiltonian is simply the quadratic part H2 in (4.47). Re-
call that G0(D) = |D| tanh(h|D|). Seeking traveling wave solutions of the form
ei(k·x−ωt) and inserting it in (4.68) leads to

ω2 = gG0(k) = g|k| tanh(h|k|) , (4.69)

which is the well-known linear dispersion relation for gravity waves on water of
finite depth.

In the two-dimensional case (d = 2), this dispersion relation reduces to

ω =
√

gk tanh(hk) ,

and for the purposes of this discussion, it is sufficient to consider k > 0 and ω > 0.
Accordingly, a phase speed and a group speed can be defined as

cp =
ω

k
=

√
g tanh(hk)

k
, cg = ∂kω =

1

2
cp

(
1 +

2hk

sinh(2hk)

)
,

respectively. In the shallow-water limit hk → 0, these two wave speeds coincide

cp = cg =
√

gh , (4.70)
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and are independent of k (i.e. shallow-water waves are non-dispersive). In the
deep-water limit hk → +∞, their limiting values are

cg =
1

2
cp =

1

2

√
g

k
, (4.71)

which differ by a factor of 2 (cp > cg) and retain a dependence on k (i.e. deep-
water waves are dispersive). In this regime, the smaller the k (i.e. the longer the
wavelength), the larger the wave speed.

The general linear solution can be expressed as

(
η(x, t)
ξ(x, t)

)
=

(
cos
(
t ω(D)

) ω(D)
g sin

(
t ω(D)

)
− g

ω(D) sin
(
t ω(D)

)
cos
(
t ω(D)

)
)(

η(x, 0)
ξ(x, 0)

)
,

in terms of the initial conditions at t = 0. The coefficient matrix in this expression
is the fundamental matrix for the linear system (4.67). Its entries involve

ω(D) =
(
gG0(D)

)1/2
=
(
g|D| tanh(h|D|)

)1/2
,

which denotes the Fourier multiplier operator associated with the linear disper-
sion relation (4.69). Further discussion on the linearized problem will be given in
Sect. 4.6.1 when we review results on local well-posedness.

4.5.2 Non-dimensionalization

To introduce the various asymptotic scaling regimes that arise in the water wave
problem, it is helpful to perform a non-dimensionalization of the full governing
equations (4.33) and (4.34). Rather than introducing a new (possibly cumbersome)
notation for all the variables, we choose to write, e.g. x → λ0x, which means that
x is replaced by λ0x so that x now denotes a dimensionless variable. A natural
choice of non-dimensionalization is defined by

x → λ0x , y → hy , t → λ0

c0
t , η → a0η , ϕ → a0c0λ0

h
ϕ , (4.72)

where (a0, λ0, c0) are characteristic values of the wave amplitude, wavelength, and
wave speed, respectively. Making these substitutions in (4.33) and (4.34) leads to
the dimensionless equations

∂tη =
1

μ
Gμ(εη)ξ , (4.73)

∂tξ = −η − ε

2
|∂xξ|2 + με

(
1
μGμ(εη)ξ + ε∂xη · ∂xξ

)2
2(1 + με2|∂xη|2)

, (4.74)

where the dimensionless DNO is defined by

Gμ(εη)ξ = ∂yϕ − με∂xη · ∂xϕ
∣∣
y=εη

,
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in terms of the dimensionless parameters

ε =
a0

h
, μ =

h2

λ2
0

.

In doing so, we have also made the choice c0 =
√

gh, which coincides with (4.70),
so that the coefficient of the linear term −η on the right-hand side of (4.74) is
normalized to unity.

Such a procedure helps identify two relevant independent dimensionless pa-
rameters in this problem. The parameter ε represents wave amplitude (relative to
water depth) and is a measure of nonlinearity. The parameter μ represents water
shallowness (relative to wavelength) and is a measure of wave dispersion. Clearly,
the weakly nonlinear regime corresponds to ε  1, with the limiting regime ε = 0
being the linear problem as discussed in the previous section. As for μ, the limit
μ → 0 corresponds to the shallow-water or long-wave regime (where waves are
non-dispersive), while the limit μ → +∞ corresponds to the deep-water or short-
wave regime (where waves are dispersive). Depending on the choice of range of
values for μ and ε, a variety of asymptotic models can be derived via perturbation
calculations. A few cases will be considered in the next section.

For waves on deep water, a more appropriate choice of non-dimensionalization
consists in replacing both λ0 and h by 1/k0 in (4.72), where k0 is a characteristic
wavenumber, and setting c0 =

√
g/k0. Not surprisingly, this choice of c0 coincides

with the linear phase speed in (4.71). The resulting dimensionless equations are
similar to (4.73)–(4.74), with the exception that μ = 1 and the remaining di-
mensionless parameter is given by ε = k0a0, which represents wave steepness and
is again a measure of nonlinearity. Note that a general choice of scaling factors
can be introduced to accommodate the full range of possible values for ε and μ
[79]. We also remark that, while it is common to non-dimensionalize the equations
of motion, which is helpful at identifying suitable dimensionless parameters and
associated scaling regimes, this procedure is not quite relevant to our own per-
turbation method as the latter is based on performing expansions directly in the
Hamiltonian. Details are provided below. For convenience, we will switch back to
dimensional variables in order to show more clearly how the physical parameters
enter the coefficients of the resulting models.

4.5.3 Canonical Transformation Theory

Our approach to the systematic derivation of limiting models is from the view-
point of Hamiltonian perturbation theory, in which the Hamiltonian H(v; ε) is a
function of a small dimensionless parameter ε ∈ E and the reduced equations are
also Hamiltonian systems of the form (4.19). The small parameter ε is introduced
through choices of scaling for the independent variables x and dependent vari-
ables v, as well as through further transformations of these dependent variables,
corresponding to asymptotic regimes of interest. We consider a variety of scaling
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regimes for wave propagation on shallow or deep water, where both dispersive
and nonlinear effects are brought into play. The parameter ε enters these vari-
ous regimes in different ways; however, the systematic point of view is retained
throughout the asymptotic procedure.

There are two essential steps in this approach: expansion of the Hamiltonian
and modification of the symplectic structure. It is indeed natural to expand H
in powers of ε via (4.47) and approximate orbits v(t; ε) of (4.16) by those of the
truncated problem

∂tv = Jgradv

(
H(0) + εH(1) + · · ·+ εnH(n)

)
, v(0; ε, n) = v0 . (4.75)

For convenience, the spatial dependence is omitted here. The solution v(t; ε, n)
clearly depends upon ε and the truncation order n. For at least finite intervals
of time, there is the natural expectation that v(t; ε, n) of (4.75) approximates
solutions of the full problem (4.16), with a better approximation for larger n. This
is indeed true for C2 Hamiltonians.

Proposition 4.5.1. Suppose that the Hamiltonian H ∈ C2,n+1(M×E). Then, at
least for finite time intervals |t| ≤ T0, orbits v(t; ε, n) of the truncated system (4.75)
are εn close to orbits of the full Hamiltonian system (4.16).

As pointed out earlier, Hamiltonian PDEs are rarely given by smooth vector
fields. Therefore, the above proposition is not generally applicable. Nonetheless, it
serves as a basic guiding principle for the modeling problem being addressed here.
Such a method has been developed by Craig and Groves [27] and Moldabayev et
al. [81] for long waves on water of uniform depth, Craig et al. [30, 31, 45] for long
waves on water of variable depth, and Craig et al. [29, 33, 35, 36] for long waves
at the surface and within stratified fluids. More recently, it has been applied to
the nonlinear modulation of near-monochromatic waves on infinite or finite depth
[32, 34, 37].

In addition to expanding the Hamiltonian, the changes of variables associated
with a particular asymptotic regime modify the symplectic structure of the original
problem. Accordingly, the operator J is different in the various settings but, from
our perspective, it is independent of v and always homogeneous in ε, unlike certain
cases considered by Olver [84] where J is nontrivially dependent on v and ε. Details
on this point are provided below, following the systematic procedure introduced
in [27, 29].

4.5.4 Calculus of Transformations

Consider two phase spaces M and M̃ with a symplectic structure on M given by
the operator J . Let H : M → R be a Hamiltonian. A transformation

τ : M −→ M̃
v 
−→ w
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gives rise to a Hamiltonian defined on M̃, namely

H̃(w) = H̃(τ(v)) = H(v) .

By the chain rule, the Hamiltonian vector field XH = JgradvH on M is trans-

formed to a vector field on M̃ as follows

∂tw = (∂vτ)∂tv = (∂vτ)JgradvH ,

while, on the other hand,

gradvH = (∂vτ)
�gradwH̃ .

Equating these two expressions leads to

∂tw = (∂vτ)J(∂vτ)
�gradwH̃ ,

which implies that the transformation τ induces a symplectic structure on M̃,
given by the structure map J̃ ′ = (∂vτ)J(∂vτ)

�, and the transformed vector field

J̃ ′ gradwH̃ is Hamiltonian in the phase space M̃. When M̃ already has a sym-

plectic structure J̃ and the transformation τ is such that

(∂vτ)J(∂vτ)
� = J̃ ,

then it is called a canonical transformation from M to M̃. In particular, when
M = M̃ and J = J̃ , e.g. with J given by (4.25) for Darboux coordinates, these
are the usual canonical transformations which play a special role in Hamiltonian
mechanics.

While the subject of canonical transformations and their generating functions
is basic knowledge in finite-dimensional Hamiltonian systems, it is less developed
for PDEs and other infinite-dimensional cases. In the following sections, we re-
view some of the elementary transformations that occur for Hamiltonian PDEs,
putting them into context. In each case, we show how the transformation affects the
structure map and Hamiltonian of the water wave problem (4.25), and whenever
suitable we introduce a small parameter to define asymptotic regimes of interest.
In this way, we illustrate the approximation procedure invoked earlier through a
series expansion of the Hamiltonian, together with an adjustment in the symplectic
structure of the vector field. Recall that v = (η, ξ)� with M = L2(Rd−1 × R

d−1).

