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Dedication 

This paper is dedicated to Professor Theodore Yao-Tsu Wu, a gentleman, a scholar, and 
my teacher. His lectures on “Hydrodynamics of Free Surface Flows” provided inspiration 
for my fascination with, and study of, water waves. His research provided the standard of 
rigor and precision to which I strive. I am honored and grateful that our lives intersected. 

Joe Hammack 

Experimental and theoretical results are presented for binary collisions between co- 
propagating and counter-propagating solitary waves. The experiments provide high- 
resolution measurements of water surface profiles at fixed times, thereby enabling direct 
comparisons with predictions by a variety of mathematical models. These models include 
the 2-soliton solution of the Korteweg-deVries equation, numerical solutions of the Euler 
equations, and linear superposition of KdV solitons. 

1. Introduction 

The study of solitary-wave collisions has an old and venerable hstory that 
dates from the seminal experiments reported by John Scott Russell in 1845. His 
discovery of the solitary wave precipitated many mathematical investigations 
that provided a theoretical foundation and physical understanding for many of its 
interesting properties. In particular, Korteweg & deVries (1895) derived their 
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now famous equation for water waves propagating in one direction on shallow 
water. Moreover, they found an exact solution of the KdV equation for a single 
wave that is localized in space and propagates without change of form-the 
solitary wave. 

Both the deeper mathematical and physical significance of the solitary wave 
was not realized until the subsequent development of “soliton theories” that was 
initiated by Gardner, Greene, Kruskal & Miura (1967). GGKM demonstrated a 
method to solve the KdV equation exactly on the real line for a wide class of 
localized initial data. Their results showed that initial data evolve into a finite 
number of co-propagating solitary waves, rank ordered by their amplitude 
(largest first), and a trailing train of dispersively decaying waves. Each of these 
solitary waves is referred to as a “soliton” based on the previous work of 
Zabusky & Kruskal (1965) who coined the name for particle-like waves that 
collide “elastically”, i.e., they emerge from a collision with no change in form. 
This collision property of solitary waves was made explicit by the exact, N- 
soliton solutions of the KdV equation found by Hirota (1971), who showed that 
the only lasting evidence of a co-propagating (following) collision is a phase 
shift in space. Weidman & Maxworthy (1978) provided much experimental 
collaboration of predictions based on Hirota’s exact solution for two solitons, 
e.g., phase shifts. In particular, they used photography to obtain spatial data at 
fixed times. These photographs provided qualitative results (only) for spatial 
profiles in consequence of the disparate vertical and horizontal wave scales of 
solitary waves. 

Studies of binary collisions of counter-propagating solitary waves appear to 
have been initiated analytically by Mayer (1962). Byatt-Smith (1971) derived an 
explicit, approximate prediction for the maximum runup amplitude for the head- 
on collision of two equal-amplitude solitary waves. This special case is often 
used to model the reflection of a solitary wave by a vertical wall, and much of 
the literature concerns this special collision case. Cooker, Weidman & Bale 
(1 997) provide an excellent literature review as well as new numerical results for 
the special case of solitary-wave reflection by a vertical wall. (This special case 
is not the focus of the present study, and will not be reviewed here.) Maxworthy 
(1976) presented cinematic-based measurements of phase shifts and maximum 
runup amplitudes for two counter-propagating solitary waves. Maxworthy did 
not present detailed spatial profiles during the interaction, and the presented data 
showed considerable scatter. We note that, like the photographs of Weidman & 
Maxworthy (1978), the cinematic-based measurements did not resolve vertical 
wave structure with high resolution. Su & Mirie (1980) and Mirie & Su (1982) 
present approximate, analytical and numerical studies for the head-on collision 
of two solitary waves. They found that the collision was not elastic, i.e., in 
addition to small phase shifts a small amount of energy was lost by each of the 
waves to form secondary waves. This reduction in amplitudes leads to a 
reduction in wave speeds; hence, the phase shifts become spatially dependent. 
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Byatt-Smith (1989) obtained higher-order, approximate results for the head-on 
collision of solitary waves with unequal amplitudes, and confi ied the results of 
Mine & Su (1982). Yih & Wu (1995) and Wu (1998) present analytical studies 
for head-on and following collisions of solitary waves of unequal amplitudes. In 
particular, Wu (1998) shows that there is an instant during both following and 
head-on collisions in which the spatial wave profile exhibits fore-and-aft 
symmetry. 

