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Abstract
A new Hamiltonian version of Dysthe’s equation is derived for two-dimensional
weakly modulated gravity waves on deep water. A key ingredient in this derivation is a
Birkhoff normal form transformation that eliminates all non-resonant cubic terms and
allows for a refined reconstruction of the free surface. This modulational approxima-
tion is tested against numerical solutions of the classical Dysthe’s equation and against
direct numerical simulations of Euler’s equations for nonlinearwaterwaves.Very good
agreement is found in the context of Benjamin–Feir instability of Stokes waves, for
which an analysis is provided. An extension of our Hamiltonian model incorporating
exact linear dispersion as well as an alternate spatial form are also proposed.

Keywords Deep water · Dirichlet–Neumann operator · Dysthe’s equation · Gravity
waves · Hamiltonian systems · Modulation theory · Normal forms

1 Introduction

Modulation theory has been an effective tool for the asymptotic modeling and analysis
of surface gravity waves in a weakly nonlinear scaling regime. Two limiting regimes
of interest are the shallow-water regime where waves are viewed as mild modulations
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of the uniform mean flow, and the deep-water regime where approximate solutions
are sought in the form of mild modulations of monochromatic waves. The former case
leads toBoussinesq-type equations (and their variants) forwhich solutions are typically
localized in space [8,12]. The present study is focused on the latter case where a
modulationalAnsatzmakes it possible to derive reducedmodels for thewave envelope.
A well-known example is the nonlinear Schrödinger (NLS) equation, which emerges
from the first nontrivial terms in the perturbation calculations [1,38]. This equation has
been extensively studied owing to its many mathematical properties and the fact that
it is a canonical model for nonlinear dispersive waves in many other areas (e.g. optics,
plasma physics, etc.) [32]. Another example is the Davey–Stewartson system which
describes wave modulation on finite depth in higher space dimensions [2,13,16].

Higher order envelope equations have also drawn much attention from the sci-
entific community. In the water wave setting, the next-order correction to the NLS
equation has first been proposed by Dysthe [22] via a multiple-scale analysis. His
model has then been rederived and extended by many other investigators to allow for,
e.g. broader banded waves, exact linear dispersion, or time-series comparison with
laboratory experiments [21,35,36,39]. In particular, Stiassnie [31] showed that Dys-
the’s equation can also be derived via the mode coupling approach of Zakharov [38].
These higher order models exhibit improved stability properties for finite-amplitude
waves, including a Doppler shift due to the wave-induced mean flow. Consistent with
direct numerical simulations, they also predict an asymmetric evolution of the sideband
modes during modulational instability, which is a phenomenon that is not described
by modeling with the NLS equation. Despite this progress, early versions of Dys-
the’s equation share a fundamental shortcoming: they are not Hamiltonian whereas
the original water wave equations are. From a modeling point of view, it is desirable
that a reduced model inherits important properties of the original system.

This issue has recently been addressed by Craig et al. [13,14] and Gramstad and
Trulsen [23] who proposed Hamiltonian versions of Dysthe’s equation. Gramstad
and Trulsen [23] used Krasitskii’s [26] Hamiltonian version of Zakharov’s equation
as a basis for their modulational analysis, while Craig et al. [13,14] used a Taylor
series expansion of the Dirichlet–Neumann operator and applied a set of canonical
transformations together with homogenization techniques to the original Hamiltonian
formulation of the water wave problem.

Because the derivation of envelope equations relies on a clear separation between
resonant and non-resonant wave interactions and on a subtle elimination of non-
resonant terms, it is important to obtain a procedure that is valid for wave evolution
over sufficiently long times, on the order O(ε−2) where ε is a measure of the wave
steepness. For Hamiltonian systems, this elimination can be performed in a natural
way via canonical normal form transformations [3,4,7,25]. Such a transformation has
recently been constructed by Craig and Sulem [18] in a Sobolev space setting to elim-
inate all non-resonant cubic terms from the Hamiltonian of two-dimensional gravity
waves on deep water, resulting in a simple and elegant normal form for the reduced
problem.

In the present study, we combine results from [13,14,18] to derive a new Hamil-
tonian version of Dysthe’s equation for deep-water gravity waves, based on the
straightforward method of canonical transformations as mentioned above, but imple-
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mented after applying the normal form transformation that eliminates non-resonant
cubic terms. Our new version of the envelope equations is similar to that found in [13],
modulo slightly different coefficients for nonlinear terms. A careful determination of
the envelope equation turns out to be crucial for closely capturing the wave dynamics
in this modulational regime. We test our Hamiltonian Dysthe’s equation against pre-
dictions by the classical Dysthe’s equation, comparing bothmodels to direct numerical
simulations of Euler’s equations for free-surfacewater waves. Given the high precision
of our numerical simulations of the full equations, this test constitutes a verification of
both the original Dysthe’s equation and our Hamiltonian version. To our knowledge,
this is the first time here that such a verification of the Hamiltonian Dysthe’s equation
is performed. Earlier studies [13,23] did not report any numerical result. Craig et al.
[14] showed preliminary numerical simulations of their Hamiltonian model but did
not conduct any comparison with predictions by Euler’s equations.

Of particular interest is the development of modulational instability for a perturbed
Stokes wave, for whichwe present a linear stability analysis and a numerical investiga-
tion. In this regard, we also pay attention to the post-processing step of reconstructing
the free surface from the wave envelope, which is another key factor influencing the
model’s performance. Inspired by the recentwork of Craig and Sulem [18], we propose
a new non-perturbative approach for surface reconstruction based on the numerical
solution of a nonlinear partial differential equation (PDE). In doing so, higher order
harmonic components of the wave spectrum are automatically generated by the carrier
wave via nonlinear interactions. This differs from the traditional procedure where the
free surface is reconstructed perturbatively in terms of a Stokes expansion [30,35]. Fur-
thermore, we provide extensions of our high-order envelope equation to cases where
exact linear dispersion is retained [36] and where the model is rewritten in an alternate
spatial form to facilitate possible comparison with laboratory experiments [27].

The question of rigorous justification of the modulational Ansatz has two elements:
first one needs a sufficiently long-time existence theorem, on the order O(ε−2), for
solutions of Euler’s equations, and second, the latter should be well approximated
by solutions of the NLS equation. Some progress has been made since the work by
Craig et al. [19] who addressed the question of how well the constructed modulational
Ansatz approximates solutions of Euler’s equations, but did not provide any long-time
existence result. Totz and Wu [33,34] proved the validity of the NLS approximation
for the two- and three-dimensional water wave problem in a channel of infinite depth.
The finite-depth case involves additional difficulties and was investigated by Düll et
al. [20]. Due to the loss of smoothness in normal form transformations, estimates were
performed in spaces of analytic functions. We also mention recent results by Berti et
al. [5] who proved a long-time existence result for water waves in the two-dimensional
periodic setting with infinite depth.

