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Abstract We present an overview of recent extensions of the high-order spectral
method of Craig and Sulem (J Comput Phys 108:73–83, 1993) to simulating
nonlinear water waves in a complex environment. Under consideration are cases
of wave propagation in the presence of fragmented sea ice, variable bathymetry
and a vertically sheared current. Key components of this method, which apply
to all three cases, include reduction of the full problem to a lower-dimensional
system involving boundary variables alone, and a Taylor series representation of the
Dirichlet–Neumann operator. This results in a very efficient and accurate numerical
solver by using the fast Fourier transform. Two-dimensional simulations of unsteady
wave phenomena are shown to illustrate the performance and versatility of this
approach.
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1 Introduction

The potential-flow formulation of Euler’s equations for water waves has been
very popular among both the mathematical and engineering communities, as it
has proved to be successful at describing a wide range of wave phenomena. Via
application of nonlocal operators, this formulation allows the original Laplace
problem to be reduced from one posed inside the fluid domain to one posed
on the boundary alone, thus allowing for dimensionality reduction. Moreover, in
the absence of dissipative effects, the governing equations can be recast as a
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canonical Hamiltonian system in terms of two conjugate variables, namely the
surface elevation and the velocity potential evaluated there [40]. Due to these
nice features, the potential-flow formulation has served as the theoretical basis in
a countless number of water-wave studies, ranging from rigorous mathematical
analysis to direct numerical simulation and weakly nonlinear modeling in various
asymptotic regimes.

One of the most popular choices for direct numerical simulation is the so-called
high-order spectral (HOS) approach, which is based on a Taylor series expansion
of the Dirichlet–Neumann operator (DNO) combined with a pseudospectral scheme
for space discretization using the fast Fourier transform. This is a very efficient and
accurate numerical method when it is applicable. Compared to boundary integral
methods [17, 19], it provides a faster recursive procedure for solving Laplace’s
equation in an irregular domain that is a perturbation to a simple geometry. Its
computer implementation is also relatively easy and insensitive to the spatial
dimension of the problem. From a general perspective, the basic idea underlying
this approach is not marginal at all and, to some extent, shares similarities with other
“fast” algorithms that are nowadays popular in scientific computing. For example,
the fast multipole method [16] and more recently the method of quadrature by
expansion [1] or the fast Chebyshev–Legendre transform [26] all rely on some
sort of approximate series expansion in order to speed up computations. For the
interested reader, details on boundary integral methods and other techniques can be
found in other papers of this special volume.

The HOS approach was first introduced by Dommermuth and Yue [13] and West
et al. [38] to simulate nonlinear gravity waves on uniform depth. Since then, it
has been extended and applied to wave phenomena in various settings by many
other investigators [14, 15, 28]. Slightly later than [13, 38], Craig and Sulem [6]
proposed a related numerical method that has also been used with success in a
number of subsequent applications [7, 8, 10, 30]. In particular, results were validated
via comparison with laboratory experiments, weakly nonlinear predictions or other
numerical solvers [9, 21–23, 39]. While these two HOS approaches are similar in
their derivation, implementation and performance, there is a fundamental difference
in their definition of the DNO. Dommermuth and Yue [13] and West et al. [38]
define their DNO in terms of the vertical fluid velocity at the free surface, while
Craig and Sulem [6] define their DNO in terms of the normal fluid velocity. These
are two different quantities for a nontrivial free surface. In the latter definition, the
DNO can be shown to be analytic with respect to surface deformations, which gives
a justification for its Taylor series representation and thus a rigorous mathematical
foundation for the corresponding HOS method [3]. Another important property
of the DNO in that definition is its self-adjointness, which results in efficient and
relatively simple recursion formulas for its computation [5, 30].

In an effort to improve the convergence of the DNO series, Nicholls and Reitich
[32, 33] developed variants of Craig and Sulem’s approach, which they refer to
as Field Expansion and Transformed Field Expansion algorithms. These however
require a hodograph transformation to map the irregular physical domain to a
regular computational domain, together with a full-dimensional solution, because
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the elliptic problem becomes inhomogeneous. So far, they have only been used to
compute traveling waves (i.e. steady waves in a moving reference frame) and to
investigate the spectral stability of these solutions. A review on this body of work
can be found in [31].