Amplitude Scaling

Consider the transformation τ : v 
−→ w such that

w =

(
η̃

ξ̃

)
=

(
αη
βξ

)
= τ(v) ,
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for α, β ∈ R
+. The Jacobian of this transformation is given by

∂vτ =

(
α 0
0 β

)
,

and, accordingly, the transformed symplectic form is

J̃ = (∂vτ)J(∂vτ)
� =

(
α 0
0 β

)(
0 1

−1 0

)(
α 0
0 β

)
= αβJ .

The effects of such a transformation are easily restored to the usual Darboux
coordinates through a time change t̃ = t/(αβ).

The small-amplitude limit of the water wave problem is introduced by an
amplitude scaling, which is a transformation of this kind, namely

(
ε2η̃

εξ̃

)
=

(
η
ξ

)
, 0 < ε  1 .

Hereafter, the range of ε is defined as above. This means that we are seeking
solutions for which the amplitude η is small and represented in this asymptotic
regime by an O(1) quantity η̃ times ε2, and similarly for ξ = εξ̃. The resulting
change of symplectic form is

J̃ = ε−3J ,

which is equivalent to rescaling by a slow time variable, and the Taylor expan-
sion (4.47) of the Hamiltonian reads

H̃ =
1

2

∫
Rd−1

(
ε2ξ̃G0ξ̃ + ε4gη̃2

)
dx +

∞∑
j=1

1

2

∫
Rd−1

ε2+2j ξ̃Gj(η̃)ξ̃ dx .

Because ε is a small parameter, we may express the Hamiltonian as an infinite
power series in ε and consider approximations by retaining a finite number of
terms. For instance, up to order O(ε4), we have

ε2H̃(2) + ε4H̃(4) =
ε2

2

∫
Rd−1

ξ̃G0ξ̃ dx +
ε4

2

∫
Rd−1

(
gη̃2 + ξ̃G1(η̃)ξ̃

)
dx . (4.76)

Spatial Scaling

The long-wave limit of the water wave problem highlights solutions whose typical
wavelength is asymptotically long. This is accomplished by introducing the spatial
scaling

x 
−→ X = εx .

The corresponding transformation τ of phase space M is

v(x) 
−→ w(X) = v

(
X

ε

)
= τ(v)(X) ,
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with the Jacobian best described by its action on a vector field v2 ∈ V(M),

(∂vτ)v2(X) =
d

ds
τ(v + s v2)

∣∣∣
s=0

=
d

ds

(
v

(
X

ε

)
+ s v2

(
X

ε

))∣∣∣∣
s=0

= v2

(
X

ε

)
.

The transpose is slightly less obvious and its action is inferred via the following
identity

〈v1, (∂vτ)v2〉 =
∫
Rd−1

v1(X) v2

(
X

ε

)
dX =

∫
Rd−1

v1(εx) v2(x) εd−1dx ,

= 〈(∂vτ)
�v1, v2〉 .

Therefore, (∂vτ)
�v1(x) = εd−1v1(εx) and the induced symplectic form is

J̃ = (∂vτ)J(∂vτ)
� = εd−1J .

The original symplectic structure is again recovered via a time change t̃ = εd−1t.
It is necessary to study the effect that this transformation has on the Hamil-

tonian.

Lemma 4.5.2. Let τ(v)(X) = v(X/ε) = w(X) be the transformation associated
with spatial scaling, and let m(D) be a Fourier multiplier operator defined by

(m(D)v)(x) =
1

(2π)d−1

∫
R2(d−1)

eik·(x−x′)m(k)v(x′) dx′dk .

Under τ , the Fourier multiplier operator is transformed to

τ(m(D)v)(X) = (m(εDX)τ(v))(X) .

Proof. Using the definition of the Fourier multiplier together with the Fourier
inversion theorem, we have

τ(m(D)v)(X) =
1

(2π)d−1

∫
R2(d−1)

eik·(X/ε−x′)m(k)v(x′) dx′dk ,

=
1

(2π)d−1

∫
R2(d−1)

eik·(X/ε−X′/ε)m(k)v

(
X ′

ε

)
dX ′dk

εd−1
,

=
1

(2π)d−1

∫
R2(d−1)

eiK·(X−X′)m(εK)v

(
X ′

ε

)
dX ′dK ,

= (m(εDX)τ(v))(X) .

�
This implies, for example, that the first contribution in the Taylor expansion

of the DNO
G0(D) = |D| tanh(h|D|)
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acts like G0(εDX) which can be expanded in powers of ε,

G0(εDX) = ε|DX | tanh(εh|DX |) = ε2h|DX |2 − ε4h3

3
|DX |4 + . . .

when applied to functions that vary over the long spatial scale X. Using this
expression, the Hamiltonian (4.76) becomes

H̃ =
ε4

2

∫
Rd−1

[
hξ̃|DX |2ξ̃ + gη̃2 + ε2

(
ξ̃DX · η̃DX ξ̃ − h3

3
ξ̃|DX |4ξ̃

)] dX

εd−1

+O(ε9−d) . (4.77)

Surface Elevation-Velocity Coordinates

It is often convenient to write model equations for long waves in terms of the
variables

w = (η, u)� = τ(v) = (η, ∂xξ)� ,

rather than v = (η, ξ)�. The second variable u(x, t) essentially represents the
horizontal velocity of the fluid at the free surface Γ. We say “essentially” because
the actual horizontal velocity ∂xϕ

∣∣
y=η

on Γ is not exactly ∂xξ as shown by (4.30).

Nevertheless, these two quantities are quite similar in the long-wave limit where
the wave slope is assumed to be small, i.e. |∂xη| = O(ε3). For simplicity, we
now restrict ourselves to the two-dimensional case (d = 2). The Jacobian of this
transformation is

∂vτ =

(
1 0
0 ∂x

)
,

and the induced symplectic form is represented by the operator

J̃ = (∂vτ)J(∂vτ)
� =

(
0 −∂x

−∂x 0

)
.

Returning to the Hamiltonian (4.77) with the tildes dropped off η and ξ, and
phrasing it in surface elevation-velocity coordinates yields

H̃ =
ε3

2

∫
R

[
hu2 + gη2 + ε2

(
ηu2 − h3

3
(∂Xu)2

)]
dX + O(ε7) , (4.78)

where we have used the fact that∫
R

ξD2
Xξ dX = −

∫
R

(DXξ)2 dX =

∫
R

(∂Xξ)2 dX =

∫
R

u2 dX ,

∫
R

ξDXηDXξ dX = −
∫
R

η(DXξ)2 dX =

∫
R

η(∂Xξ)2 dX =

∫
R

ηu2 dX ,

∫
R

ξD4
Xξ dX =

∫
R

(D2
Xξ)2 dX =

∫
R

(∂2
Xξ)2 dX =

∫
R

(∂Xu)2 dX ,

via integration by parts. The truncated expression (4.78) up to order O(ε5) is
precisely the Hamiltonian (4.22) for the Boussinesq system as mentioned earlier,
with (p, q) ∼ (u, η).
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Moving Reference Frame

It is common when studying asymptotic regimes of the water wave problem to
work in coordinate systems that move with a characteristic speed of solutions,
namely

ṽ(x, t) = v(x − ct, t) ,

for appropriate choices of c. However, the time variable t plays a special role
in our point of view of PDEs as Hamiltonian systems, so at first consideration
this transformation, which mixes space and time variables, is not accommodated
in the present picture. An alternative is to recall that the impulse (4.36) is a
conserved quantity and Poisson commutes with the Hamiltonian [10]. Accordingly,
their respective flows also commute

χH
t ◦ χI

s(v) = χI
s ◦ χH

t (v) .

Because the vector field associated with the impulse is given by ∂sv = JgradvI,
or more explicitly,

∂s

(
η
ξ

)
=

(
0 1

−1 0

)(
∂xξ

−∂xη

)
=

(
−∂xη
−∂xξ

)
,

the corresponding flow is simply constant unit-speed translation

χI
s(v)(x) = v(x − s) ,

which implies that the flow along the diagonal is

χH
t ◦ χI

−ct(v) = χH−cI
t (v) .

It can be inferred that the Hamiltonian flow of H(v) − cI(v) is the Hamiltonian
flow of H(v) observed in a coordinate frame translating with speed c.

In the context of long waves on shallow water, a characteristic speed is
c0 =

√
gh as suggested by (4.70). Working in a reference frame moving at speed

c0 is thus accommodated from our point of view by looking at the flow whose
Hamiltonian is H̃ − c0Ĩ. In terms of surface elevation-velocity coordinates scaled
appropriately, we find

Ĩ = ε3
∫
R

ηu dX ,

and therefore

H̃ − c0Ĩ =
ε3

2

∫
R

[
hu2 − 2

√
ghηu + gη2 + ε2

(
ηu2 − h3

3
(∂Xu)2

)]
dX ,

=
ε3

2

∫
R

[
(
√

gη −
√

hu)2 + ε2
(
ηu2 − h3

3
(∂Xu)2

)]
dX , (4.79)

for the Boussinesq system. Although we still use the same notation for convenience,
it is understood that X now plays the role of X − c0t̃.
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Characteristic Coordinates

As shown in (4.78), the long-wave scaling regime typically features a Hamiltonian
with a quadratic part of the form

H̃2 =
1

2

∫
R

(Au2 + Bη2) dX ,

where A, B > 0. The corresponding equations of motion are given by

(
∂tη
∂tu

)
=

(
0 −∂X

−∂X 0

)(
Bη
Au

)
=

(
0 −A

−B 0

)(
∂Xη
∂Xu

)
, (4.80)

which reduce to a wave equation for either η or u. This reduction suggests per-
forming an additional transformation τ that will accomplish three tasks:

• Diagonalize the symplectic form

Ĵ = (∂vτ)J̃(∂vτ)
� = (∂vτ)

(
0 −∂X

−∂X 0

)
(∂vτ)

� =

(
−∂X 0
0 ∂X

)
.