This paper is organized as follows. Section 2 recalls the basic mathematical formu-
lation for two-dimensional gravity waves on deep water, including the Hamiltonian
formof the governing equations. Sections 3 and 4 describe themain steps in ourHamil-
tonian perturbation approach, including the normal form transformation to eliminate
all non-resonant cubic terms and the modulation Ansatz to specify the special near-
monochromatic form of solutions in this scaling regime. Section 5 presents our new
Hamiltonian models in cases with truncated and exact linear dispersion, and the corre-
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sponding procedure for surface reconstruction is discussed in Sect. 6. The spatial form
of our truncated envelope equation is introduced in Sect. 7, and the stability analysis
is outlined in Sect. 8. Numerical results are shown in Sect. 9 where the Hamiltonian
model is compared to the classicalDysthe’s equation and the fullwaterwave equations.
Finally, concluding remarks are given in Sect. 10.

2 Hamiltonian Formulation

We consider the evolution of a free surface {y = η(x, t)} on top of a two-dimensional
fluid of infinite depth

S(η) = {x ∈ R,−∞ < y < η(x, t)} ,

under the influence of gravity. Here (x, y) denote the horizontal and vertical coordi-
nates, respectively, and t represents time. In the version of Euler’s equations for an
incompressible, inviscid and irrotational flowwith a free surface, the velocity potential
ϕ(x, y, t) satisfies the boundary value problem

∇2ϕ = 0 in S(η), (1)

∂tη + (∂xη)(∂xϕ) − ∂yϕ = 0 at y = η(x, t), (2)

∂tϕ + 1

2
|∇ϕ|2 + gη = 0 at y = η(x, t), (3)

∂yϕ → 0 as y → −∞, (4)

where g denotes the acceleration due to gravity and ∇ = (∂x , ∂y)
�.

Following Craig and Sulem [17], the dimensionality of the Laplace problem (1)–
(4) can be reduced by considering surface quantities as unknown variables. This is
accomplished by introducing the Dirichlet–Neumann operator (DNO)

G(η)ξ = (−∂xη, 1)� · ∇ϕ
∣
∣
y=η

, (5)

which takes Dirichlet data ξ(x, t) = ϕ(x, η(x, t), t) at the free surface, solves the
Laplace equation (1) for ϕ subject to (4), and returns the corresponding Neumann data
(i.e. the normal velocity at the free surface). As a result, Eqs. (1)–(4) reduce to

∂tη = G(η)ξ, (6)

∂tξ = −gη − 1

2
(

1 + (∂xη)2
)

[

(∂xξ)2 − (G(η)ξ)2 − 2(∂xη)(∂xξ)G(η)ξ
]

, (7)

which are Hamiltonian equations for the two conjugate variables η and ξ in Zakharov’s
formulation of the water wave problem [17,38]. These can be expressed in canonical
form

∂t

(

η

ξ

)

= J

(

δηH
δξ H

)

=
(

0 1
−1 0

)(

δηH
δξ H

)

, (8)
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where the 2 × 2 matrix J represents the symplectic structure of the system, and the
Hamiltonian

H(η, ξ) = 1

2

∫ [

ξG(η)ξ + gη2
]

dx, (9)

corresponds to the total energy, which is conserved over time. For simplicity, the
domain of integration is not specified in (9) but hereafter it is understood that all
integrals are evaluated over R.

It is known that the DNO is an analytic function of η provided the free surface
has sufficient regularity [6], which implies that the DNO can be written in terms of a
convergent Taylor series expansion

G(η) =
∞
∑

j=0

G j (η), (10)

about the quiescent state η = 0. Each Taylor term G j is homogeneous of degree j in
η and can be determined recursively [17]. For example, the first few terms are

G0 = |D|,
G1(η) = DηD − G0ηG0,

G2(η) = −1

2

(

|D|2η2G0 + G0η
2|D|2 − 2G0ηG0ηG0

)

,

where D = −i∂x (so that its Fourier symbol is k). The reader may refer to [9,11,12,15,
24,37] for applications of this formulation to long-wave perturbation calculations as
well as direct numerical simulations of nonlinear waves on uniform or variable depth.

Let us decompose H = H2 + H3 + H4 + · · · , where

H2(η, ξ) = 1

2

∫ (

ξG0ξ + gη2
)

dx,

H3(η, ξ) = 1

2

∫

ξG1(η)ξ dx = 1

2

∫

ξ (DηD − G0ηG0) ξ dx,

= −1

2

∫

η
[

(Dξ)2 + (G0ξ)2
]

dx,

H4(η, ξ) = 1

2

∫

ξG2(η)ξ dx

= −1

4

∫

ξ
(

|D|2η2G0 + G0η
2|D|2 − 2G0ηG0ηG0

)

ξ dx,

= −1

2

∫

η
[

η(G0ξ)(D2ξ) − (G0ξ)G0(ηG0ξ)
]

dx,

represent the quadratic, cubic and quartic contributions respectively, in terms of the
dependent variables. The first one, H2, describes linear dynamics while H3 and H4
describe nonlinearmechanisms of three-wave and four-wave interactions, respectively.
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Following Craig et al. [13,14], our Hamiltonian approach to deriving envelope
equations for the modulation of weakly nonlinear wave packets involves various trans-
formations that approximate the original Hamiltonian (9) of the system and adjust the
symplectic structure (8) accordingly. These transformations are discussed in the next
sections.

3 Normal Form Transformations

Because three-wave resonances do not occur in the context of deep-water gravity
waves, the Hamiltonian H(η, ξ) can be simplified by eliminating all cubic terms
through an appropriate canonical transformation, as these are not essential to the
wave dynamics [26]. This approach falls within the general theory of normal form
transformations for Hamiltonian systems and has been successfully applied to the
waterwave problem since the pioneeringwork of Zakharov [38]. Birkhoff normal form
up to a given orderm is the result of a canonical change of variables, so that the Taylor
expansion of the transformed Hamiltonian up to orderm contains only resonant terms.