Herein we investigate both the co-propagating (following) and counter- 
propagating (head-on) collisions of two solitary waves. Precise experimental 
data of spatial wave profiles at fixed times are presented and compared with the 
predictions of several mathematical models. For the head-on collision we use 
linear superposition of two KdV solitary waves and numerical solutions of the 
Euler equations. For the following collision we use the 2-soliton solution of the 
KdV equation and numerical solutions of the Euler equation. All of these 
mathematical models neglect viscous effects that are intrinsic in the experimental 
data. Obtaining hgh-resolution spatial measurements of experimental waves 
evolving in time and space is exceedingly dificult; hence, the emphasis of the 
discussions herein is on the experimental aspects of the study. The mathematical 
models are discussed briefly. 

2. Experimental Program 

In order to obtain quantitative experimental data for spatial wave profiles at 
fixed times that are needed for definitive comparisons with the mathematical 
models, it was necessary to develop special experimental facilities and 
procedures. The key idea is to use the most sophisticated electronic and 
mechanical systerix available and to develop experimental procedures that 
enable us to repeat the same experiment over and over as precisely as possible. 
Indeed, the use of repeatable experiments to obtain spatial data at fixed times 
was the basis of Russell’s pioneering work on the solitary wave. In order to 
understand both the strengths and limitations of the data that we obtained, it is 
necessary to provide a detailed accounting of this experimental program. 

2.1 Wave Channel 

Experiments were conducted at the W. G Pritchard Fluid Mechanics 
Laboratory in a horizontal wave channel that was 13.165m long, 25.4cm wide, 
and 30.0cm deep. Channel walls and bottom were made of glass that was 
precisely aligned. Stadess steel rails spanned the channel along the top of the 
two sidewalls. These rails supported an instrumentation carriage whose motion 
along the channel was provided by a linear belt drive and motor. The carriage 
supported four wave gages, spaced 40cm apart, and their associated electronics. 
A 10m long section of the channel was used for the experiments. This section 
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was bounded by a vertical glass wall at its downstream end (x  = lOm) and by a 
Teflon wave-maker piston at its upstream end (x = 0). A pressure gage was 
mounted at x = 7.155m in the center of, and flush with, the channel bottom. 

2.2 Wave-maker 

Solitary waves were generated by the horizontal, piston-like motion of a 
paddle made from a Teflon plate (0.5 inch thick) inserted in the channel cross- 
section. The paddle was machined to fit the channel precisely with a thin lip 
around its periphery that served as a wiper with the channel’s glass perimeter. 
This wiper prevented any measurable leakage around the paddle during an 
experiment. Paddle motion was driven directly by a state-of-the-art linear motor 
and integral carriage with up to 55cm of stroke and a position resolution of 
20,000 countslcm The motor and paddle assembly were supported over the 
wave channel by a separate steel frame. 

2.3 Wave & Depth Measurements 

In all experiments waves were measured by a bottom-mounted pressure 
transducer and by four, non-contacting, capacitance-type gages, 40cm apart, and 
supported above the water surface by the instrumentation carriage. The sensing 
element of the wave gages was about 6mm wide and extended 12.7cm across the 
channel, thereby providing an average cross-channel measurement of 
instantaneous water surface elevations. The sensing element was 3cm above the 
water surface, and this maximum-possible height limited the maximum wave 
amplitudes that could be used in the experiments. Each gage was supported on a 
rack-and-pinion assembly with motor so that it could be calibrated under 
computer control. The pressure transducer measured the bottom water pressure 
(head) in the range of 0-10.16cm with an output voltage in the range of 0-5V. 
Both the wave gages and pressure transducer have remarkably repeatable and 
linear calibrations. 

Precise control of the quiescent water depth (h = 5cm) was essential during 
these experiments. Although a traditional point gage was used, we found that the 
pressure transducer provided much greater resolution and control. In fact, we 
were able to monitor the depth to within about 0 . 2 5 ~  which corresponded to a 
water volume in the channel of one liter. This resolution enabled us to avoid 
significant depth changes during experimental series. 