In this paper, we present an overview of recent work by the author and
collaborators, that extends Craig and Sulem’s approach to wave propagation in a
complex environment. Most of these results have been obtained in the past decade
or so, with a focus on unsteady solutions in the time domain. More specifically, we
present direct numerical simulations of nonlinear dispersive waves in the presence
of (i) fragmented sea ice [24], (ii) bottom topography [21] and (iii) a background
shear current [18]. All three problems go beyond the classical setting of wave
propagation in a homogeneous medium, and are of practical relevance to the fields
of oceanography and coastal engineering. In particular, problem (i) has experienced
renewed interest due to the rapid decline of summer ice extent that has occurred
in the Arctic Ocean over recent years. Problem (iii) has also drawn much attention
lately, especially from the mathematical community [4, 37], because it represents a
refinement of the standard potential-flow formulation, allowing for rotational water
waves. Therefore, we now find it timely to write a review paper on these recent
advances, even more so considering that we are not aware of any previous review
specifically on the HOS technique proposed by Craig and Sulem [6].

In all three cases, the numerical algorithm is based on the same original principle,
and thus inherits the same qualities of accuracy and efficiency. In case (i), a mixed
continuum-piecewise representation of flexural rigidity is adopted to specify an
irregular array of ice floes on water. The main objective here is to emulate wave
attenuation by scattering through an inhomogeneous ice field, as it may occur in
the oceanic marginal ice zone. In contrast to linear predictions [36], slow or fast
wave decay is observed depending on wave and ice parameters. In case (ii), the
DNO exhibits an additional component that can be expanded in terms of bottom
deformations. The inherent smoothing character of the DNO with respect to water
depth is clearly revealed in this series expansion through the recurring presence of
a smoothing Fourier multiplier. As a result, both smooth and non-smooth bottom
profiles can be accommodated by this HOS method. In case (iii), wave propagation
in the presence of constant nonzero vorticity is considered. This type of vorticity
corresponds to a background shear current with a linear profile in the vertical
direction. In addition to the DNO, another nonlocal operator (the Hilbert transform)
is required in order to define a stream function at the free surface. A Taylor series
expansion is also introduced for the fast computation of this operator. For an adverse
current in deep water, it is confirmed that the Benjamin–Feir instability of Stokes
waves may be significantly enhanced and may lead to the formation of large rogue
waves [15].

The remainder of this paper is organized as follows. Sections 2 and 3 recall
the basic governing equations in the potential-flow formulation for nonlinear water
waves on uniform depth, as well as the corresponding Hamiltonian reduction and
numerical discretization. While our HOS approach is extensible to three dimensions
[5, 11, 25, 30, 39], we focus here on the two-dimensional case. Section 4 presents
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numerical results for wave propagation in the three different settings mentioned
above (fragmented sea ice, variable bottom and shear current), with each setting
discussed separately. In each case, we highlight the main points in the extension of
the classical formulation.

2 Mathematical Formulation

2.1 Governing Equations

We consider the motion of a free surface on top of a two-dimensional ideal fluid
of uniform depth h. In Cartesian coordinates, the x-axis is the direction of wave
propagation and the y-axis points upward. The free surface is assumed to be the
graph of a function y = η(x, t). For potential flow, the velocity field is given by
u = (u, v)� = ∇ϕ where ϕ(x, y, t) denotes the velocity potential. In terms of these
variables, the initial boundary value problem for irrotational water waves associated
with the fluid domain

S(η) = {x ∈ R,−h < y < η(x, t)} ,

can be stated as

�ϕ = 0 , in S(η) , (2.1)

ηt − ϕy + ϕxηx = 0 , at y = η(x, t) , (2.2)

ϕt + 1

2

(
ϕ2

x + ϕ2
y

) + gη + P = 0 , at y = η(x, t) , (2.3)

ϕy = 0 , at y = −h , (2.4)

where g is the acceleration due to gravity and P represents normal stresses acting
on the free surface (here P = 0 except for the sea-ice case where it is meant to
model the bending force exerted by the floating ice sheet). Note that subscripts are
used as shorthand notation for partial or variational derivatives (i.e. ϕt = ∂tϕ).