In the two-dimensional setting with infinite depth [18], the normal form transfor-
mation for m = 3 can be constructed as the flow at s = −1 governed by the vector
field

∂s

(

η

ξ

)

=
(

0 1
−1 0

) (

δηK3

δξ K3

)

, (11)

for some auxiliary Hamiltonian K3, and with initial condition at s = 0 corresponding
to the original physical variables (η, ξ). Expressing the new Hamiltonian in terms of
a Taylor expansion about s = 0,

H(η, ξ)
∣
∣
s=−1 = H(η, ξ)

∣
∣
s=0 − dH

ds
(η, ξ)

∣
∣
s=0 + 1

2

d2H

ds2
(η, ξ)

∣
∣
s=0 + · · · ,

= H(η, ξ)
∣
∣
s=0 − {K3, H} (η, ξ)

∣
∣
s=0 + 1

2
{K3, {K3, H}} (η, ξ)

∣
∣
s=0 + · · · ,

= H2(η, ξ)
∣
∣
s=0 + H3(η, ξ)

∣
∣
s=0 + H4(η, ξ)

∣
∣
s=0 − {K3, H2} (η, ξ)

∣
∣
s=0

− {K3, H3} (η, ξ)
∣
∣
s=0 + 1

2
{K3, {K3, H2}} (η, ξ)

∣
∣
s=0 + · · · ,

where K3 is homogeneous of degree 3, Hn is homogeneous of degree n and {K3, Hn}
is of degree n + 1, it follows that all cubic terms are eliminated, i.e.

H3(η, ξ)
∣
∣
s=0 − {K3, H2} (η, ξ)

∣
∣
s=0 = 0, (12)

provided

K3(η, ξ) = 1

2

∫

(−i sgn(D)η)2 |D|ξ dx .
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The operator −i sgn(D) may be viewed as the Hilbert transform associated with the
infinite lower half-plane. Terms in the above expansion are related to Poisson brackets
by virtue of

dH

ds
=

∫
[

(δηH)(∂sη) + (δξ H)(∂sξ)
]

dx =
∫

[

(δηH)(δξ K3) − (δξ H)(δηK3)
]

dx,

= {K3, H} .

A more familiar form of (11) can be obtained by introducing

(

η̃

ξ̃

)

= P0

(

η

ξ

)

=
(−i sgn(D) 0

0 −i sgn(D)

) (

η

ξ

)

, (13)

in which case

K3(̃η, ξ̃ ) = 1

2

∫

η̃2∂x ξ̃ dx, (14)

and

∂s

(

η̃

ξ̃

)

= J0

(
δη̃K3
δ̃ξ K3

)

=
(

0 −1
1 0

) (
δη̃K3
δ̃ξ K3

)

, (15)

following upon the adjustment J0 = P0 J P�
0 = −J . The first equation for η̃ is

Burgers’ equation

∂s η̃ − η̃∂x η̃ = 0,

while the second equation for ξ̃ ,

∂s ξ̃ − η̃∂x ξ̃ = 0,

is its linearization along Burgers’ flow. The new Hamiltonian, after this normal form
transformation, reduces to

H = H2(η, ξ) + H4(η, ξ) − {K3, H3} (η, ξ) + 1

2
{K3, {K3, H2}} (η, ξ) + R5,

= H2(η, ξ) + H4(η, ξ) − 1

2
{K3, H3} (η, ξ) + R5,

= H2(η, ξ) + H4(η, ξ) − H4(−i sgn(D)η, ξ) + R5, (16)

where the leading nonlinear contributions are now quartic terms. We have used (12)
together with the fact that

1

2
{K3, H3} (η, ξ) = 1

2

∫

ξG2(−i sgn(D)η)ξ dx = H4(−i sgn(D)η, ξ),
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as shown by Craig and Sulem [18, Theorem 4.1]. Because this is a canonical transfor-
mation, it preserves the symplectic structure J in (8). More details on Birkhoff normal
forms for water waves can be found in [5,7,18,38]. We remark that it is continuous in
a suitably small neighborhood of (̃η, ξ̃ ) = 0 in Sobolev spaces Hr (r > 1/2), but it
is not differentiable with respect to (̃η, ξ̃ ) and, therefore, is not a flow in the classical
sense.

4 Modulational Ansatz

We now set the stage to describe the scaling regime that encodes the special form of
wave solutions that we are interested in. First, we transform to complex symplectic
coordinates z(x, t) and z(x, t) as defined by

(

z
z

)

= P1

(

η

ξ

)

= 1√
2

(

a(D) ia−1(D)

a(D) −ia−1(D)

) (

η

ξ

)

, (17)

where

a(D) = 4

√
g

G0
,

and the symbol .̄ stands for complex conjugation. As a result, system (8) becomes

∂t

(

z
z

)

= J1

(

δz H
δz H

)

=
(

0 −i
i 0

) (

δz H
δz H

)

,

with the transformed symplectic structure J1 = P1 J P�
1 .

The next step introduces our modulational Ansatz

(

u
u

)

= P2

(

z
z

)

= ε−1
(

e−ik0x 0
0 eik0x

)(

z
z

)

, (18)

a translation in Fourier space variables, which is to say that we are looking for solutions
in the form of near-monochromatic waves with carrier wavenumber k0 > 0 and
with slowly varying complex envelope u(X , t) depending on X = εx . The small
dimensionless parameter ε ∼ k0A0 	 1 is a measure of the wave steepness (A0
being a characteristic wave amplitude for the free surface) and, equivalently, it is also
a measure of the wave spectrum’s narrowness around k = k0. The corresponding
equations of motion are

∂t

(

u
u

)

= J2

(

δu H
δu H

)

= ε−1
(

0 −i
i 0

)(

δu H
δu H

)

, (19)

where J2 = εP2 J1P�
2 . The extra factor ε in the definition of J2 reflects the change in

symplectic structure associated with the spatial rescaling x → X = εx and defines
the time scale of the resulting flows. Further details on these transformations in the
context of Hamiltonian models for free-surface flows can be found in [10,13].
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5 HamiltonianModels

The Hamiltonian (16) is also transformed through the changes of variables (17) and
(18). The former transformation (17) diagonalizes the quadratic (i.e. linear) part

H2 =
∫

z ω(D)z dx,

in terms of normal modes (z, z) associated with the exact linear dispersion relation

ω(D) = (gG0)
1/2 = (g|D|)1/2,

for deep-water gravity waves. The latter transformation (18) paves the way for the
expansion of H in powers of ε. The Taylor expansion (10) of the DNO turns out to be
convenient for this purpose.