2.4 Data Acquisition & Control 

Analog signals from the four wave gages and pressure transducer were low- 
pass filtered (30Hz) and digitized using a state-of-the-art (sigma delta 
technology) computer system that enables exactly simultaneous sampling among 
signal channels with 16-bit accuracy. The system runs under the (hard) real-time 
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operating system of VxWorks. Sampling was initiated by, and synchronized 
with, another real-time computer system (Programmable Multi-axis Controller 
by Delta Tau, Inc.) dedicated to control of the motors that generated the waves, 
calibrated the gages, and moved the instrumentation carriage. The integration of 
the data acquisition and control systems enabled an entire experiment to be 
performed under computer control. 

2.5 Procedures 

Since only four wave gages were available on the instrumentation carriage we 
could only measure waves at four spatial locations during a single experiment. 
To circumvent ths  limitation we exploited the technological sophistication of 
both the mechanical and electronic systems that enable the (near) repeatability of 
an experiment. First, an initial carriage position was chosen and an experiment 
conducted. Then the carriage was shifted lcm downstream from its previous 
position and the experiment was repeated. Repeating this procedure 40 times 
provided a data set that spanned 1.6m in the x-direction (since the gages were 
spaced 40cm apart) with a resolution of lcm. This data set could then be 
interrogated to provide spatial profiles of the water surface beneath the 
instrumentation carriage at any fixed time. Specific procedures differed for the 
head-on and following collision experiments, and are described below. 

2.6 Wave Generation 

The motion of the wave-maker was programmed to generate a solitary wave 
by forcing a (horizontal) velocity field in the water that is ‘close’ to that 
occurring during passage of a solitary wave. We adopted a procedure similar to 
that introduced by Goring & Raichlen (1980), which accounts in part for the 
finte displacement of the wave-maker paddle and the propagation of the wave 
during generation. Generation was based on the KdV solitary wave whose 
horizontal velocity field is given by: 

in which h, is the quiescent water depth, c, =a, g is gravitational 
acceleration, a, is the wave amplitude, and u, = aoc,/h,  is the maximum 
horizontal velocity. The displacement xp of the wave-maker paddle from its 
initial position (x=O) is then found numerically by solving the differential 
equation: 

 EBSCOhost - printed on 6/9/2020 5:08 PM via UNIV OF DELAWARE LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



178 

2.5 

2 

1.5 

h cm 1 

which gives the Lagrangian path of a water particle. Figure 1 shows the resulting 
paddle motion (solid line) for a solitary wave used in both the head-on and 
following collision experiments with a, = 2cm and h, = Scm. For convenience we 
also show (dashed line) the linear approximation of Equation 

.z! * .  . .  . .  . .  . .  
8 ;  

8 / - -  

/ 

0 0.2 0.4 0.6 0.8 I 1.2 
t sec 

Figure 1. Wave-maker displacement for a0=2cm. Solid line is solution of Equation (1). 
Dashed line is linear approximation. 

20 40 60 80 100 120 140 160 
x cm 

Figure 2. Experimental solitary wave generated with a, = 2cm. Carriage window in 
the interval. 
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(1). An experimental measurement of the wave generated by the paddle motion 
of Figure 1 is shown in Figure 2. In this measurement the wave is propagating to 
the right underneath the camage, which was positioned so that its 160cm 
measurement window was centered about n = 5m The amplitude of the solitary 
wave is about 1.9cm in consequence of viscous damping during propagation 
from the wave-maker. Note that there is a small shelf-like wave, with a 
maximum amplitude of about 0 . 3 ~  trailing the solitary wave, followed by 
even smaller, decaying, long-period oscillations that are barely perceptible. 

2.6 Discussion 

In spite of all efforts some small differences between two repeated 
experiments will occur. Three unavoidable sources of differences were 
recognized at the outset of the experimental program. The first of these sources 
is latency, which is lnherent in all electro-mechanical servo system. Latency is 
the small time interval between when an electro-mechanical system is 
commanded to move and when movement actually begins. A measure of this 
time is the servo update period, which is 0.885ms in these experiments. 

A second source of experiment differences is water su$ace contamination. 
An exposed water surface accumulates surfactants with time (both from the air 
and fluid interior) that enhance wave damping during propagation. We 
conducted a series of experiments in which we measured damping of the solitary 
wave shown in Figure 2 at different times over a period of two days. We 
concluded that experiments would not be affected significantly by surfactant 
accumulation for up to six hours. After 6 hours, it was deemed necessary to drain 
and clean the channel and then refill it in order to begin the next series of 
experiments. 