Following [6, 40], the dimensionality of the Laplace problem (2.1)–(2.4) can
be reduced by introducing the trace of the velocity potential on the free surface,
ξ(x, t) = ϕ(x, η(x, t), t) together with the Dirichlet–Neumann operator (DNO)

G(η) : ξ �−→ (−ηx, 1)� · ∇ϕ
∣
∣
y=η

,

which is the singular integral operator that takes Dirichlet data ξ at y = η(x, t),
solves Laplace’s equation (2.1) subject to (2.4), and returns the corresponding
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Neumann data (i.e. the normal velocity at the free surface). If P = 0, the resulting
equations can be expressed as a canonical Hamiltonian system

(
ηt

ξt

)
=

(
0 1

−1 0

) (
Hη

Hξ

)
,

for the conjugate variables η and ξ , whose Hamiltonian

H = 1

2

∫ ∞

−∞

[
ξG(η)ξ + gη2

]
dx ,

corresponds to the total energy that is conserved over time. These equations more
explicitly read

ηt = G(η)ξ , (2.5)

ξt = −gη − 1

2(1 + η2
x)

[
ξ2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
. (2.6)

2.2 Dirichlet–Neumann Operator

Equations (2.5) and (2.6) form a closed system for the two unknowns η and ξ . The
question now is how to determine G(η)ξ given η and ξ at any time, so that the
right-hand sides of (2.5) and (2.6) can be evaluated. In two dimensions, it is known
that G is an analytic function of η if η ∈ Lip(R) [3]. Consequently, for surface
perturbations around the quiescent state η = 0, the DNO can be written in terms of
a convergent Taylor series expansion

G(η) =
∞∑

j=0

Gj(η) , (2.7)

where the Taylor polynomials Gj are homogeneous of degree j in η and, as shown
in [5, 6], they can be determined recursively: for even j > 0,

Gj = G0D
j−1 ηj

j ! D −
j∑

�=2, even

D� η�

�! Gj−� −
j−1∑

�=1, odd

G0D
�−1 η�

�! Gj−� , (2.8)

and, for odd j ,

Gj = Dj ηj

j ! D −
j−1∑

�=2, even

D� η�

�! Gj−� −
j∑

�=1, odd

G0D
�−1 η�

�! Gj−� , (2.9)
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where D = −i∂x and G0 = D tanh(hD) are Fourier multiplier operators. In the
infinite-depth limit (h → +∞), G0 reduces to |D| but otherwise Eqs. (2.8) and (2.9)
remain unchanged. Using (2.7) together with (2.8) and (2.9) requires that η be a
smooth single-valued function of x and thus overturning waves with a multivalued
profile are not permitted. These formulas provide an efficient and accurate Laplace
solver that lies at the heart of our HOS scheme as outlined below.

3 Numerical Methods

3.1 Space Discretization

Assuming periodic boundary conditions in the periodic cell x ∈ [0, Lm), we use a
pseudo-spectral method based on the fast Fourier transform (FFT). This is a suitable
choice for computing the DNO since each term in (2.7) consists of concatenations
of Fourier multipliers with powers of η. Accordingly, both functions η and ξ are
expanded in truncated Fourier series

(
η

ξ

)
=

km∑

k=−km

(
η̂k

ξ̂k

)
eikx .

The spatial derivatives and Fourier multipliers are evaluated in the Fourier space,
while the nonlinear products are calculated in the physical space on a regular grid of
N collocation points. For example, if we wish to apply the zeroth-order operator G0
to a function ξ in the physical space, we first transform ξ to the Fourier space, apply
the diagonal operator k tanh(hk) to the Fourier coefficients ξ̂k and then transform
back to the physical space.

In practice, the DNO series (2.7) is also truncated to a finite number of terms
M but, by analyticity, a small number of terms (typically M < 10 � N) is
sufficient to achieve highly accurate results [30, 32, 39]. Note that formulas (2.8)
and (2.9) are slightly different from those originally given in [6] regarding the order
of application of the various operators. As pointed out in [5], the DNO is self-adjoint
and therefore the adjoint formulas (2.8) and (2.9) are equivalent to the original ones.
This property however has important consequences on the DNO implementation
and on the computational efficiency of the HOS approach. These adjoint formulas
allow us to store and reuse the Gj ’s as vector operations on ξ , instead of having to
recompute them at each order when applied to concatenations of Fourier multipliers
and powers of η. This results in faster calculations and the computational cost for
evaluating (2.7) is estimated to be O(M2N log N) operations via the FFT. Aliasing
errors are removed by zero-padding in the Fourier space [30].
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3.2 Time Integration

Time integration of (2.5) and (2.6) is performed in the Fourier space, which is
advantageous for two main reasons. First, solving the time evolution problem
amounts to solving an ODE system for the Fourier coefficients η̂k and ξ̂k rather than
a PDE system for η and ξ . As mentioned above, the spatial derivatives are computed
with spectral accuracy via the FFT. Second, the linear terms can be solved exactly
by the integrating factor technique [6, 22, 39].