Due to the multiscale nature of this problem (fast oscillations in x and slow modu-
lation in X ), it is important to understand the action of Fourier multiplier operators on
multiscale functions [19]. For example,G0 admits the following asymptotic expansion
in ε,

G0

(

eik0xu(X)
)

= |Dx + εDX |
(

eik0xu(X)
)

= eik0x |k0 + εDX |u(X),

= eik0x (k20 + 2εk0DX + ε2D2
X )1/2u(X),

= eik0x (k0 + εDX + · · · )u(X),

given that |D|2 = D2. Hence, we may symbolically write

|Dx + εDX | =
(

D2
x + 2εDx DX + ε2D2

X

)1/2 = |Dx | + ε|Dx |−1Dx DX + · · ·

Moreover, because our focus is on describing nontrivial dynamics of the wave enve-
lope, the presence of multiple scales needs to be appropriately dealt with. This is a
homogenization problem which is addressed in the present Hamiltonian framework
via the scale separation lemma of Craig et al. [11,14]. In doing so, terms with fast
oscillations essentially homogenize to zero and thus do not contribute to the effective
Hamiltonian. This homogenization naturally selects four-wave resonances among all
the possible quartic interactions because the corresponding fast oscillations exactly
cancel out. We obtain the following principal terms of the water wave Hamiltonian in
transformed coordinates, up to fourth order in ε,

H2(η, ξ) = ε

∫

u ω(k0 + εDX )u dX ,

H4(η, ξ) = ε3

4

∫ [

k30 |u|4 + 3

2
εk20 |u|2 (

uDXu + uDXu
)
]

dX ,

H4(−i sgn(D)η, ξ) = − ε3

4

∫ [

k30 |u|4 + 3

2
εk20 |u|2 (

uDXu + uDXu
) − 2εk20 |u|2|DX ||u|2

]

dX .
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Note the extra term in H4(−i sgn(D)η, ξ) as compared to H4(η, ξ), which appears as
a result of the normal form transformation. We will comment further on this term in
the next section.

5.1 Model with Truncated Dispersion

If we Taylor expand the dispersion relation ω(k0 + εDX ) in ε, and retain terms of
order up to O(ε4), then the reduced Hamiltonian (16) reads

H = H2(η, ξ) + H4(η, ξ) − H4(−i sgn(D)η, ξ),

= ε

2

∫

u

(

ω0 + εω′
0DX + ε2

2
ω′′
0D

2
X + ε3

6
ω′′′
0 D3

X

)

u + c.c.

+ ε2k30 |u|4 + 3

2
ε3k20 |u|2 (

uDXu + uDXu
) − ε3k20 |u|2|DX ||u|2 dX + O(ε5),

= ε

∫

ω0|u|2 + εω′
0 Im(u∂Xu) + ε2

2
ω′′
0 |∂Xu|2 + ε2

2
k30 |u|4

+ ε3

6
ω′′′
0 Im

[

(∂Xu)(∂2Xu)
]

+ 3

2
ε3k20 |u|2 Im(u∂Xu)

− ε3

2
k20 |u|2|DX ||u|2 dX + O(ε5), (20)

where ω0 = ω(k0) and similarly for its derivatives. The initials ‘c.c.’ stand for the
complex conjugate of all the preceding terms on the right-hand side of the equation,
and Im(·) denotes the imaginary part. In (20), we have used the fact that

∫

uDXu dX = −
∫

uDXu dX =
∫

uDXu dX ,

via integration by parts and, therefore,

∫
(

uDXu + uDXu
)

dX = −i
∫

(

u∂Xu − u∂Xu
)

dX = 2
∫

Im(u∂Xu) dX .

It follows from (19) that the evolution equation for u is given by

∂t u = −iε−1δu H ,

= −iω0u − εω′
0∂Xu + i

ε2

2
ω′′
0∂

2
Xu − iε2k30 |u|2u

+ ε3

6
ω′′′
0 ∂3Xu − 3ε3k20 |u|2∂Xu + iε3k20u|DX ||u|2, (21)

which is aHamiltonian version ofDysthe’s equation for deep-water gravitywaves [22],
associated with the Hamiltonian (20). This equation describes right-moving waves
as indicated by the linear advection term. If we switched the sign in the complex
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symplectic decomposition (17) of ξ , we would obtain a model for left-moving waves,
with an advection term having the opposite sign.

Note that the prefactors ε−1 in (19) and ε in (20) suitably cancel out. The cubic NLS
equation is recovered if theO(ε3) terms in (21) are neglected.Thenonlocal term,which
is recognizable by the Fourier multiplier |DX | = −i sgn(DX )∂X , is a characteristic
feature of Dysthe’s equation and represents effects from the wave-induced mean flow
(also called radiation stress) as pointed out in [13,22]. This nonlocal term naturally
arises here from the expansion of H4(−i sgn(D)η, ξ) and takes a simple explicit form,
which is in contrast to previous versions of Dysthe’s equation where it is indirectly
given by the solution of an auxiliary Laplace problem in a uniform strip [35,36]. This
also differs from the approach adopted in [13,14] where mean-flow contributions are
assumed a priori via correction terms in the transformation (17).

5.2 Moving Reference Frame

The Hamiltonian (20) can be further simplified by subtracting a multiple of the wave
action

M = ε

∫

|u|2 dX ,

together with a multiple of the impulse

I =
∫

η∂xξ dx = ε

∫ [

k0|u|2 + ε

2

(

uDXu + uDXu
)]

dX + · · · ,

yielding

Ĥ = H − ω′
0 I − (

ω0 − k0ω
′
0

)

M,

= ε

∫
ε2

2
ω′′
0 |∂Xu|2 + ε2

2
k30 |u|4 + ε3

6
ω′′′
0 Im

[

(∂Xu)(∂2Xu)
]

+ 3

2
ε3k20 |u|2 Im(u∂Xu) − ε3

2
k20 |u|2|DX ||u|2 dX .

Because M and I are conserved with respect to the flow of Ĥ , they Poisson commute
with H . This transformation preserves the symplectic structure J2 and the resulting
simplification of (21) reads

∂t u = −iε−1δu Ĥ ,

= iε2
(
1

2
ω′′
0∂

2
Xu − k30 |u|2u

)

+ ε3
(
1

6
ω′′′
0 ∂3Xu − 3k20 |u|2∂Xu + ik20u|DX ||u|2

)

,

or equivalently

∂τu = i

(
1

2
ω′′
0∂

2
Xu − k30 |u|2u

)

+ ε

(
1

6
ω′′′
0 ∂3Xu − 3k20 |u|2∂Xu + ik20u|DX ||u|2

)

,

Author's personal copy



138 W. Craig et al.

where τ = ε2t is the typical slow time scale in the modulation theory for deep-
water waves. The subtraction of M from H reflects the property of phase (or gauge)
invariance in this approximation, while the subtraction of I is equivalent to changing
the coordinate system to a reference frame moving with the group velocity ω′

0 in the
positive X -direction.