A thud source of experimental differences is residual boundary layer motions 
that are left behind as a solitary wave propagates in the channel. In both the co- 
and counter-propagating binary collision experiments solitary waves encounter 
the boundary-layer wakes of the other wave. Ths  wake does have a small effect 
on wave speeds that can be significant in our data analysis. Detailed 
measurements of these boundary layer motions were not made; hence, it is not 
known how reproducible they are. 

It is straightforward to cope, in part, with the three sources of difference 
described above in our set of 40 repeated experiments. The pressure-gage 
measurements, whch would be identical in exactly reproducible experiments, 
are used to time shift each experiment’s measurement to yield the maximum 
correlation with the first experiment in the set. Typically, these time shifts were 
about 0.01s resulting in correlation coefficients greater than 0.99. The worst case 
we encountered required a time shift of about 0.06s and had a correlation 
coefficient of 0.964. This case produced significantly poorer results in the data 
analysis, and appears to result from an unanticipated and unavoidable random 
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fourth source of difference that occurs during the refection of a solitary wave 
from a vertical wall. We discuss this phenomenon in more detail below. 

3. Mathematical Models 

We compare the experimental results with theoretical predictions of several 
initial-value mathematical models that assume incompressible, inviscid, and 
irrotational wave motions. Numerical solutions of the Euler equations are 
presented for both the head-on and following collisions. In addition we employ 
explicit analytical predictions based on the Korteweg-deVries equation(s). 

3.1 Euler Model 

Consider a two-dimensional layer of water in a domain defined by 
n(q) = [ ( x , y )  : x  E %,y E [ -h ,q]) ,  in which q(x, t )  denotes the free surface 
elevation referenced to the quiescent water level y = 0, and y = -h denotes a 
rigid bottom boundary. The velocity vector u ( x , y , t )  is given by u = Vq5 in 
which the velocity potential p(x . y . t )  satisfies 

A p = O  in R(7). (3) 

On the bottom boundary, y = 4, the velocity potential satisfies the Neumann 
boundary condition: 

The free surface boundary conditions on y = q(x,t) are: 

(Surface tension effects are neglected.) Following (5a) we set 
c ( x , y )  = p(x, q(x,t),t) and define the Dirichlet-Neumann operator: 

where n is the exterior unit normal of the water surface. The operator G ( q )  
maps Dirichlet data to Neumann data on the free surface. It is linear in c but 
nonlinear, with explicit nonlocal dependence, on q which determines the fluid 
domain. In terms of the surface quantities q and 4 the free surface conditions of 
(5) become: 

 EBSCOhost - printed on 6/9/2020 5:08 PM via UNIV OF DELAWARE LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



181 

These are Hamilton’s canonical equations in Zakharov’s (1 968) formulation of 
the water-wave problem as a Hamiltonian system, i.e., 

with the Hamiltonian: 

Coifman & Meyer (1 985) showed that when 7 E Lip(%) the Dirichlet-Neumann 
operator can be written as a convergent Taylor series: 

j =  0 

and Craig & Sulem (1993) showed that explicit expressions for the G can be 
computed using a recursion formula. 

The above system of equations are solved numerically for specified initial 
data using periodic boundary conditions in the x-direction and a pseudo-spectral 
method for the spatial discretization. The Dirichlet-Neumann operator is 
approximated by a finite number, M, of terms in (10). In practice, it is not 
necessary to use large values of M due to the fast convergence of the series 
expansion for G(v) .  The two variables 7 and < are expanded in truncated 
Fourier series with the same number of modes. Applications of Fourier 
multipliers are performed in spectral space, while nonlinear products are 
calculated in physical space at a discrete set of equally spaced points. All 
operations are performed using the FFTW routines. 

Time integration is performed in Fourier space. The linear terms in (7) are 
solved exactly by an integrating factor technique. The nonlinear terms are 
integrated using a fourth-order Adams-BashfordIMoulton predictor-corrector 
scheme with constant time step. In the computations it was observed that 
spurious oscillations developed in the wave profile after some time of integration 
due to onset of an instability initiated by growth of numerical errors at high 
wave-numbers. To circumvent this difficulty we applied an ideal low-pass filter 
to T,I and 5 at each time step. 