For this purpose, we separate the linear and nonlinear parts in (2.5) and (2.6).
Setting v = (η, ξ)�, these equations can be expressed as

∂tv = Lv + N (v) , (3.1)

where the linear part Lv is defined by

Lv =
(

0 G0

−g 0

) (
η

ξ

)
,

and the nonlinear part N (v) is given by

N (v) =
( [

G(η) − G0
]
ξ

− 1
2(1+η2

x)

[
ξ2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
)

.

The change of variables v̂k(t) = �(t)ŵk(t) in the Fourier space reduces (3.1) to

∂t ŵk = �(t)−1N̂k

[
�(t)ŵk

]
,

via the integrating factor

�(t) =
⎛

⎝
cos

(
t
√

gG0
) √

G0
g

sin
(
t
√

gG0
)

−
√

g
G0

sin
(
t
√

gG0
)

cos
(
t
√

gG0
)

⎞

⎠ ,

for k 
= 0, and

�(t) =
(

1 0
−gt 1

)
.

for k = 0. The resulting system only contains nonlinear terms and is solved
numerically in time using the fourth-order Runge–Kutta method with constant step
�t . After converting back to v̂k, this scheme reads

v̂n+1
k = �(�t)̂vn

k + �t

6
�(�t)

(
f1 + 2f2 + 2f3 + f4

)
,
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where

f1 = N̂k

(
v̂n
k

)
,

f2 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

) (
v̂n
k + �t

2
f1

)]
,

f3 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

) (
v̂n
k + �t

2
f2

)]
,

f4 = �(−�t)N̂k

[
�(�t)

(
v̂n
k + �tf3

) ]
,

for the solution at time tn+1 = tn + �t .
In cases of large-amplitude or highly deformed waves, filtering is needed in order

to stabilize the numerical solution so that it can be computed over a sufficiently
long time. Otherwise, spurious high-wavenumber instabilities tend to develop,
eventually leading to computation breakdown, unless prohibitively small time steps
are specified. This issue may be related to ill-conditioning of the DNO in its series
form or may be promoted by the specific nonlinearity of the problem [32]. As a
remedy, we apply a hyperviscosity-type filter of the form exp(−36|k/km|36) to the
Fourier coefficients η̂k and ξ̂k at each time step. Such a filter has been commonly
employed in direct numerical simulations of nonlinear fluid flows by spectral
methods [27], and its form ensures that only energy levels at high wavenumbers
are significantly affected. Therefore, if sufficiently fine resolution is specified, this
filtering technique can help suppress spurious instabilities while preserving the
overall solution. It also further contributes to removal of aliasing errors and thus
blends well into the pseudo-spectral scheme.

4 Applications

In this section, we present applications of our HOS method to wave propagation in
a complex environment. Extensions of the mathematical formulation described in
Sect. 2 are briefly discussed, and simulations are shown to illustrate the capability
and performance of the numerical model. Unless stated otherwise, Eqs. (2.5)
and (2.6) are non-dimensionalized such that g = 1.

4.1 Fragmented Sea Ice

Floating sea ice is viewed as a thin elastic plate according to the special Cosserat
theory of hyperelastic shells [29, 35]. This is modeled by an additional pressure term
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of the form P = Fσ/ρ on the right-hand side of (2.6), where

F = 1

2

(
ηxx

(1 + η2
x)

3/2

)3

+ 1
√

1 + η2
x

∂x

[
1

√
1 + η2

x

∂x

(
ηxx

(1 + η2
x)3/2

)]

,

with ρ being the fluid density and σ the coefficient of ice rigidity [22, 23]. A spatial
distribution of ice floes can be specified in the physical domain by allowing the
coefficient of ice rigidity to be a variable function in space, namely f (x)σ/ρ, whose
amplitude varies between 0 (open water) and σ/ρ (pack ice).