5.3 Model with Exact Dispersion

As suggested in [36], a conceivably better approximation to envelopes of solutions in
the modulational regime may be achieved by expanding the nonlinear contributions
up to order O(ε4) as in Sect. 5.1, while keeping the linear dispersion relation exact.
The resulting envelope equation is

∂t u = −iω(k0 + εDX )u − iε2k30 |u|2u − 3ε3k20 |u|2∂Xu + iε3k20u|DX ||u|2,
(22)

and the corresponding Hamiltonian is

H = ε

∫

u ω(k0 + εDX )u + ε2

2
k30 |u|4 + 3

2
ε3k20 |u|2 Im(u∂Xu)

− ε3

2
k20 |u|2|DX ||u|2 dX .

This model may be viewed as a Hamiltonian version of the modified Dysthe equation
that was proposed in [36]. An advantage compared to (21) is its superior linear prop-
erties while its numerical solution by a pseudo-spectral method does not require any
additional effort since the Fourier multiplierω(k0+εDX ) can be efficiently computed
via the fast Fourier transform (FFT).

Comparing the expressions of our new models (21) and (22) to previous Hamil-
tonian models from [13], the only difference lies in the numerical coefficients of
nonlinear terms, otherwise the general form of these equations is the same, with pre-
cisely the same types of constitutive terms. Here the nonlinear terms −iε2k30 |u|2u
and −ε3k20 |u|2∂Xu in (21)–(22) have coefficients 1 and 3, respectively, while their
coefficients are 1/2 and 3/2 in [13]. Note that the sign of these coefficients remains
the same. On the other hand, the nonlocal mean-flow term iε3k20u|DX ||u|2 is found
to be identical in our present and previous studies. This difference by a factor of 2 for
the aforementioned coefficients is a consequence of the normal form transformation
since nonlinear terms from H4(−i sgn(D)η, ξ) and H4(η, ξ) add up together. A care-
ful determination of the envelope equation turns out to be crucial for closely capturing
the wave dynamics in the asymptotic regime under consideration, as shown in Sect. 9.
Moreover, a refined description of the free surface is equally important for accurate
simulations, as discussed in the next section.
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6 Reconstruction of the Free Surface

Because equations like (21) only describe thewave envelope, another step is required to
reconstruct the actual shape of the free surface from information on the wave envelope.
In modulation theory, this reconstruction is usually carried out perturbatively, based
on an Ansatz similar to Stokes’ expansion, by adding contributions from various
harmonics of the wave spectrum. These harmonics are wave modes that correspond
to integer multiples of k0.

Here the reconstruction procedure inverts the transformations associated with our
modulationalAnsatz and the third-order normal form that eliminates H3. At any instant
t , the conversion of η back to its original definition is governed by Burgers’ equation

∂s η̃ − η̃∂x η̃ = 0, (23)

for s ∈ (−1, 0] with “initial” condition

ηi (x, t) = η(x, t)
∣
∣
s=−1 = ε√

2
a−1(D)

[

u(X , t)eik0x + u(X , t)e−ik0x
]

, (24)

where u solves (21). The choice of this initial condition is dictated by the changes
of variables (17) and (18), via inversion of P1 and P2. Equation (23) may be solved
numerically and its solution at s = 0 is meant to represent the original physical
variable η. Note that η and η̃ are directly related through (13). It is clear from (23)
and (24) that the wave dynamics in this modulational regime generates higher-order
contributions from lower (i.e. mean flow) and higher harmonics through nonlinear
interactions. Corrections by higher harmonics were not taken into account in [13,14].
It is also worth pointing out that the integration time s ∈ (−1, 0] is well within the
existence time

s = O

(
1

|∂x η̃i |
)

= O(ε−1),

before a shock occurs, for Burgers’ equation with smooth initial data η̃i .
As an alternative to the direct numerical solution of (23), a perturbative analytical

expression can be obtained in a manner consistent with the Hamiltonian framework,
via the Taylor expansion near s = −1, i.e.

η
∣
∣
s=0 = η

∣
∣
s=−1 + ∂sη

∣
∣
s=−1 + 1

2
∂2s η

∣
∣
s=−1 + · · · , (25)

where

∂sη = {K3, η} = δξ K3 = 1

2
|D| (−i sgn(D)η)2 ,

∂2s η = ∂s {K3, η} = {K3, {K3, η}} = {

K3, δξ K3
}

,
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and η at s = −1 is given by (24). By analogy with Stokes’ expansion for near-
monochromatic waves, the first, second and third terms on the right-hand side of (25)
include contributions from the first, second and third harmonics respectively.

7 Spatial Dysthe’s Equation

7.1 Envelope Equation

To compare with laboratory experiments where time series of the surface elevation
are typically recorded by wave gauges at fixed locations along the wave channel, the
spatial version of Dysthe’s equation has also been considered in numerous studies
[27,29,39]. Such a model is derived by switching the role of the X - and t-variables
in the envelope equation, with X acting as a time-like variable for wave propagation
along the wave channel.

In the absence of a Hamiltonian formulation for the spatial dynamics associated
with the basic equations (1)–(4), we follow the standard procedure and apply it to (21).
Exploiting the phase invariance, we first introduce

v(X , t) = u(X , t)eiω0t , (26)

to eliminate the linear term −iω0u, yielding

∂Xv = −2
ω0

gε
∂tv − iε

g

4ω2
0

∂2Xv − 2iε
ω0k30
g

|v|2v

+ ε2
g2

8ω4
0

∂3Xv − 6ε2
ω0k20
g

|v|2∂Xv + 2iε2
ω0k20
g

v|DX ||v|2. (27)

We then substitute all the X -derivatives on the right-hand side with t-derivatives using
(27) recursively and retaining terms of suitable order. This leads to

∂2Xv = 4
ω2
0

g2ε2
∂2t v + 4i

ω0

g2ε2
∂3t v + 8i

ω2
0k

3
0

g2
∂t (|v|2v) + · · · ,

∂3Xv = −8
ω3
0

g3ε3
∂3t v + · · · ,

and after substituting these expressions back in (27), we find

∂Xv = −2
ω0

gε
∂tv − i

gε
∂2t v − 2iε

ω0k30
g

|v|2v

+ 16ε
k30
g

|v|2∂tv + 2ε
k30
g

v2∂tv + 4iε
k30
g

v|Dt ||v|2, (28)
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or equivalently