• Transform the Hamiltonian to normal form

Ĥ2 =
1

2

∫
R

√
AB (r2 + s2) dX .

• Transform (4.80) to characteristic form

(
∂tr
∂ts

)
=

(
−C 0

0 C

)(
∂Xr
∂Xs

)
.

All three are accomplished by the transformation w = τ(v) = Θv where Θ = ∂vτ
is the matrix

Θ =

⎛
⎝ 4

√
B
4A

4

√
A
4B

4

√
B
4A − 4

√
A
4B

⎞
⎠ ,

with the result that C =
√

AB. From (4.78), we have A = h and B = g so that

(
r
s

)
=

⎛
⎝ 4
√

g
4h

4

√
h
4g

4
√

g
4h − 4

√
h
4g

⎞
⎠
(

η
u

)
, (4.81)

and C = c0 =
√

gh. The variable r(X, t) represents the solution’s component that
travels primarily to the right (in the positive X-direction), while s(X, t) represents
the component that travels primarily to the left (in the negative X-direction).
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Of course, the nonlinear contributions will change accordingly. From (4.79), the
resulting Hamiltonian reads

Ĥ − c0Î = ε3
∫
R

c0s
2 dX (4.82)

+ε5
∫
R

(
1

4
4

√
g

4h
(r + s)(r − s)2 − h3

6

√
g

4h
(∂Xr − ∂Xs)2

)
dX .

The fact that the r2 term is absent is precisely due to the subtraction of c0Î
from the quadratic part Ĥ2 of Ĥ. Indeed, we expect the corresponding advection
term c0∂Xr to be absent from the equation of motion, since we are looking at
the Hamiltonian flow in a reference frame moving at speed c0 in the positive
X-direction.

4.5.5 Boussinesq and KdV Scaling Limits

The previous calculations pave the way for the derivation of the Boussinesq system
and the KdV equation which model the evolution of two-dimensional weakly non-
linear gravity waves on shallow water. Referring to the non-dimensionalization per-
formed earlier, the Boussinesq system typically corresponds to the scaling regime
where the small dimensionless parameter ε is defined in such a way that

ε2 =
a0

h
=

h2

λ2
0

.

The corresponding Hamiltonian up to order O(ε5) is given by (4.78) in terms of
the surface elevation η and the horizontal fluid velocity u evaluated on Γ. Their
dynamics obey (

∂tη
∂tu

)
= ε−2

(
0 −∂X

−∂X 0

)(
gradηH
graduH

)
,

where the factor ε−2 takes into account adjustments of the symplectic form due
to the amplitude and spatial scalings. For simplicity, the tilde or hat notation has
been dropped. These equations read more explicitly

∂tη = −ε∂X

(
(h + ε2η)u +

ε2

3
h3∂2

Xu

)
,

∂tu = −ε∂X

(
gη +

ε2

2
u2

)
.

The extra factor ε on the right-hand sides may be removed by rescaling time as
T = εt, which is the typical long time scale associated with the long-wave limit.
The resulting Boussinesq system

∂T η = −∂X

(
(h + ε2η)u

)
− ε2

3
h3∂3

Xu , (4.83)

∂Tu = −g∂Xη − ε2u∂Xu (4.84)
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coincides with the completely integrable model investigated by Kaup [76].
Then, by introducing characteristic coordinates and looking for solutions in a

coordinate system moving at speed c0 =
√

gh, the Hamiltonian takes the reduced
form (4.82). Furthermore, by restricting our attention to right-moving solutions
in the region of phase space {s = 0} ⊆ M, the Hamiltonian becomes

H − c0I = ε5
∫
R

(
1

4
4

√
g

4h
r3 − h3

6

√
g

4h
(∂Xr)2

)
dX .

It follows from diagonalization of the symplectic map, as shown in the previous
section, that the equation of motion for r is given by

∂tr = −ε−2∂Xgradr(H − c0I) = −ε3∂X

(
h3

3

√
g

4h
∂2
Xr +

3

4
4

√
g

4h
r2
)

,

or equivalently

∂T r = −h3

3

√
g

4h
∂3
Xr − 3

2
4

√
g

4h
r∂Xr , (4.85)

which is the usual form of the KdV equation in terms of the long time scale
T = ε3t. The free-surface profile η is recovered from r by simply inverting (4.81).

Although the Kaup–Boussinesq equations (4.83) and (4.84) are completely
integrable and admit exact analytical solutions, they have been shown to be ill-
posed [7]. It is thus of interest to consider higher-order corrections. Retaining terms
of up to order O(ε7) in (4.78) yields

H =
ε3

2

∫
R

[
hu2 + gη2 + ε2

(
ηu2 − h3

3
(∂Xu)2

)

+ε4
( 2

15
h5(∂2

Xu)2 − h2η(∂Xu)2
)]

dX , (4.86)

which gives rise to the higher-order Boussinesq system

∂T η = −∂X

(
(h + ε2η)u +

ε2

3
h3∂2

Xu +
2ε4

15
h5∂4

Xu + ε4h2∂X(η∂Xu)

)
,

∂Tu = −∂X

(
gη +

ε2

2
u2 − ε4

2
h2(∂Xu)2

)
.

Repeating the additional steps that are required to accommodate a moving ref-
erence frame and the unidirectional propagation of wave solutions, the Hamilto-
nian (4.86) successively becomes

H − c0I = ε3
∫
R

c0s
2 dX

+ε5
∫
R

(
1

4
4

√
g

4h
(r + s)(r − s)2 − h3

6

√
g

4h
(∂Xr − ∂Xs)2

)
dX

+ε7
∫
R

(
h5

15

√
g

4h
(∂2

Xr − ∂2
Xs)2 − h2

4
4

√
g

4h
(r + s)(∂Xr − ∂Xs)2

)
dX ,
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and

H − c0I = ε5
∫
R

[
1

4
4

√
g

4h
r3 − h3

6

√
g

4h
(∂Xr)2

+ε2
(h5

15

√
g

4h
(∂2

Xr)2 − h2

4
4

√
g

4h
r(∂Xr)2

)]
dX .

The corresponding equation of motion for r

∂T r = −h3

3

√
g

4h
∂3
Xr − 3

2
4

√
g

4h
r∂Xr

−ε2
(
2h5

15

√
g

4h
∂5
Xr +

h2

2
4

√
g

4h
r∂3

Xr + h2 4

√
g

4h
(∂Xr)(∂2

Xr)

)
,

is the so-called fifth-order KdV equation, due to the presence of the fifth derivative
in X. Unlike the KdV equation (4.85), it is not integrable. It admits generalized
solitary wave solutions which, unlike KdV solitons, are not truly localized but
exhibit a central pulse that connects to smaller periodic waves on both sides, as
found in computations of Champneys et al. [18].

These results have been extended in a similar systematic fashion to modeling
long surface waves over variable topography [31] or over a vertically sheared cur-
rent [94], long internal waves in two-layer flows [35] and long hydroelastic waves in
floating ice sheets [49, 62]. In all these cases, a Hamiltonian reformulation of the
full governing equations provides a basis for the asymptotic analysis and the pro-
posed reduced models are all Hamiltonian PDEs. While the present calculations
focus on the two-dimensional setting (d = 2), extensions of this approach to three
dimensions (d = 3) have also been explored in [27, 30, 36, 63, 65].

4.5.6 Modulational Scaling Limit and the NLS Equation

Another asymptotic regime of interest in the water wave problem is the modula-
tional limit for weakly nonlinear periodic waves on deep water. Recall from the
non-dimensionalization performed earlier that the small dimensionless parameter
ε in this case is defined as a characteristic wave steepness ε = k0a0, where k0 > 0
denotes the carrier (i.e. dominant) wavenumber of near-monochromatic waves.
We will again restrict our attention to the two-dimensional case. Compared to
the long-wave limit, additional transformations are required here as part of the
asymptotic procedure, and will be described below. In particular, a modulational
Ansatz makes it possible to derive reduced models for the wave envelope. This
step introduces multiscale functions whose role needs to be carefully examined.

Normal Form Transformation

Because three-wave resonances do not occur in the context of deep-water gravity
waves, the Hamiltonian can be simplified by eliminating all cubic terms through an
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appropriate canonical transformation. As explained in Sect. 4.4.6, this reduction
to third-order normal form can be framed as

(
η̃

ξ̃

)
= Θ0

(
η
ξ

)
= τ(v) , (4.87)

with

Θ0 = ∂vτ =

(
−i sgn(D) 0

0 −i sgn(D)

)
,

so that

∂s

(
η̃

ξ̃

)
= J0

(
gradη̃K3

grad
˜ξK3

)
=

(
0 1
−1 0

)(
gradη̃K3

grad
˜ξK3

)
, (4.88)

upon the adjustment J0 = Θ
�
0 Θ

�
0 = J . The auxiliary Hamiltonian K3 is given

by (4.62) and the transformation (4.88) takes the form (4.63). In particular, the
first equation for η̃ is Burgers’ equation. The new Hamiltonian (4.65), after this
normal form transformation, reduces to

H = H2(η, ξ) + H4(η, ξ)− H4(−i sgn(D)η, ξ) + R5 , (4.89)

where the leading nonlinear contributions are quartic terms.