To generate a fragmented ice cover of total length Lc, we first prescribe a regular
array of Nf identical floes whose individual length is Lf and which are evenly
distributed over some distance Lc. Then, to make this arrangement look more
irregular (and thus more realistic), each floe is shifted by an amount θLf /2 relative
to its initial center of gravity, where θ is a random number uniformly distributed
between −1 and 1. At the edges of each floe, the continuous transition between the
two phases is made steep but smooth enough to clearly distinguish the individual
floes while complying with the continuum character of the underlying formulation.
We use a tanh-like profile for this phase transition.

Focusing on the shallow-water regime, the present setup features a domain of
length Lm = 1200, with the ice cover lying between x = 100 and x = 1100
(hence Lc = 1000). The objective is to quantify the attenuation of solitary
waves propagating over this distance, for various floe configurations defined by
(Nf ,Lf ) = (77, 4), (77, 8), (13, 60), (13, 72) and corresponding to ice concen-
trations C = Nf Lf /Lc = 0.31, 0.62, 0.78, 0.94 respectively. The numerical
parameters are set to �t = 0.002, N = 8192 and M = 6.

Figure 1 shows snapshots of η as a solitary wave of initial amplitude a0/h = 0.3
travels across the ice field. A single realization of each of the floe settings is
considered. Two distinct mechanisms contributing to wave attenuation seem to
coexist: multiple wave reflections from the ice floes (most apparent in the short-floe
configurations), and pulse spreading due to the presence of ice itself (most apparent
in the long-floe configurations). For the sparsest floe configuration (Nf ,Lf ) =
(77, 4), the solitary wave is seen to travel essentially unaffected aside from a slight
decrease in amplitude. By contrast, for (Nf ,Lf ) = (77, 8) which has a high level of
ice concentration and ice fragmentation, the incident wave quickly decays through
backward radiation and pulse spreading.

To further quantify the observed attenuation, Fig. 2 depicts the L2 norm of η as
a function of time for all four floe settings. Motivated by linear predictions [36],
the least-squares exponential fit to each data set is also presented as a reference.
While the exponential fit performs reasonably well for (Nf ,Lf ) = (77, 4) when
attenuation is weak, it provides a poorer approximation to the numerical data when
attenuation is stronger. This is especially apparent in the case (Nf ,Lf ) = (77, 8)

where the data seem to converge to a nonzero limit rather than to zero as time goes
on. This behavior may be attributed to the well-known stability of solitary waves
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Fig. 1 Snapshots of η for (Nf , Lf ) = (77, 4) at t = 0 (a), (77, 4) at t = 416 (b), (77, 8) at
t = 416 (c), (13, 60) at t = 416 (d) and (13, 72) at t = 416 (e) with a0/h = 0.3. Open water is
represented in blue while ice floes are represented in red
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Fig. 2 L2 norm of η as a
function of time for
a0/h = 0.3. Numerical data
are represented in various
symbols while their
exponential fits are plotted in
solid line
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[9], which prevents them from completely disintegrating as they travel across the
ice field. More details can be found in [24].

4.2 Bottom Topography

In this case, Eqs. (2.5) and (2.6) together with (2.7)–(2.9) can be used verbatim with
the only exception that the first term G0 is replaced by

G0 = D tanh(hD) + DL(β) ,

where L(β) takes into account the bottom deformation β(x) relative to a reference
constant depth h [8, 20]. Because the DNO is jointly analytic with respect to β and
η [34], L(β) can be expressed in terms of a convergent Taylor series expansion in β,

L(β) =
∞∑

j=0

sech(hD)Lj (β) , (4.1)

where each Lj can be determined recursively: for even j > 0,

Lj = −
j−2∑

�=2, even

β�

�! D�Lj−� +
j−1∑

�=1, odd

β�

�! tanh(hD)D�Lj−� , (4.2)
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Fig. 3 Submerged bar in the Delft Hydraulics experiments [12]

and, for odd j ,

Lj = −βj

j ! sech(hD)Dj −
j−1∑

�=2, even

β�

�! D�Lj−� +
j−2∑

�=1, odd

β�

�! tanh(hD)D�Lj−� .

(4.3)

These formulas clearly reveal the regularizing character of the DNO with respect to
water depth, as indicated by the presence of the smoothing operator sech(hD). Any
non-smoothness in the profile of β would automatically be regularized via action
of the DNO, thus producing a C∞ contribution [2, 10]. Adopting a Fourier series
representation for β, Eqs. (4.1)–(4.3) are also evaluated by a pseudo-spectral method
with the FFT. Similar to (2.7), the expansion (4.1) is truncated to a finite number of
terms Mb that may be selected independently of M .