∂xv = −2
ω0

g
∂tv − i

g
∂2t v − 2iε2

ω0k30
g

|v|2v

+ 16ε2
k30
g

|v|2∂tv + 2ε2
k30
g

v2∂tv + 4iε2
k30
g

v|Dt ||v|2,

which is the spatial version of (21). Note that Dt = i∂t so that its Fourier symbol is ω.
The variable u is recovered by simply inverting (26). Similar to previous spatial Dys-
the’s equations [27,29,39], there is no ∂3t v term in (28). On the other hand, there is an
additional nonlinear term of the form v2∂tv and, partly for this reason, the Hamiltonian
character of (21) is not inherited by (28). This point, however, is not viewed as detri-
mental because, as mentioned above, we are only aware of a Hamiltonian formulation
for the temporal dynamics of (1)–(4). Moreover, because wave-channel experiments
are usually subject to dissipative effects and span relatively short distances of wave
propagation [9,27,28], the strict use of a conservative Hamiltonian model may not be
particularly relevant to the spatial dynamics.

7.2 Reconstruction of the Free Surface

Since (28) is derived from (21), time series of the surface elevation may be recovered
from time series of the wave envelope by referring again to the solution map given by
Burgers’ flow (23) with initial condition (24), modulo conversion of the x-derivatives
to t-derivatives. Accordingly, Eq. (23) becomes

∂s η̃ + k0
ω0

η̃∂t η̃ = 0,

for η̃ = −i sgn(D)η � −i sgn(Dt )η by using the approximation ∂x η̃ � −(k0/ω0)∂t η̃.
As for (24), it is first approximated via Taylor expansion by

η(x, t)
∣
∣
s=−1 = ε√

2

[

eik0xa−1(k0 + εDX )u(X , t) + e−ik0xa−1(−k0 + εDX )u(X , t)
]

,

= ε√
2

[

eik0x
(

a−1
0 − εa′

0a
−2
0 DX

)

u + e−ik0x
(

a−1
0 + εa′

0a
−2
0 DX

)

u
]

+ · · · ,

= ε√
2
a−1
0

(

eik0xu + e−ik0xu
)

− ε2√
2
a′
0a

−2
0

(

eik0x DXu + e−ik0x DXu
)

,

= √
2εa−1

0 Re
(

eik0xu
)

− √
2ε2a′

0a
−2
0 Re

(

eik0x DXu
)

,

and then converted to

η(x, t)
∣
∣
s=−1 = √

2εa−1
0 Re

(

ei(k0x−ω0t)v
)

− 2
√
2ε

ω0

g
a′
0a

−2
0 Re

(

iei(k0x−ω0t)∂tv
)

,
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by virtue of (26) and (28). Again, for notational convenience, a0 = a(k0) and a′
0 =

a′(k0). We have also used the fact that a(k0) = a(−k0) and a′(−k0) = −a′(k0), with

a′(k) = −1

4
sgn(k)

a(k)

|k| .

Note that x now plays the role of a parameter in the above reconstruction formula
since it would correspond to the location of a wave gauge. The symbol Re(·) denotes
the real part.

8 Stability of StokesWaves

Both models (21) and (22) admit uniform wavetrain solutions of the form

u0(t) = B0e
−i(ω0+ε2k30B

2
0 )t , (29)

corresponding to a progressive Stokes wave (B0 being a positive real constant). These
are known to be linearly unstable with respect to sideband perturbations (the so-called
modulational or Benjamin–Feir instability). Here we examine this stability problem
in the context of (21) and (22).

Considering (21) first, if we insert a perturbed solution of the form

u(X , t) = u0(t)
[

1 + B(X , t)
]

,

and assume

B(X , t) = B1e
Ωt+iλX + B2e

Ωt−iλX ,

where B1, B2 ∈ C and λ denotes sideband wavenumbers, then we find that the condi-
tion Re(Ω) �= 0 for linear instability implies

α = −ω′′
0λ

2
[

ω′′
0λ

2 + 4k20B
2
0 (k0 − ε|λ|)

]

> 0,

which reduces to

− 1

16
gk−3

0 λ4 + B2
0

√

gk0λ
2 (k0 − ε|λ|) > 0, (30)

given that

ω′′(k) = −1

4
√
g|k|−3/2.

This somewhat straightforward but tedious calculation is similar to those presented
in [22,28,35,36]; therefore, we skip details for convenience and only show the final
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Fig. 1 Growth rates associated with modulational instability for the NLS equation (black line), the envelope
equation (21) with truncated dispersion (blue line) and the envelope equation (22) with exact dispersion
(red line). Left panel: (A0, k0) = (0.02, 5). Right panel: (A0, k0) = (0.01, 10) (Color figure online)

result. The criterion based on the cubic NLS equation is recovered if the O(ε) term is
omitted in (30).

Applying the same strategy to (22), we find that sideband instability occurs when

α = −[D(λ) + D(−λ)
]2 + 4ε2k20B

2
0

[D(λ) + D(−λ)
]

(k0 − ε|λ|) > 0, (31)

in terms of the exact linear multiplier

D(λ) = ω0 − ω(k0 + ελ) = √

gk0 − √

g|k0 + ελ|.

The slight “Doppler shift” relative to k0 as induced by the mean flow is clearly notice-
able in both (30) and (31).

Figure 1 shows the normalized growth rate

|Re(Ω)|
ω0

=
√

α

2ω0
,

associated with instability conditions (30) and (31). As a reference, we also plot
the normalized growth rate for the cubic NLS equation. Hereafter, all the variables
are rescaled to absorb ε back into their definition, and all the equations are non-
dimensionalized so that g = 1. Two sets of graphs are presented for (A0, k0) =
(0.02, 5) and (0.01, 10) corresponding to wave steepness k0A0 = 0.1. The envelope
amplitude in (29) is taken to be

B0 = A0
4

√
g

4k0
, (32)

according to (17) and (18). We see that the curves have a typical lobate shape and,
as expected, instability occurs at sideband wavenumbers λ near zero. As a result
of the Doppler shift, the growth rates for (21) and (22), whose curves are almost
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indistinguishable at this graphical scale, are lower than that for the NLS equation.
However, overall, all threemodels give similar predictions onmodulational instability.
In particular, they predict maximum instability (i.e. maximum growth rate) at λ � 1
for (A0, k0) = (0.02, 5) and at λ � 2 for (A0, k0) = (0.01, 10).