Modulational Ansatz

We now describe the scaling regime that embodies the special form of wave so-
lutions that we are interested in. First, we transform to (complex) normal modes
z(x, t) and z(x, t) as defined by

(
z
z

)
= Θ1

(
η
ξ

)
=

1√
2

(
a(D) i a−1(D)
a(D) −i a−1(D)

)(
η
ξ

)
, (4.90)

where

a(D) = 4

√
g

G0(D)
,

and the symbol .̄ stands for complex conjugation. These are the physical-space
counterparts to the complex symplectic coordinates (4.50) that were introduced
in the Fourier space earlier. As a result, the original system (4.25) becomes

∂t

(
z
z

)
= J1

(
gradzH
gradzH

)
=

(
0 −i
i 0

)(
gradzH
gradzH

)
,

with the transformed symplectic map J1 = Θ1JΘ
�
1 .
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The next step introduces our modulational Ansatz(
u
u

)
= Θ2

(
z
z

)
= ε−1

(
e−ik0x 0

0 eik0x

)(
z
z

)
, (4.91)

which is to say that we are looking for solutions in the form of near-monochromatic
waves with carrier wavenumber k0 > 0 and with slowly varying complex envelope
u(X, t) depending on X = εx. The small dimensionless parameter ε = k0a0 is
a measure of wave steepness and, equivalently, it is also a measure of the wave
spectrum’s narrowness around k = k0. The corresponding equations of motion are

∂t

(
u
u

)
= J2

(
graduH
graduH

)
= ε−1

(
0 −i
i 0

)(
graduH
graduH

)
, (4.92)

where J2 = εΘ2J1Θ
�
2 . The extra factor ε in the definition of J2 reflects the change

in symplectic structure associated with the spatial scaling x → X = εx.

Expansion and Homogenization of Multiscale Functions

The Hamiltonian (4.89) is also transformed through the changes of variables (4.90)
and (4.91). The first transformation (4.90) diagonalizes the quadratic (i.e. linear)
part

H2 =

∫
R

z ω(D)z dx ,

in terms of normal modes (z, z) associated with the exact linear dispersion relation

ω(D) =
(
gG0(D)

)1/2
= (g|D|)1/2 ,

for deep-water gravity waves (h → +∞) in its operator form. Note the identity

ω(D) = ga−2(D) = G0(D)a2(D) .

Modulo the fact that complex amplitudes are now involved, this basically produces
the same effect as the change (4.81) to characteristic coordinates for long waves
on shallow water.

The second transformation (4.91) paves the way for the expansion of H in
powers of ε. Due to the multiscale nature of this problem (fast oscillations in x
and slow modulation in X), it is important to understand the action of Fourier
multiplier operators on multiscale functions [43].

Theorem 4.5.3. Assume that the Fourier multiplier m(D) has the property

|∂j
km(k)| ≤ Cj(1 + k2)(�−j)/2 , 0 ≤ j ≤ � .

Then its action on a multiscale function f(x, X), where X = εx, has the asymp-
totic expansion

(m(D)f)(x, X) =

n∑
j=0

εj

j!
∂j
km(Dx)D

j
Xf(x, X) + Rn+1f .
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Proof. Using the definition of the Fourier multiplier together with the Fourier
inversion theorem, we have

(m(D)f)(x, X) =
1

2π

∫
R

eik
′xm(k′)f̂(k′; ε) dk′ ,

=
1

(2π)2

∫
R4

eik
′xe−i(k′−(k+εK))x′

m(k′)f̂(k, K) dkdKdx′dk′ ,

=
1

(2π)2

∫
R2

ei(k+εK)xm(k + εK)f̂(k, K) dkdK .

Because m(D) satisfies the above property, i.e. it is a classical pseudodifferential
operator of order �, we can Taylor expand m(k′) about k′ = k and obtain

(m(D)f)(x, X) =
1

(2π)2

∫
R2

eikxeiKX

⎛
⎝ n∑

j=0

∂j
km(k)

(εK)j

j!
+ R̂n+1

⎞
⎠f̂(k, K) dkdK ,

=
n∑

j=0

εj

j!
∂j
km(Dx)D

j
Xf(x, X) + Rn+1f .

A more detailed proof with a precise estimate for the remainder Rn+1f can be
found in [43]. �

Omitting the t-dependence, a typical multiscale function is given by f(x, X) =
eik0xu(X) according to the modulational Ansatz (4.91). This implies that e.g.
G0(D)f admits the following asymptotic expansion in ε,

G0

(
eik0xu(X)

)
= |Dx + εDX |

(
eik0xu(X)

)
= eik0x|k0 + εDX |u(X)

= eik0x(k2
0 + 2εk0DX + ε2D2

X)1/2u(X)

= eik0x(k0 + εDX + . . . )u(X) ,

given that |D|2 = D2. Hence, we may symbolically write

|Dx + εDX | =
(
D2

x + 2εDxDX + ε2D2
X

)1/2
= |Dx|+ ε|Dx|−1DxDX + . . .

Moreover, because our focus is on describing nontrivial dynamics of the wave
envelope, the presence of multiple scales needs to be appropriately dealt with.
This is a homogenization problem which is addressed in the present Hamiltonian
framework via the scale separation lemma of Craig et al. [30].

Lemma 4.5.4. Suppose that p(x) is a continuous and periodic function of period
γ, and q(X) is a Schwarz-class function. Then the short scales represented in p(x)
and the long scales represented by X = εx in q(X) are asymptotically separated.
That is, for all n > 0, we have the estimate

∫
R

p(x)q(εx) dx = 〈p〉
∫
R

q(X)
dX

ε
+ O(εn) ,
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where

〈p〉 = 1

γ

∫ γ

0

p(x) dx

denotes the average value of p(x) over a period γ.

The reader is referred to [30] for the proof of this lemma. In the present
setting, p(x) is a function of the form ei�k0x (� ∈ Z) for which

〈ei�k0x〉 =
{

1 , if � = 0 ,
0 , otherwise .

This implies that terms with fast oscillations essentially homogenize to zero and
thus do not contribute to the effective Hamiltonian. This homogenization naturally
selects four-wave resonances among all the possible quartic interactions because
the corresponding fast oscillations exactly cancel out. We are left with the following
contributions in terms of the slowly varying envelope u,

H2(η, ξ) = ε

∫
R

u ω(k0 + εDX)u dX ,

H4(η, ξ) =
ε3

4

∫
R

k3
0|u|4 dX ,

H4(−i sgn(D)η, ξ) = −ε3

4

∫
R

k3
0|u|4 dX ,

up to order O(ε3). Note that more significant differences between H4(η, ξ) and
H4(−i sgn(D)η, ξ), such as contributions from the wave-induced mean flow, only
arise at higher orders.

NLS Equation

If we Taylor expand the dispersion relation ω(k0 + εDX) in ε, and retain terms of
order up to O(ε3), then the reduced Hamiltonian (4.89) reads

H = H2(η, ξ) + H4(η, ξ)− H4(−i sgn(D)η, ξ) , (4.93)

=
ε

2

∫
R

[
u
(
ω0 + εω′

0DX +
ε2

2
ω′′
0D2

X

)
u + c.c. + ε2k3

0|u|4
]

dX + O(ε4) ,

= ε

∫
R

(
ω0|u|2 + εω′

0 Im(u∂Xu) +
ε2

2
ω′′
0 |∂Xu|2 + ε2

2
k3
0|u|4
)

dX + O(ε4) ,

where ω0 = ω(k0) and similarly for its derivatives. The initials “c.c.” stand for
the complex conjugate of all the preceding terms on the right-hand side of the
equation. In (4.93), we have used the fact that
∫
R

(
uDXu + uDXu

)
dX = −i

∫
R

(
u∂Xu − u∂Xu

)
dX = 2

∫
R

Im(u∂Xu) dX ,
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via integration by parts. It follows from (4.92) that the evolution equation for u
is given by

∂tu = −iε−1graduH ,

= −iω0u − εω′
0∂Xu + i

ε2

2
ω′′
0∂2

Xu − iε2k3
0|u|2u , (4.94)

which is the cubic NLS equation for deep-water gravity waves [1, 43, 101], asso-
ciated with the Hamiltonian (4.93). Note that the prefactors ε−1 in (4.92) and ε
in (4.93) suitably cancel out. This equation describes right-moving waves as indi-
cated by the linear advection term. If we switched the sign in the normal mode
decomposition (4.90) of ξ, we would obtain a model for left-moving waves, with
an advection term having the opposite sign.

The Hamiltonian (4.93) can be further simplified by subtracting a multiple
of the wave action

M = ε

∫
R

|u|2 dX ,

together with a multiple of the impulse

I =

∫
R

η∂xξ dx = ε

∫
R

(
k0|u|2 +

ε

2

(
uDXu + uDXu

))
dX + . . . ,

yielding

H − ω′
0I − (ω0 − k0ω

′
0)M =

ε3

2

∫
R

(
ω′′
0 |∂Xu|2 + k3

0|u|4
)
dX .

This reduction is made possible by the fact that both I and M are conserved
quantities (and thus Poisson commute with H) at this level of approximation.
The basic conservation of I was already established in a previous section. As for
the conservation of M , it is inherent to the modulational Ansatz and follows from
the identity

dM

dt
= {H, M} ,

=

∫
R

(
(graduM)(−i graduH) + (graduM)(i graduH)

)
dX ,

= −iε

∫
R

(
u graduH − u graduH

)
dX ,

= −iε

∫
R

(
u graduH − u graduH

)
dX = 0 ,

after integrating by parts. This transformation preserves the symplectic map J2

and the resulting simplification of (4.94) reads

∂tu = −iε−1gradu
(
H − ω′

0I − (ω0 − k0ω
′
0)M
)
,

= iε2
(
1

2
ω′′
0∂2

Xu − k3
0|u|2u

)
,
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or equivalently

− i∂T u =
1

2
ω′′
0∂2

Xu − k3
0|u|2u , (4.95)

where T = ε2t is the typical slow time scale in the modulation theory for deep-
water waves. The subtraction of M from H reflects the property of phase (or
gauge) invariance in this approximation, while the subtraction of I is equivalent
to changing the coordinate system to a reference frame moving with the group
velocity ω′

0. Because

ω′′(k) = −ω(k)

4k2
= −1

4

√
g k−3/2 , k > 0 ,

the coefficients of the dispersive and nonlinear terms in (4.95) are of the same sign,
which implies that the NLS equation (4.95) is of focusing type and is subject to
modulational instability as can be expected for two-dimensional gravity waves on
deep water [90].