 EBSCOhost - printed on 6/9/2020 5:08 PM via UNIV OF DELAWARE LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



182 

2.3 Kd V Models 

An asymptotic approximation of the Euler equations in the limit of weak 
dispersion and weak nonlinearity is the well-known Korteweg-de Vries 
equation: 

Equation (1 1) is for right-running waves only; a similar KdV equation applies to 
left-running waves. The solitary-wave solution of (1 1) is: 

in which the speed of the wave is: 

Wayne & Wright (2004) have shown formally that, to the KdV order of weak 
nonlinearity and dispersion, left-running and right-running solitary waves 
interact linearly during their collision. Hence, we will use linear superposition as 
an approximate model of head-on collisions for comparison with the hlly 
nonlinear, numerical solutions of the Euler equations. 

In the case of collisions among N co-propagating solitary waves Hirota 
(197 1) found an exact solution of (1 1) when the reference frame translates to the 
right with the speed c,. For the case of a binary ( N  = 2)  collision (also see 
Whitham, 1974) the solution is: 

r 1 

in which: 
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and (al ,a2)  are the amplitudes of the two individual solitary waves and (xl, n,) 
are arbitrary (initial) shifts in wave positions. 

4. Head-on (counter-propagating) collision 

Specific procedures for the experiments on counter-propagating binary 
collisions of solitary waves are the following. Since only one wave-maker was 
available, it was necessary to generate a first solitary wave (ao=2.00cm) that 
propagated down the channel and reflected from the end-wall. Subsequently a 
second solitary wave (ao=l .25cm) was generated that collided with the reflected 
wave near the center of the channel test section. The instrument carriage was 
fixed during each experiment so as to provide a spatial window of the collision 
in the interval. Data were collected for about 64s so that the two solitary waves 
reflect and collide multiple times. Results for the first collision are reported 
herein. 

Once the raw data (voltages) are converted to wave amplitudes using the 
calibration results, correlations are performed between the pressure measurement 
of the first experiment and that of each of other 39 experiments. In th~s manner 
we obtain the necessary time shifts to obtain the maximum correlation values 
among the 40 experiments. Typically, these shifts are about 0.01s. Initially we 
used the entire 64 seconds of pressure data to shift the records. The resulting 
spatial profiles were wholly unsatisfactory, exhibiting a lack of smoothness that 
was clearly an artifact of the data reduction algorithm. Second, we computed 
correlations using only an interval of the pressure data containing the first 
solitary wave before its’ reflection. The resulting time shfts yielded excellent 
results for right-running waves as shown in Figure 2. However, the results for the 
reflected, left-running wave were non-smooth. An example of these results is 
shown in Figure 3a, which shows the counter-propagating waves prior to 
collision. Note that the non-smooth, left-running wave (on the right in the figure) 
has a jump discontinuity at one location. Third, correlations were performed 
using an interval of the pressure data containing the reflected (left-running) 
solitary wave. These time shifts resulted in smooth left-running spatial profiles, 
but non-smooth, right-running waves as shown Figure 3b. We conclude that the 
reflection process (or, perhaps, propagation through the boundary-layer wake left 
by the incident wave) produces a small (about 0.05s) shift in the wave arrival 
times at our measurement sight. This small shift is random, i.e., it differs for 
each experiment. Hence, we are not able to resolve both the left-running and 
right-running waves with a single correlation procedure. The results presented 
below use correlations based on the reflected wave as in Figure 3b. 
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Figure 3. Counter-propagating solitary waves before collision (at t=l8.4013s). 
Time shifts based on pressure data for first solitary wave before reflection. 
Time shifts based on pressure data for reflected solitary wave. 

(a) 
(b) 

A sequence of spatial profiles during the collision of counter-propagating 
solitary waves is shown in Figure 4. The experimental times (in seconds) are 
shown above each profile. Note that the total collision interval spanned in Figure 
4 is about 1.7s. The experimental data at t = 18.2999s were fit theoretically with 
the linear sum of two solitary waves having initial amplitudes of (right-running) 
and (left-running), respectively. This theoretical fit (dashed line) served as the 
initial data for the Euler computations. Recall that the experimental spatial 
profiles in Figure 4 are based on correlations that resolve the left-running wave 
best. 