9 Numerical Results

In this section, we show numerical simulations to illustrate the performance of Hamil-
tonian envelope equations, as established by the present approach, in comparison with
the full equations (6) and (7). We focus here on time-domain simulations based on
(21) and, as an additional test, we also compare them to predictions by the “classical”
non-Hamiltonian Dysthe’s equation

∂t A = − ω0

2k0
∂x A − i

ω0

8k20
∂2x A − i

2
ω0k

2
0 |A|2A

+ ω0

16k30
∂3x A − 3

2
ω0k0|A|2∂x A − 1

4
ω0k0A

2∂x A − ik0A∂xΦ, (33)

where the wave-induced mean flow is represented by

Φ = i

2
ω0 sgn(D)|A|2, ∂xΦ = −1

2
ω0|D||A|2.

In this context [30,35], the surface elevation and velocity potential are reconstructed
perturbatively as

η(x, t) = 1

2ω0
∂xΦ + A cos(θ) + 1

2
k0A

2 cos(2θ) + 1

2
A(∂x A) sin(2θ)

+ 3

8
k20 A

3 cos(3θ) + · · · ,

ϕ(x, y, t) = Φ + ω0

k0
A ek0 y sin(θ) + ω0

2k20
(∂x A) ek0 y cos(θ) − 1

8
ω0k0|A|2A ek0 y sin(θ)

− 3ω0

8k30
(∂2x A) ek0 y sin(θ) + · · · , (34)

where the fast dynamics is encoded in the phase θ = k0x−ω0t . These formulas include
contributions from up to the third harmonics, as typically reported in the literature. For
convenience, Eqs. (33) and (34) are expressed in terms of unscaled variables without
explicit appearance of the perturbation parameter.

The full equations (6) and (7) are solved numerically via a high-order spectral
approach [17]. They are discretized in space by a pseudo-spectral method based on
the FFT. The computational domain spans the interval 0 ≤ x ≤ L with periodic
boundary conditions and is divided into a regular grid of N collocation points. The
DNO is computed via its series expansion (10) but, by analyticity, a small number
M of terms is sufficient to achieve highly accurate results. The number M = 6 is
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selected based on previous extensive tests [9,24,37]. Time integration of (6) and (7)
is carried out in the Fourier space so that the linear terms can be solved exactly by
the integrating factor technique. The nonlinear terms are integrated in time using a
fourth-order Runge–Kutta scheme with constant step Δt .

Naturally, the same numerical methods are used for space discretization and time
integration of the envelope equations (21) and (33), and the same spatial and temporal
resolutions are specified for their numerical solutions. The reader may refer to [14] for
more details on such simulations. For (21), the surface elevation is reconstructed via
(23)–(24), while Eq. (34) is used for (33). The same numerical strategy applies to these
reconstruction formulas. In particular, Burgers’ equation (23) is integrated over s using
the same step sizeΔs = Δt . We point out that, although the surface reconstruction for
(21) requires solving a nonlinear PDE, this computation is relatively straightforward
and is not necessarily performed at each instant t (only when data on the free surface
are requested, say for plotting purposes). Moreover, because this PDE is solved over
a relatively short interval s ∈ (−1, 0], the associated cost is insignificant. The whole
computation in this case (i.e. solving for the wave envelope and reconstructing the
surface elevation) can be produced by a single self-contained computer code. Note
that, when Eq. (21) is solved numerically, the linear term −iω0u may be dealt with by
either incorporating the coefficient −iω0 into the integrating factor as part of the time
integration scheme, or by inserting the phase shift −iω0t in (24) as part of the surface
reconstruction procedure, similar to (34). We found identical results either way.

For these numerical tests, we have in mind the stability problem that was analyzed
in the previous section. Given a value of the wave steepness k0A0, the initial conditions
for (21) and (33) are taken to be

u(x, 0) = B0
[

1 + 0.1 cos(λx)
]

, A(x, 0) = A0
[

1 + 0.1 cos(λx)
]

,

respectively, so as to represent a perturbed Stokes wave, with A0 and B0 being related
through (32). We compare these two weakly nonlinear models by testing their indi-
vidual performance against the full equations (6) and (7). Because u and A do not
exactly describe the same physical quantity, and because the corresponding recon-
struction procedures are not exactly identical, it is important to specify suitable initial
conditions on η and ξ for (6)–(7), depending on whether these equations are com-
pared to our new Hamiltonian model (21) or to the classical Dysthe’s equation (33).
This is accomplished using (15) together with u(x, 0) on the one hand and using (34)
together with A(x, 0) on the other hand. In doing so, the initial surface profile for
(6)–(7) exactly coincides with that for either (21) or (33).

In all the following simulations, the length of the computational domain is chosen to
be L = 2π ; hence, the discrete Fourier modes are integers. The spatial and temporal
resolutions are set to Δx = 0.012 (N = 512) and Δt = 0.005, respectively. We
first consider a case of “small” initial data with A0 = 0.01, k0 = 5 and λ = 1 (hence
ε = 0.05), and examine thewave dynamics over a long time up to t = 8000 = O(ε−3).
This corresponds to the timescale over which the Dysthe’s approximation with such
initial data is supposed to be valid. Figure 2 shows the two individual comparisons
on η at t = 8000. With such a mild perturbation, the modulational instability has not
yet started to develop. In both cases, the wave profiles remain close to their initial
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Fig. 2 Comparison on η between the fully and weakly nonlinear solutions at t = 8000 for A0 = 0.01,
k0 = 5 and λ = 1. Left panel: Hamiltonian model (21) in blue. Right panel: classical Dysthe’s equation
(33) in red. The black curve represents the fully nonlinear solution of (6) and (7) (Color figure online)
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Fig. 3 Relative errors on η between the fully and weakly nonlinear solutions for A0 = 0.01, k0 = 5 and
λ = 1. The blue curve represents the Hamiltonian model (21) while the red curve represents the classical
Dysthe’s equation (33). Left panel: L∞ error. Right panel: L2 error (Color figure online)

configuration and, as a result, discrepancies remain negligible. At this graphical scale,
both sets of wave profiles look identical. A more quantitative assessment is provided
in Fig. 3 which plots the time evolution of the relative L∞ and L2 errors

‖η f − ηw‖∞
‖η f ‖∞

,
‖η f − ηw‖2

‖η f ‖2 , (35)

on η between the fully (η f ) and weakly (ηw) nonlinear solutions. The magnitude
of these errors confirm that both models perform very well in this case, with the
predictions from (21) being slightly better than those from (33). This may be expected
since the surface reconstruction for (21) is a non-perturbative calculation that is done
numerically, while that for (33) is a perturbative calculationwhich includes corrections
from up to the third harmonics only.