Using a similar method in the context of Hamiltonian perturbation theory,
Guyenne and Părău [61] proposed an NLS equation for hydroelastic wave packets
propagating in a floating ice sheet lying on deep water, and Craig et al. [35]
derived a linear Schrödinger equation for small-amplitude surface waves that are
modulated by larger-amplitude internal waves described as KdV solitons in two-
layer flows.

The next-order correction to the cubic NLS equation, which is commonly re-
ferred to as Dysthe’s equation, has also received much attention from the scientific
community [53, 89]. It contains a nonlinear nonlocal term that represents effects
from the wave-induced mean flow, one of them being a Doppler shift relative to k0
which affects the prediction of modulational instability. Dysthe’s original equation
was not Hamiltonian, and it is only recently that Hamiltonian versions of it have
been proposed [32, 34, 37, 58]. The next-order correction to (4.95) is given by

−i∂T u =
1

2
ω′′
0∂2

Xu − k3
0|u|2u − i

ε

6
ω′′′
0 ∂3

Xu + 3iεk2
0 |u|2∂Xu + εk2

0u|DX ||u|2 ,

which is associated with the reduced Hamiltonian

H − ω′
0I − (ω0 − k0ω

′
0)M

=
ε3

2

∫
R

(
ω′′
0 |∂Xu|2 + k3

0|u|4 +
ε

3
ω′′′
0 Im

[
(∂Xu)(∂2

Xu)
]

+3εk2
0|u|2 Im(u∂Xu)− εk2

0|u|2|DX ||u|2
)
dX .

More details on its derivation can be found in [37].

Reconstruction of the Free Surface

Because the NLS equation (4.94) only describes the wave envelope, another step
is required in order to reconstruct the actual shape of the free surface from infor-
mation on the wave envelope. In modulation theory, this reconstruction is usually
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carried out perturbatively, based on an Ansatz similar to Stokes’ expansion, by
adding contributions from various harmonics of the wave spectrum.

Here the reconstruction procedure inverts the transformations associated
with our modulational Ansatz and the third-order normal form that eliminates
H3. At any instant t, the conversion of η back to its original definition is governed
by Burgers’ equation

∂sη̃ + η̃∂xη̃ = 0 , (4.96)

for s ∈ (−1, 0] with “initial” condition

ηI(x, t) = η(x, t)
∣∣
s=−1

=
ε√
2
a−1(D)

(
u(εx, t)eik0x + u(εx, t)e−ik0x

)
, (4.97)

where u solves (4.94). The choice of this initial condition is dictated by the changes
of variables (4.90) and (4.91), via inversion of Θ1 and Θ2. Equation (4.96) may
be solved numerically and its solution at s = 0 is meant to represent the original
physical variable η. In particular, the x-dependence in (4.96) and (4.97) can be
easily handled by the fast Fourier transform, as discussed in a subsequent section.
Note that η and η̃ are directly related through (4.87). It is clear from (4.96)
and (4.97) that the wave dynamics in this modulational regime generates higher-
order contributions from lower (i.e. mean flow) and higher harmonics through
nonlinear interactions. It is also worth pointing out that the integration time
s ∈ (−1, 0] is well within the existence time

s = O

(
1

|∂xη̃I |

)
= O(ε−1) ,

before a shock occurs, for Burgers’ equation with smooth initial data η̃i. Using this
non-perturbative procedure for surface reconstruction, it was found in [37] that
predictions by the Hamiltonian Dysthe’s equation compare very well with direct
numerical simulations of the full equations (4.33)–(4.34).

As an alternative to the direct numerical solution of (4.96), a perturbative
analytical expression for the surface elevation can be obtained in a manner con-
sistent with the Hamiltonian framework, via the Taylor expansion near s = −1,
i.e.

η
∣∣
s=0

= η
∣∣
s=−1

+ ∂sη
∣∣
s=−1

+
1

2
∂2
sη
∣∣
s=−1

+ . . . , (4.98)

where

∂sη = {K3, η} = gradξK3 =
1

2
|D| (−i sgn(D)η)

2
,

∂2
sη = ∂s {K3, η} = {K3, {K3, η}} =

{
K3, gradξK3

}
,

and η at s = −1 is given by (4.97). By analogy with Stokes’ expansion for near-
monochromatic waves, the first, second, and third terms on the right-hand side
of (4.98) include contributions from the first, second, and third harmonics, respec-
tively.
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4.6 Initial Value Problems

This section is devoted to the local and global existence theory for the initial value
problem. We start by giving some historical facts and continue with a review of
significant progress that took place in the last fifteen years. We will consider both
the two- and three-dimensional settings. There are many different formulations
of the water wave problem, involving in particular Lagrangian coordinates, Eule-
rian coordinates or complex coordinates that we will also discuss. Unless stated
otherwise, the water wave equations will refer to (4.33) and (4.34), with possibly
surface tension if we find it suitable for the discussion. In this case, the coefficient
of surface tension will be denoted by σ. Moreover, we will use the notation (η0, ξ0)
to refer to the initial conditions of (η, ξ).

4.6.1 Local Well-Posedness

A major difficulty is that Eqs. (4.33)–(4.34) form a quasilinear system of equations.
We note that the gravity term containing g is of lower order. One can ask: why
does the sign of g play such an important role in the well-posedness of the initial
value problem? To answer this question, we turn to the linearized system about
the state at rest (η, ξ) = 0. Setting (ζ, ψ) := (δη, δξ), we have

(
∂tζ
∂tψ

)
=

(
0 G0(D)

−g 0

)(
ζ
ψ

)
:= L

(
ζ
ψ

)
.

The principal symbol of L is

L1 :=

(
0 G0(k)
0 0

)
,

which has multiple eigenvalues λ(k) = 0, hence it is not strictly hyperbolic. This
fact renders the initial value problem very sensitive to perturbation, even by lower-
order terms.

When g < 0, the full symbol

L(k) = L1(k) + L0(k) =

(
0 G0(k)
0 0

)
+

(
0 0

−g 0

)

has complex eigenvalues, while for g > 0 they remain real. When g = 0, the
fundamental solution is given by the oscillatory kernel

exp(tL1(k)) =

(
1 tG0(k)
0 1

)
.

This evolution operator has one derivative loss. Its action on (η0, ξ0) ∈ Hr × Hs

is (η(x, t), ξ(x, t)) = (η0 + tG0(D)ξ0, ξ0) where the first component is the sum of
an element of Hr and an element of Hs−1.



4.6. Initial Value Problems 175

Set ωk =
√

g|k| tanh(h|k|) based on the linear dispersion relation. When
g > 0,

exp(tL(k)) =
(

cos(tωk)
ωk

g sin(tωk)

− g
ωk

sin(tωk) cos(tωk)

)
. (4.99)

This evolution operator maps Hr × Hr+1/2 −→ Hr × Hr+1/2. However, when
g < 0, the parametrix takes the form

exp(tL(k)) =
(

cosh(tωk)
ωk

g sinh(tωk)
g
ωk

sinh(tωk) cosh(tωk)

)
,

which has the property that it is unbounded as a map from any Hr to any H−s.
The linearized equations are thus ill-posed for g < 0.

One method to address the lack of strict hyperbolicity is to work with data
(η, ξ) in the space of analytic functions Cω

α , where Cω
α is the space of functions

f(x) bounded and analytic in a complex neighborhood of Rd−1 of width α. The
parametrix exp(tL(k)) is bounded from Cω

ρ to Cω
σ for σ < ρ, as well as on certain

Gevrey class scales. This was the approach adopted by Ovsyannikov [85] and Kano
and Nishida [74] who proved local well-posedness of the two-dimensional water
wave problem for analytic data, and they also provided a rigorous justification of
the shallow-water scaling limit.

Theorem 4.6.1. Consider the water wave equations scaled in the shallow-water
regime X = εx. Given initial data (η0, ξ0) ∈ Bα and ε < ε0 sufficiently small, then
there exists a time interval [−T,+T ] independent of ε, and an analytic solution
(ηε(t, X), ξε(t, X)) ∈ Cω

α(t). Furthermore as ε → 0, this solution converges to a
solution of the shallow-water equations.

The proof of this theorem uses the Nirenberg–Nishida abstract version of the
Cauchy–Kovalevskaya theorem. The distinction between analytic and Sobolev ini-
tial data is not simply a technicality. Nalimov, in a fundamental paper [82], proved
local well-posedness of the initial value problem for the problem of two-dimensional
water waves in an infinitely deep basin, for an initial surface displacement and ini-
tial velocity contained in a sufficiently small ball in an appropriate Sobolev space.
His result is local in time, giving a time interval over which solutions remain
bounded within the initial Sobolev space. This result was later extended by Yosi-
hara [100] to the case 0 < h < +∞. Nalimov’s original theorem uses Lagrangian
variables as there is a key but subtle cancellation in a subprincipal term that al-
lows one to overcome the problem of multiple characteristics in energy estimates.
Lagrangian coordinates are also useful to allow for overturning wave profiles. They
were used in particular by Craig [24], Wu [96], and Schneider and Wayne [87].