As an illustration, we consider the Delft Hydraulics bar experiments where a
regular Stokes wave breaks up into higher harmonics after passing over a submerged
bar [12]. As shown in Fig. 3, the bottom profile is not smooth and its amplitude is
comparable to the total water depth. This case is particularly difficult to simulate
because it involves wave propagation on deep and shallow water, over a wide range
of depths. It has often been used as a discriminating test for nonlinear models of
coastal waves. Figure 4 shows time series of η at various locations along the wave
channel. At each location, our numerical results are compared with the experimental
data. The incident wave has an amplitude a0 = 0.02 m and period T0 = 2.02 s.
The numerical parameters are set to �t = 0.001 s, N = 2048 and M = Mb =
8. Overall, the agreement between the two data sets is found to be quite good. In
particular, the wave steepening during shoaling (x < 13.5 m) and the generation of
higher harmonics over the downslope of the bar (x > 13.5 m) are well reproduced
by the HOS model. More details can be found in [21], including the case of moving
bottom topography.
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Fig. 4 Time series of η at various locations for an incident Stokes wave with (a0, T0) =
(0.02 m, 2.02 s) passing over a bar: experiment (dashed line) and simulation (solid line)

4.3 Background Shear Current

In the presence of constant vorticity γ , the rotational flow can be described by two
conjugate harmonic functions, namely a velocity potential ϕ and a stream function
ψ , that satisfy

ϕx = ψy = u − U0 + γy , ϕy = −ψx = v ,

where U0 denotes a uniform background current [15, 37]. This leads to the following
modifications in the Hamiltonian structure of the problem:

(
ηt

ξt

)
=

(
0 1

−1 γ ∂−1
x

) (
Hη

Hξ

)
,

with

H = 1

2

∫ ∞

−∞

[
ξG(η)ξ − γ ξxη2 + 1

3
γ 2η3 − 2U0ξηx + gη2

]
dx .
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The corresponding equations of motion take the form

ηt = G(η)ξ − U0ηx + γ ηηx ,

ξt = −gη − 1

2(1 + η2
x)

[
ξ 2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
− U0ξx + γ ηξx − γ K(η)ξ ,

where K(η)ξ , the Hilbert transform (HT) of ξ , returns the trace of the stream
function on the free surface, i.e. K(η)ξ = ψ(x, η(x, t), t). This is also a nonlocal
operator that is related to the DNO by G(η)ξ = −∂xK(η)ξ . Similarly, it can be
expressed in terms of a Taylor series expansion

K(η) =
∞∑

j=0

Kj (η) ,

where

Kj = −K0D
j−2∂x

ηj

j ! ∂x +
j∑

�=2, even

D�−2∂x
η�

�! ∂xKj−� +
j−1∑

�=1, odd

K0D
�−1 η�

�! ∂xKj−� ,

for even j > 0, and

Kj = Dj−1 ηj

j ! ∂x +
j−1∑

�=2, even

D�−2∂x
η�

�! ∂xKj−� +
j∑

�=1, odd

K0D
�−1 η�

�! ∂xKj−� ,

for odd j . The Fourier multiplier K0 = i tanh(hD) represents the HT for a
uniform strip of thickness h. Because of this direct relation with the DNO, the same
numerical procedure as described in Sect. 3.1 can be used to evaluate the HT series.

For simplicity, the following application only considers the case U0 = 0. We
investigate the Benjamin–Feir instability (BFI) of Stokes waves in the presence of
a linear shear current. In the irrotational case (γ = 0), such waves are known to be
unstable to sideband perturbations on deep water. We run simulations in a domain of
length Lm = 2π and infinite depth h = +∞, with initial conditions representing a
perturbed Stokes wave. The numerical parameters are set to �t = 0.001, N = 1024
and M = 6. The initial Stokes wave has an amplitude a0 = 0.005 with carrier
wavenumber k0 = 10, while the perturbation wavenumber is κ = 1.