Wenow turn our attention to two cases of “rougher” initial data, onewith A0 = 0.02,
k0 = 5, λ = 1 and the other with A0 = 0.01, k0 = 10, λ = 2. In both cases, the
wave steepness ε = 0.1 is larger than in the previous test and, accordingly, the wave
dynamics is more prone to modulational instability. The perturbation wavenumber λ
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Fig. 4 Comparison on η between the fully and weakly nonlinear solutions at t = 370 (left panels) and
t = 820 (right panels) for A0 = 0.02, k0 = 5 and λ = 1. Top panels: Hamiltonian model (21) in blue.
Bottom panels: classical Dysthe’s equation (33) in red. The black curve represents the fully nonlinear
solution of (6) and (7) (Color figure online)
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Fig. 5 Relative errors on η between the fully and weakly nonlinear solutions for A0 = 0.02, k0 = 5 and
λ = 1. The blue curve represents the Hamiltonian model (21) while the red curve represents the classical
Dysthe’s equation (33). Left panel: L∞ error. Right panel: L2 error (Color figure online)

is chosen in such a way that the most unstable mode as predicted by stability analysis
would be promptly excited (see Sect. 8). Comparison of (21) and (33) with (6)–(7) is
presented in Figs. 4, 5 and 6, 7 for these two cases. As expected, it does not take long for
the Stokes wave to become unstable and a cycle of modulation–demodulation seems
to repeat itself over time. The free surface undergoes strong distortions during this
process and, as a consequence, the model’s performance gradually deteriorates. Due
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Fig. 6 Comparison on η between the fully and weakly nonlinear solutions at t = 240 (left panels) and
t = 590 (right panels) for A0 = 0.01, k0 = 10 and λ = 2. Top panels: Hamiltonian model (21) in
blue. Bottom panels: classical Dysthe’s equation (33) in red. The black curve represents the fully nonlinear
solution of (6) and (7) (Color figure online)
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Fig. 7 Relative errors on η between the fully and weakly nonlinear solutions for A0 = 0.01, k0 = 10 and
λ = 2. The blue curve represents the Hamiltonian model (21) while the red curve represents the classical
Dysthe’s equation (33). Left panel: L∞ error. Right panel: L2 error (Color figure online)

to the weakly nonlinear character of (21) and (33), the rougher the initial condition,
the sooner discrepancies arise and the more severe they get. Excitation of the first
and second sideband modes is clearly revealed on the snapshots at t = 370 (Fig. 4)
and t = 240 (Fig. 6), respectively, near the times of maximum wave growth. We
note that, although the classical Dysthe’s solution agrees well with the fully nonlinear
solution around the dominant wave crest at t = 370, it does not do so well at other
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Fig. 8 Relative error on H for the Hamiltonian model (21). Left panel: A0 = 0.01, k0 = 5 and λ = 1.
Right panel: A0 = 0.02, k0 = 5 and λ = 1

locations like the neighboring crests and troughs. Overall, both models give similar
results though again the relative L∞ and L2 errors in Figs. 5 and 7 tend to slightly favor
our Hamiltonian model (21) together with the reconstruction algorithm based on (23).

Aside from these small quantitative discrepancies, the fact that in all three cases
Eq. (21) qualitatively displays the same pattern of wave instability as for the clas-
sical Dysthe’s equation and the full Euler’s equations (at least over the time scales
under consideration) provides further validation for our stability results and hence our
modulational approach.

Finally, the time evolution of the relative error

ΔH

H0
= |H − H0|

H0
,

on energy (20) associated with the Hamiltonian model (21) is illustrated in Fig. 8 for
A0 = 0.01 and 0.02 (with k0 = 5 and λ = 1). Integrals in (20) and in the L2 norm (35)
are computed via the trapezoidal rule over the periodic cell [0, L]. The reference value
H0 denotes the initial value of (20) at t = 0. Overall, H is very well conserved in both
cases, despite a gradual loss of accuracy over time that is likely due to accumulation
of numerical errors. These results can certainly be improved by specifying smaller
grid sizes in space and time. We recall that, unlike the classical Dysthe’s Eq. (33), our
new model (21) possesses a well-defined Hamiltonian structure that is consistent with
the Hamiltonian formulation of the full Eqs. (6)–(7). As a consequence, it admits a
conserved “energy” (20) whose counterpart for (33) is not known.

10 Conclusions

We have derived a newHamiltonian version of Dysthe’s equation for two-dimensional
weakly modulated gravity waves on deep water. From the basic Hamiltonian formu-
lation of the water wave problem, our derivation makes use of a Birkhoff normal
form transformation to eliminate all non-resonant cubic terms, as recently proposed
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by Craig and Sulem [18], in combination with a set of canonical transformations and
homogenization techniques, as previously introduced by Craig et al. [13,14], to obtain
a reduced model for the wave envelope. It follows from these transformations that
the envelope equation automatically inherits a symplectic structure and a conserved
energy. We have also provided extensions of this Hamiltonian Dysthe’s equation to
cases where exact linear dispersion is retained and where the model is rewritten in an
alternate spatial form.

We have then conducted a Benjamin–Feir stability analysis for uniform wavetrains
(i.e. Stokes waves) and checked its predictions against numerical simulations of our
model. Thesewere compared to computations based on the classical Dysthe’s equation
and the full Euler’s equations. In this regard, we have also paid attention to the post-
processing step of reconstructing the free surface from the wave envelope. Exploiting
the normal form transformation, we have developed a new non-perturbative approach
for surface reconstruction which involves solving a nonlinear PDE and incorporates
higher order harmonic contributions in a natural way. By doing so, we have obtained
very good agreement under various wave conditions. Our Hamiltonian method seems
to perform slightly better than the standard procedure associated with Dysthe’s equa-
tion.

Looking ahead, itwould be of interest to extend the presentmethod to the situation of
constant finite depth with possibly surface tension, as well as to the three-dimensional
setting. High-order terms in the model equations are expected to be more complicated
in these cases, and nontrivial behavior may be observed for certain values of the
physical parameters [1,2]. For example, it is well known that the nonlinear term of
the NLS equation for surface gravity waves on finite depth changes sign at the critical
depth k0h � 1.363, with consequences on the Benjamin–Feir instability [19]. In our
approach, the third-order normal form transformation for the finite-depth case can
be written explicitly but does not have a simple form. This will be the subject of
subsequent work.
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