Let us derive the system of equations for two-dimensional water waves written
in Lagrangian coordinates from the basic Euler’s equations. Let u = (u, v) be
the two-dimensional fluid velocity. Then Euler’s equations (4.1)–(4.2) together
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with (4.3) read

∂tu+ (u · ∇)u = −∇(P + gy) , (4.100)

∂xu + ∂yv = 0 , (4.101)

∂xv − ∂yv = 0 , (4.102)

in a fluid region Ω = {−∞ < x < +∞,−h < y < η(x, t)}. At the bottom
{y = −h}, v = 0 while at the interface Γ = {(x, η(x, t))}, the pressure P is constant
and the vector (t, u, v) is tangent to the surface {(t, x, η(x, t)), t ∈ R, x ∈ R}. For
simplicity, the fluid density ρ has been absorbed into the definition of P.

The Lagrangian coordinates of the free surface are taken in the form (x +
X(x, t), Y (x, t)), where we consider motion for which (X, Y ) are bounded localized
perturbations of the free surface {(x, 0)} for the fluid at rest. To describe the
motion of the free surface, we take the point (x+X, Y ) to be the coordinate of a
Lagrangian particle on the free surface. Writing X = (X, Y )�, the acceleration of
such a Lagrangian particle is given by

∂tX = u(x + X, Y, t) .

From Euler’s equations, we get

∂2
tX = ∂tu+ (u · ∇)u = −∇(P + gy) , (4.103)

∂xP(x + X, Y ) = ∇P ·
(

1 + ∂xX
∂xY

)
= 0 .

Equations (4.101) and (4.102) are the Cauchy–Riemann equations for the analytic
function f(z) where f = u−iv and z = x+iy. Together with the bottom boundary
condition v(x,−h) = 0, there is a singular integral operator on the top surface,
recovering boundary values of v from boundary values of u and under the condition
that (u − iv)(z) → 0 as z → ∞, there exists an operator K depending on Γ, or
equivalently on X such that

v = K(X)u . (4.104)

Using (4.103) to eliminate the pressure from (4.100) and recalling that ∂tX = u,
the equations of the free surface read

(1 + ∂xX)∂2
t X + ∂xY (g + ∂2

t Y ) = 0 ,

∂tY = K(X)∂tX = 0 .

It is in this setting that Craig [24] proved that, given X(x, 0) for the initial value
problem in Sobolev spaces Hs (s ≥ 3), such that the initial free surface is rep-
resented by a simple chord-arc curve and is sufficiently small, then there exists
T > 0 and a solution over the time interval [−T,+T ].

The smallness assumption was later removed by Wu [96] in the case of infinite
depth (h → +∞). Wu [97] then extended this result to the three-dimensional
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problem, again for h → +∞, using quaternionic coordinates. The case of finite
depth in two and three dimensions, possibly with a smooth non-flat bottom y =
β(x), was studied by Lannes [78]. The system under consideration is the water
wave problem in Eulerian coordinates as given by (4.33)–(4.34). In this case, the
DNO depends on both η and β. Conditions are that β ∈ C∞, varies “slowly” and
the initial free surface η0 satisfies

min{η0 − β,−β} ≥ h0 ,

for a certain h0 > 0. More precisely, given initial data (η0, ξ0) ∈ Hr (r sufficiently
large), there exists T > 0 and a unique solution (η, ξ) such that

(η, ξ) ∈ C1([0,+T ] , Hr(Rd−1)× Hr(Rd−1)) .

The condition that the bottom varies slowly ensures that the Taylor sign condition

−∇P · n ≥ c0 > 0

is satisfied on the free surface Γ, where n is the outward normal unit vector to Γ.
The Taylor sign condition is a central concept in the theory of water waves.

It is known that the water wave motion can be subject to the Taylor instability
when surface tension is neglected and the Taylor sign condition fails [54, 92]. Beale
et al. [9] showed that the linearization of the water wave equations around a given
solution is well-posed, provided this exact solution satisfies the generalized Taylor
sign condition. A central element of Wu’s analysis is that the Taylor criterion
holds in two and three dimensions. This criterion expresses that the surface is not
accelerating into the fluid region more rapidly than the normal acceleration due to
gravity. We explain formally below why the Taylor condition automatically holds
for uniform or infinite water depth.

We start from (4.103) written as

∂2
tX− g = −∇P ,

and take the scalar product with n,

n ·
(
∂2
tX− g

)
= −∂nP . (4.105)

Assume that a smooth solution exists for (−T,+T ) and fix a time t in this time
interval. Denote by

a(x, t) = n ·
(
∂2
tX− g

)
. (4.106)

Assuming that u and its derivatives vanish at infinity, hence so does ∂2
tX, and

since g > 0, there exist constants c1 and R such that a(x, t) ≥ c1 for |x| ≥ R. On
the other hand, by virtue of (4.100) and the fact that u = ∇ϕ, the pressure P
satisfies the elliptic problem

−ΔP =
1

2
Δ(|∇ϕ|2) ≥ 0 , in Ω ,

P = 0 , on Γ .
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The function P is a sub-harmonic function. It reaches its minimum on the bound-
ary of the domain, and at such a point, the outward normal derivative is strictly
negative. Thus it cannot reach its minimum at y = −h where ∂nP = 0. Its mini-
mum is therefore reached on the free surface where P vanishes identically. Thus,
P is positive in the fluid domain. Moreover, any point of the free surface being
a minimum for P, one has ∂nP < 0 everywhere on Γ, i.e. ∂nP(x, η(x, t)) < 0
for all x ∈ R

d−1. By a continuity argument, there exists c2 > 0 such that
−∂nP(x, η(x, t)) > c2 for all x in the ball |x| ≤ R. Choosing c0 = min(c1, c2),
we have a(x, t) ≥ c0 > 0 for all x ∈ R

d−1.
Finally, let us discuss the condition imposed on the bottom variations. It is

expressed as

Πβ(u0|y=β(x)) ≤
g√

1 + |∂xβ|2
,

where u0 is the initial velocity associated with ξ0, given by u0 = ∇ϕ0, where ϕ0 is
the velocity potential obtained by solving Laplace’s equation in the fluid domain
{(x, y) : x ∈ R

d−1, β(x) < y < η0(x)} with Dirichlet boundary conditions ξ0 at
the free surface {y = η0(x)} and homogeneous Neumann boundary conditions at
the bottom. The symbol Πβ denotes the second fundamental form associated with
the bottom {y = β(x)}. From a mathematical viewpoint, the Taylor criterion is
crucial because the quasilinear system is not strictly hyperbolic and requires a
Lévy condition on the subprincipal symbol to be well-posed; this is indeed the role
played here by the Taylor criterion.

A detailed study of the DNO is key to obtain energy estimates. We know that
it is linear but depends nonlinearly on the parameterization of the free surface.
This dependence is smooth, and even analytic [20, 39]. The derivative of G(η) with
respect to the surface elevation η, also called its shape derivative, is central for the
study of the linearized water wave system around a reference state. Introducing
the horizontal and vertical components of the fluid velocity on the free surface,

u = ∂xξ − (∂xη)v , v =
G(η)ξ + ∂xη · ∂xξ

1 + |∂xη|2
,

the derivative of G(η) with respect to η is the operator acting on δη = ζ (see
Sect. 4.3.2, [78])

gradηG(η)ξ : ζ 
−→ gradηG(η)ξ · ζ = −G(η)(v ζ)− ∂x · (u ζ) . (4.107)

We refer to Alazard and Métivier [6] and Alazard et al. [2, 3] for a thorough study
of the DNO with use of paradifferential calculus. Another key element to obtain
a priori energy estimates is the choice of appropriate variables, referred to as the
“good” unknown of Ahlinac. We formally present below the derivation of these
variables and how it relates to the Taylor criterion. We refer to the above papers
for a rigorous analysis. Write the water wave system (4.33)–(4.34) as

∂tU + F(U) = 0 ,
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with U = (η, ξ)�. Let U = (η, ξ)� be a reference state. We denote by u, v the hor-
izontal and vertical components of the fluid velocity on the free surface associated
with U . The linearized water wave operator near a reference state is

L = ∂t + gradUF .

From the explicit form of F(U) as given by (4.33)–(4.34), we get

gradUF =

(
−gradηG(·)ξ −G(η)

−v gradηG(·)ξ − v u · ∂x + g u · ∂x − v G(η)

)
.

Using (4.107),

L = ∂t +

(
−G(η)(v ·) + ∂x · ( ·u) −G(η) ·

v G(η)(v ·) + (g + v ∂x · u) u · ∂x · −v G(η) ·

)
.

We now introduce the important change of variables.

Lemma 4.6.2. Let U be a reference state. If U = (η, ξ)� satisfies the system
LU = K, then V := (η, ξ − v η)� satisfies MV = H, where

M := ∂t +

(
∂x · (·u) −G(η) ·

a u · ∂x

)
, H :=

(
K1

K2 − vK1

)
,

where a := g + ∂tv + u · ∂xv.

The coefficient a appearing in the operator M identifies with the quantity
defined in (4.106) in the context of Lagrangian coordinates. The condition a ≥
c0 > 0 is the Taylor criterion. This condition, imposed on the subprincipal symbol
of M, will ensure that the Cauchy problem

MV = H , V |t=0 = V0

is well-posed in appropriate spaces.
In [3], Alazard et al. reduced the required regularity on the initial condi-

tions. Their local existence result involves assumptions which, in view of Sobolev
embedding require that the initial free surface be only of class C3/2+ε for some
ε > 0 and consequently, has unbounded curvature, while the initial velocity has
only Lipschitz regularity. The initial free surface and the trace of the initial ve-
locity there are assumed to be in Hs+1/2(Rd−1) × Hs(Rd−1), s > 1 + (d − 1)/2.
The only assumption on the domain is that it contains a fixed strip below the free
surface, allowing the bottom to be very rough in the sense that it has no regularity
assumptions. Their analysis introduces new techniques and new tools, including
paradifferential calculus and a microlocal description of the DNO. De Poyferré
and Nguyen [46] extended these low regularity results to gravity-capillary waves.
We refer to the recent review of Ionescu and Pusateri [71] for an introduction to
paradifferential calculus and its use for the study of properties of the DNO.
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In conclusion, the local well-posedness theory is well understood in a variety
of different physical settings. Christodoulou and Lindblad [19] addressed the equa-
tions of motion for a fluid domain with a free surface, but with no body forces such
as gravity coming into play. The problem is posed in arbitrary space dimensions,
and the fluid, while being incompressible, is not required to satisfy any irrotation-
ality condition. The content of this paper is a series of a priori estimates for the
initial value problem, essentially under the sole hypothesis that n ·∇P < 0 on the
free surface (the Taylor criterion discussed above). In addition, this paper adopts
a geometrical point of view, estimating quantities such as the second fundamental
form and the velocity of the free surface.