Figure 5 shows snapshots of η at the initial time t = 0 for γ = 0 and at the
time of maximum growth for γ = 0, ±1, ±2. We find that a co-propagating current
(γ > 0) tends to stabilize the Stokes wave; the larger γ , the stronger the stabilizing
effect. For γ = +1 and +2, the BFI seems to be inhibited and the corresponding
graphs are not shown here because they look almost identical to Fig. 5a. On the other
hand, a counter-propagating current (γ < 0) tends to promote and enhance the BFI.
The larger |γ |, the sooner the Stokes wave becomes unstable and the higher it grows.
For γ = −1 and −2, the wave reaches an elevation amax = 0.016 and amax = 0.025
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Fig. 5 Snapshots of η at (a) t = 0 (γ = 0), (b) t = 956 (γ = 0), (c) t = 586 (γ = −1) and
(d) t = 376 (γ = −2) for an initially perturbed Stokes wave with (a0, k0) = (0.005, 10) on deep
water

at t = 586 and t = 376 respectively, which corresponds to an amplification factor
of α = 3.2 and α = 5 compared to the initial amplitude a0. As a reference, the
maximum wave growth observed in Fig. 5b for γ = 0 is α = 2.4 (amax = 0.012),
which agrees with the classical NLS prediction

α = amax

a0
= 1 + 2

√√
√
√1 −

(
κ

2
√

2k2
0a0

)2

= 2.4 .

These results support the fact that wave-current interactions represent a possible
mechanism for rogue wave formation in the ocean [15]. More details can be found
in [18].
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24. P. Guyenne, E.I. Părău, Numerical study of solitary wave attenuation in a fragmented ice sheet.
Phys. Rev. Fluids 2, 034002 (2017)

25. P. Guyenne, D. Lannes, J.-C. Saut, Well-posedness of the Cauchy problem for models of large
amplitude internal waves. Nonlinearity 23, 237–275 (2010)

26. N. Hale, A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an
asymptotic formula. SIAM J. Sci. Comput. 36, A148–A167 (2014)

27. T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with
surface tension. J. Comput. Phys. 114, 312–338 (1994)

28. Y. Liu, D.K.P. Yue, On generalized Bragg scattering of surface waves by bottom ripples. J.
Fluid Mech. 356, 297–326 (1998)

29. P.A. Milewski, Z. Wang, Three dimensional flexural-gravity waves. Stud. Appl. Math. 131,
135–148 (2013)

30. D.P. Nicholls, Traveling water waves: spectral continuation methods with parallel implemen-
tation. J. Comput. Phys. 143, 224–240 (1998)

31. D.P. Nicholls, Boundary perturbation methods for water waves. GAMM-Mitt. 30, 44–74
(2007)

32. D.P. Nicholls, F. Reitich, Stability of high-order perturbative methods for the computation of
Dirichlet–Neumann operators. J. Comput. Phys. 170, 276–298 (2001)

33. D.P. Nicholls, F. Reitich, A new approach to analyticity of Dirichlet–Neumann operators. Proc.
Roy. Soc. Edinburgh Sect. A 131, 1411–1433 (2001)

34. D.P. Nicholls, M. Taber, Joint analyticity and analytic continuation of Dirichlet–Neumann
operators on doubly perturbed domains. J. Math. Fluid Mech. 10, 238–271 (2008)

35. P.I. Plotnikov, J.F. Toland, Modelling nonlinear hydroelastic waves. Phil. Trans. R. Soc. Lond.
A 369, 2942–2956 (2011)

36. P. Wadhams, V.A. Squire, D.J. Goodman, A.M. Cowan, S.C. Moore, The attenuation rates of
ocean waves in the marginal ice zone. J. Geophys. Res. 93, 6799–6818 (1988)

37. E. Wahlén, A Hamiltonian formulation of water waves with constant vorticity. Lett. Math.
Phys. 79, 303–315 (2007)

38. B.J. West, K.A. Brueckner, R.S. Janda, D.M. Milder, R.L. Milton, A new numerical method
for surface hydrodynamics. J. Geophys. Res. 92, 11803–11824 (1987)

39. L. Xu, P. Guyenne, Numerical simulation of three-dimensional nonlinear water waves. J.
Comput. Phys. 228, 8446–8466 (2009)

40. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J.
Appl. Mech. Tech. Phys. 9, 190–194 (1968)


	HOS Simulations of Nonlinear Water Waves in Complex Media
	1 Introduction
	2 Mathematical Formulation
	2.1 Governing Equations
	2.2 Dirichlet–Neumann Operator

	3 Numerical Methods
	3.1 Space Discretization
	3.2 Time Integration

	4 Applications
	4.1 Fragmented Sea Ice
	4.2 Bottom Topography
	4.3 Background Shear Current

	References