Coutand and Shkoller [22] extended local well-posedness results to three-
dimensional incompressible free-surface Euler’s equations with vorticity and sur-
face tension, including two-fluid systems. Shatah and Zeng [88] derived estimates
to the free-boundary value problem for Euler’s equations with surface tension, and
without surface tension provided the Rayleigh–Taylor sign condition holds. They
proved that as surface tension tends to zero, when the Rayleigh–Taylor condition
is satisfied, solutions converge to Euler’s flow with zero surface tension. Iguchi [69]
addressed the validity of KdV approximation in the presence of surface tension as
well as effects of the bottom on this long-wave approximation. A thorough study
of scaling regimes related to the shallow-water regime and their validity is given
in Lannes’ monograph [79]. Like in many other quasilinear problems, large ini-
tial data can lead to finite-time singularities. Existence of smooth initial data for
which a singularity in the form of overturning waves (splash or splat singularity)
develops in finite time was shown by Castro et al. [17] for the two-dimensional
water wave problem, and by Coutand and Shkoller [23] in the three-dimensional
case.

4.6.2 Recent Results on Global Well-Posedness for Small
Data

In the last ten years, there has been considerable amount of work and several
milestone articles on global well-posedness and long-time behavior of solutions for
water waves in two and three dimensions, given small and smooth initial data.
There are different frameworks depending on whether one considers the problem
in the whole space or in a periodic setting. We start with the problem in the
whole space where initial data are assumed to decay at infinity and the channel is
assumed to have infinite depth (h → +∞). The classical mechanism to establish
global regularity for quasilinear equations has two main components: establish
a priori estimates of high-order energy functionals such as Sobolev norms and
weighted norms, and prove dispersion and decay of the solution over time.

We first discuss the case of three-dimensional gravity waves (g, σ) = (1, 0).
Global well-posedness for small initial data was established independently by Wu
[98] and by Germain et al. [56], with different assumptions on the initial conditions.
In [98], the smallness condition on the surface elevation is measured based on its
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steepness. This does not require the wave amplitude to be small. The free surface
(x(α, β, t), y(α, β, t), (α, β) ∈ R

2) is parametrized in Lagrangian coordinates. The
analysis is based on a key change of variables

θ = (I − K)Z ,

where K is the Hilbert transform associated with the fluid domain, see (4.104).
The new quantity satisfies an evolution equation that does not contain quadratic
terms, only nonlinear terms that are cubic and of higher order which, combined
with dispersive estimates, leads to a control of the growth in time. As t → +∞,
the L∞ norm of the wave steepness, the acceleration of the free surface and the
derivative of the fluid velocity there decay like t−1.

The analysis in [56] provides global well-posedness and scattering. It is per-
formed on the system (4.33)–(4.34) in Eulerian coordinates and is based on the
method of space-time resonances, first introduced by those authors in the con-
text of three-dimensional NLS equations with quadratic nonlinearities. From the
canonical variables (η, ξ), introduce

U := η + i |D|1/2ξ ,

and its associated linear profile

u = eit|D|1/2U .

Theorem 4.6.3. Assume initial conditions η0, ξ0 : R2 → R are small and smooth
enough such that

‖U0‖Hn+1 + ‖|∂x|3/4(xU̇0)‖L2 + sup
s≥0

〈s〉‖e−is|∂x|U0‖W 4,∞ ≤ ε ,

for n sufficiently large and ε sufficiently small, with 〈s〉 =
√
1 + s2. Then there is a

unique solution U ∈ C1([0,∞), Hn(R2)) to the initial value problem (4.33)–(4.34).
In addition, the solution satisfies the long-time estimate

〈t〉−δ‖U0‖Hn + 〈t〉−δ‖|∂x|3/4(xu̇)‖L2 + 〈t〉‖U0‖W 4,∞‖U(t)‖L2 � ε ,

for all t ≥ 0, where δ is a small constant.

In a subsequent paper, Germain et al. [57] considered three-dimensional pure
capillary waves (g, σ) = (0, 1). They proved global well-posedness and scattering
under smallness conditions on the data. The case of three-dimensional gravity-
capillary waves was addressed by Deng et al. [47]. A description of some of the
main ideas and techniques involved in these results can be found in the review
paper [71].

We turn to the two-dimensional water wave problem in the pure gravity case
(g, σ) = (1, 0). To extend a local solution for longer times, one needs to use dis-
persive effects of the equations, which are weaker in two dimensions than in three
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dimensions. Global regularity for small data was proved by three groups of authors:
Alazard and Delort [4, 5], Ionescu and Pusateri [70], and Ifrim and Tataru [68],
with somewhat different assumptions on the initial data. The main idea behind the
proof of [4] is the use of paradifferential calculus to obtain delicate L2 and L∞ esti-
mates. In [70], the authors identify a suitable nonlinear logarithmic correction and
show decay of solutions with modified scattering. In [68], the problem is formulated
in position-velocity potential holomorphic coordinates. These time-dependent co-
ordinates are defined by a conformal map in the lower complex half-plane. Global
well-posedness of two-dimensional pure capillary waves (g, σ) = (0, 1) was proved
in [72].

4.6.3 Water Waves in a Periodic Geometry

We now consider the case of spatially periodic solutions. A major difficulty in this
analysis is that, unlike many results on the real line with decaying Cauchy data,
one cannot make use of dispersive properties of the linear flow. Normal forms
methods have been used successfully. In Sect. 4.4, we presented the formal setting
of Birkhoff normal form transformations. As mentioned earlier, in dimension d = 2
and for infinite depth, Dyachenko and Zakharov [51] and Craig and Wolfork [44]
showed at a formal level that cubic terms and non-resonant quartic terms can
be removed by appropriate canonical transformations, and four-wave resonances
have a special integrable form. In [13], Berti et al. provided a rigorous setting for
the reduction of these equations to Birkhoff normal form up to degree four. As a
consequence, they proved that for an initial free surface in the form of a periodic
perturbation to the state at rest, with size O(ε) in a Sobolev space of sufficient
regularity, solutions of the water wave problem remain smooth and small up to a
time of order O(ε−3). This work is an impressive tour de force where the authors
overcome several major difficulties, including the presence of small divisors arising
from near-resonances, which may cause loss of derivatives in addition to loss due
to the form of the nonlinearity.

The case of periodic gravity-capillary waves was addressed by Berti and De-
lort [11]. This is a situation where for exceptional values of the physical parameters
(g, σ, h), three-wave resonances associated with Wilton ripples may occur. Exclud-
ing this exceptional parameter subset of zero measure, these authors proved that
any solution of the Cauchy problem for gravity-capillary waves with spatially pe-
riodic, smooth initial data of small size O(ε), is almost globally defined in time
on Sobolev spaces, i.e. it exists on a time interval of length ε−N for any N . Fur-
thermore, exploiting the fact that there are finitely many three-wave resonances,
Berti et al. [12] proved that for all values of (g, σ, h), initial data of size O(ε) in a
sufficiently smooth Sobolev space lead to a solution that remains in an O(ε) ball
of the same Sobolev space, up to times of order O(ε−2).

The problem of long-time existence for multi-dimensional periodic gravity-
capillary waves was addressed by Ionescu and Pusateri [73]. The authors showed
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that for initial data of sufficiently small size O(ε), smooth solutions exist up to
times of order O(ε−5/2) for almost all values of σ. This is the first result proving
long-time existence in a periodic domain of dimension greater than one.

4.7 Numerical Simulation of Surface Gravity
Waves

Numerical simulation has also been an important tool for research on the water
wave problem. The corresponding literature is vast and the reader is referred to [48]
for a recent review. As an illustration, we describe two different numerical methods
for directly solving the full Euler’s equations in the potential-flow formulation. The
first method computes nonlinear wave solutions that are steadily progressing, with
an emphasis on solitary waves on water of finite depth. It is based on an integral
reformulation of the boundary value problem (4.8)–(4.11) in a moving reference
frame. The second method considers the general time evolution problem by solving
the Hamiltonian equations (4.33) and (4.34). We will present an application to the
head-on collision of two solitary waves on shallow water, including a comparison
with laboratory measurements. We refer to Constantin’s monograph [21] for an
extensive review on traveling water waves.

4.7.1 Tanaka’s Method for Solitary Waves

In this context, the fluid domain is two-dimensional (d = 2) with uniform finite
depth h. Solitary waves are computed by a modified version of Tanaka’s method
[91] as proposed by Craig et al. [28]. It is based on an integral formulation for the
complex velocity potential, in a reference frame moving with wave speed c. The
dimensionless crest velocity qc (normalized by c) fully defines the wave field in this
setting.

More specifically, the complex velocity potential W = ϕ+ iψ such that ϕ = 0
at the crest and ψ = 0 at the flat bottom is introduced. The fluid region is mapped
onto the uniform strip 0 < ψ < 1, −∞ < ϕ < +∞ of the W plane, with ψ = 1
corresponding to the free surface. Defining Q = ln(dW/dz) where z = x+ iy, this
quantity is an analytic function of z and W , with vanishing boundary conditions
at infinity. It can be expressed as Q = ln q − iθ where q is the velocity magnitude
and θ is the angle between the velocity and the x-axis. Bernoulli’s condition (4.10)
on Γ and the no-flux condition (4.11) on Γb then read

dq3

dϕ
= − 3

Fr2
sin θ , for ψ = 1 , (4.108)

and
θ = 0 , for ψ = 0 , (4.109)

respectively, with Fr = c/
√

gh denoting the Froude number.
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The problem of finding solitary wave solutions of (4.8)–(4.11) is thus trans-
formed into the problem of finding a complex-valued function Q that is analytic
with respect to W within the unit strip 0 < ψ < 1, that decays at infinity, and
satisfies the two boundary conditions (4.108) and (4.109). This can be done by
iteration as follows:

1. Fix an initial guess for 0 < qc < 1 and β(ϕ) = ln q(ϕ), such that β(0) = ln qc
and β(±∞) = 0.

2. Compute the singular integral

− θ(ϕ) = PV

∫ +∞

−∞

β(ϕ′)

2 sinh
(

π(ϕ′−ϕ)
2

) dϕ′ , (4.110)

for θ(ϕ).

3. Integrate

1− q2c = − 3

Fr2

∫ +∞

0

sin θ(ϕ) dϕ , (4.111)

to find Fr2 from θ(ϕ).

4. Evaluate

q3(ϕ)− q3c = − 3

Fr2

∫ ϕ

0

sin θ(ϕ′) dϕ′ , (4.112)

to find q3(ϕ) from θ(ϕ) and Fr2.

5. Determine new β(ϕ) = ln q(ϕ).

6. Repeat steps 2–5 until convergence is achieved for Fr2.

The wave profile and velocity potential are reconstructed from the free surface
velocity. For the computation of steep solitary waves, the variable transformation

ϕ = αγ + γn

is introduced, where α is a positive real number and n is a positive odd integer.
Lagrangian interpolation and trapezoidal rule are used to evaluate numerically the
integrals in (4.110)–(4.112). Typically, for α = 0.01, n = 5, wave height a0/h = 0.4,
and a tolerance of 10−10 on Fr2, it is found that 60 iterations are required to achieve
convergence. Figure 4.2 illustrates several profiles of solitary waves computed by
this numerical algorithm.

4.7.2 High-Order Spectral Method

Not only is the lower-dimensional formulation (4.33)–(4.34) of the full equations for
nonlinear water waves, in combination with the series form (4.41) of the DNO, con-
venient for asymptotic modeling and rigorous mathematical analysis, it also lends
itself well to direct numerical simulation by using a high-order spectral method.
This constitutes a unique feature of the approach developed by Craig and Sulem
[40]. Details on this numerical scheme are provided below.
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Figure 4.2: Solitary waves of height a0/h = 0.1, 0.3, 0.5, 0.8 computed by the
modified Tanaka’s method

Space Discretization

Assuming periodic boundary conditions in x, a pseudo-spectral method based on
the fast Fourier transform (FFT) is used for space discretization. This is a natural
choice for computing the DNO since each term in (4.41) involves concatenations
of Fourier multipliers with powers of η. Accordingly, both functions η and ξ are
expanded in truncated Fourier series. The spatial derivatives and Fourier multipli-
ers are evaluated in the Fourier space, while the nonlinear products are calculated
in the physical space on a regular grid of N collocation points. For example, if
we wish to apply the zeroth-order operator G0(D) (or any other related Fourier
multiplier) to a function ξ in the physical space, we proceed in the following way

G0(D)ξ = F−1 {|k| tanh(h|k|)ξk} ,

where F and F−1 denote the direct and inverse Fourier transforms, respectively,
(as computed by the FFT), and ξk = F(ξ) represents the Fourier coefficient asso-
ciated with ξ.

In practice, the DNO series (4.41) is also truncated up to a finite number of
terms M but, by analyticity, a small number of them (typically M < 10  N) is
sufficient to achieve fast convergence and highly accurate results [38, 60, 62, 83]. As
pointed out earlier, the adjoint recursion formulas (4.45) and (4.46) for the DNO
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are computationally efficient because they allow us to store and reuse the Gj ’s as
vector operations on ξ. This results in fast calculations and the computational cost
for evaluating (4.41) is estimated to be O(M2N logN) operations via the FFT.
Unlike boundary integral methods for such Laplace problems [64], there is no
need to assemble and solve any dense matrix system at every time step. Moreover,
the computer implementation is insensitive to the spatial dimension d and water
depth h.

Time Integration

Time integration of (4.33) and (4.34) is performed in the Fourier space, so that
the linear terms can be solved exactly by the integrating factor technique [40]. For
this purpose, we separate the linear and nonlinear parts, and write these equations
as

∂tv = Lv +N (v) , (4.113)

where the linear part Lv is defined by

Lv =

(
0 G0(D)

−g 0

)(
η
ξ

)
,

and the nonlinear part N (v) takes the form

N (v) =

( (
G(η)− G0(D)

)
ξ

− |∂xξ|2
2 +

(
G(η)ξ+∂xη·∂xξ

)2
2(1+|∂xη|2)

)
.

The change of variables vk(t) = Φk(t)wk(t) in the Fourier space reduces (4.113)
to

∂twk = Φ−1
k Nk

(
Φkwk

)
,

via the integrating factor Φk(t) = exp(tL(k)) as given by (4.99). Note that

Φ0(t) =

(
1 0

−gt 1

)
,

for k = 0. This integrating factor is a semigroup and satisfies the property Φ−1
k (t) =

Φk(−t). It coincides with the fundamental matrix that determines the general
linear solution of (4.113). The resulting system for wk(t) only contains nonlinear
terms and can be solved numerically in time using various schemes such as the
classical fourth-order Runge–Kutta method, Adams–Bashford/Moulton predictor-
corrector method, or a symplectic Gauss–Legendre Runge–Kutta method, with
constant step Δt [61, 65, 67, 99]. After converting back to vk, this scheme reads

vn+1
k = Φk(Δt)vn

k +
Δt

6
Φk(Δt)

(
f1 + 2f2 + 2f3 + f4

)
,
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where

f1 = Nk (v
n
k ) ,

f2 = Φk

(
−Δt

2

)
Nk

[
Φk

(
Δt

2

)(
vn
k +

Δt

2
f1

)]
,

f3 = Φk

(
−Δt

2

)
Nk

[
Φk

(
Δt

2

)(
vn
k +

Δt

2
f2

)]
,

f4 = Φk(−Δt)Nk

[
Φk(Δt)

(
vn
k +Δt f3

)]
,

for the solution at time tn+1 = tn +Δt.

4.7.3 Collision of Solitary Waves

As an application, we consider the asymmetric head-on collision of two solitary
waves of unequal amplitudes moving in opposite directions. Our numerical simu-
lation is tested against a wavetank experiment carried out in the Pritchard Fluid
Mechanics laboratory at Penn State University. In this experimental setup, a first
localized waveform is generated by a wavemaker, reflects off of the far end of the
tank, and then interacts with a second wave generated by the wavemaker. The
water surface level is measured in a spatial window around the region of collision
at regular intervals of time. These two waveforms are generated to be profiles of a
KdV soliton (hence they are not strictly traveling wave solutions of Euler’s equa-
tions but only close). In addition, the reflected wave may well deviate further from
an exact solitary wave profile due to interaction with the wall, and experience a
slight attenuation of amplitude due to its longer travel distance in the wavetank.
Hence the interaction has a degree of asymmetry and it is not strictly between
exact solitary waves. Figure 4.3 records the experimental measurements at eight
times during this collision, within a window located in the middle of the wave-
tank. The wave moving from right to left is coming directly from the wavemaker,
while the one moving from left to right has reflected from the end wall of the
tank. The resulting measurements are compared with two numerically generated
traces, which are superimposed on this figure. The first is a numerical simulation
of (4.33)–(4.34) using the above numerical methods. Initial data for this simu-
lation are given by KdV soliton profiles, matching those being generated by the
wavemaker in the tank. The second is a linear superposition of two pure KdV
solitons, centered on the two solitary-like waves present in Fig. 4.3a and adjusted
to their amplitudes. Translating at constant (and opposing) velocities, they act
as a reference for the amplitude and phase shift of the actual solutions that are
undergoing the interaction.

Details of this collision in the experiment are relatively well represented in
the numerical simulation, which in all frames predicts the measured wave profile
with small error, and which reproduces the peak locations and their amplitudes
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Figure 4.3: Asymmetric head-on collision of two solitary waves of height a1 = 1.217
cm and a2 = 1.063 cm at (a) t = 18.29993 s, (b) t = 18.80067 s, (c) t = 19.05257
s, (d) t = 19.10173 s, (e) t = 19.15088 s, (f) t = 19.19389 s, (g) t = 19.32905 s,
(h) t = 19.50109 s. The water depth is h = 5 cm. Numerical results (solid line),
experimental results (dots), sum of two KdV solitons (dashed line)
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very well. Two exceptions are that the numerical solution slightly undershoots
the measured wave amplitude at the point of largest run-up (Fig. 4.3c), and the
peak centers in the numerical solution are slightly delayed behind the experimen-
tal measurements after the interaction (Fig. 4.3h). Both clearly differ from the
superposition of KdV solitons. Some of the discrepancy between the experimental
solution and numerical simulation can be attributed to the fact that neither is
starting from an exact solitary wave. Furthermore, neither a trailing residual nor
any changes in amplitude due to the inelastic nature of the interaction can be
picked out from the experimental uncertainties of the wavetank measurements.
Numerical parameters specified for this simulation are Δt = 0.01, N = 1024, and
M = 8. A more detailed account of results on head-on and overtaking collisions
of solitary waves can be found in [28], including a precise quantification of the
residual wave and phase shift arising from the interaction.
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