The spatial profiles of Figure 4 between the times of t = 18.7024s and t = 
19.9205s for the left-running solitary wave agree well with both the linear 
superposition and Euler predictions, which are nearly the same. The maximum 
wave amplitude of the collision occurs in the spatial profile at t = 19.0311s 
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Figure 4. Spatial profiles of counter-propagating collision of two solitary waves at 
different times (listed above each frame). Solid points are experimental data. Solid line 
is Euler computations. Dashed line is linear superposition of KdV solitons. 
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Figure 4. Continued. 
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Figure 4. Continued. 

according to both the measurements and the theories. Both the Euler prediction 
and the measured data (for the remnant of the left-running wave) agree, and the 
maximum amplitude is about 2.45cm -- linear superposition predicts 2.27cm. 
Subsequent to the time of maximum amplitude, the Euler predictions and the 
measured data agree well; however, there are now quite large discrepancies with 
linear superposition. In other words, linear superposition is fairly accurate until 
the maximum amplitude is achieved, but much less accurate thereafter. The last 
spatial profile at t = 19.0311s shows the two solitary waves after the collision. 
According to linear superposition there should be no phase shifts in consequence 
of the collision. Clearly both the experimental data and Euler computations show 
that a small phase shift has occurred, i.e., the collision has delayed both waves. 
The observed shift is increasing with propagation distance; hence, the collision 
was not elastic. Interestingly, Euler theory predicts slightly more phase shift than 
observed in the last frame. 
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5. Following (co-propagating) collision 

Unllke the head-on collision described above, the collision of a larger solitary 
wave overtakmg a smaller solitary wave occurs over a very large distance down 
the wave channel. In order to measure a following collision, the instrument 
carriage must move with the waves and measure in a traveling reference frame. 
The co-propagating collision experiments were conducted in the following 
manner. The instrument carriage was positioned near the wave-maker so that its’ 
initial measurement window spanned. The wave-maker then generated a smaller 
solitary wave with a, = 5cm followed immediately by a larger solitary wave with 
a, = 2.00cm. Once these two waves reached the instrument-Carriage window, the 
carriage accelerated smoothly for 2.5s and at a distance of 1.125m to a constant 
speed of 90 c d s .  The constant speed was maintained for 4.5s when the carriage 
decelerated for 2.5s and stopped. The total move time of motion for the carriage 
was 9.5s and the total move distance was 6.35m. Programmed and actual 
motions of the carriage are shown in Figure 5. It is important to note that the 
“actual” carriage displacement and velocity shown in Figure 5 is inferred from a 
rotary encoder on the back of the motor powering the belt drive attached to the 
carriage. This was necessary due to the long distance traversed by the carriage, 
whch prohibited the use of a feedback sensor for the carriage position. Since the 
belt between the motor and the camage is not rigid, there is necessarily 
uncertainty in carriage position, especially during the acceleration and 
deceleration intervals. Comparisons of carriage motions between two different 
experiments showed that the actual motion shown in Figure 5 is reproduced for 
each experiment. 

Figure 6 shows the waves underneath the instrument-carriage window just 
before it begins moving. The dashed line is a 2-soliton solution (Equation 14) fit 
to the experimental data. The solid line, which agrees with the data much better, 
is the linear superposition of two solitary waves with a ,  = 2.15cm and 
a, = 0.68cm. This linear fit is used as the initial data for the Euler computations. 
(It should be noted that the wave-maker motion corresponded to the linear 
superposition of two solitary waves also.) 

A sequence of spatial profiles during the collision of two co-propagating 
solitary waves is shown in Figure 7. Times (in seconds) during the collision 
(measured from the initial data of Figure 6 )  are shown above each profile. At all 
times the Euler predictions agree with the measurements better than the KdV 
predictions. At all times the maximum amplitudes predicted by KdV model 
exceed those by the Euler model, which exceed those in the measurements. In 
addition, the discrepancies in maximum-amplitude predictions increase with time 
and distance down the channel. This behavior is consistent with viscous damping 
that is significant in these experiments in consequence of the long distances of 
propagation during the collision. The small differences in phases between the 
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predicted and measured positions of wave peaks, e.g. at t = 8.79081s, is due, in 
part, to viscous effects and, in part, to experimental errors in the resolution of 
carriage position. 
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Figure 5. Actual (solid line) and programmed (dashed line) carriage motion. (a) 
Displacement, @) Velocity. 
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Figure 6. Initial data for co-propagating collision of two solitary waves. Solid points are 
data. Dashed line is a best fit of the 2-soliton solution. Solid line is best fit of a linear 
superposition of KdV solitons. 
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Figure 7. Spatial profiles of co-propagating collision of two solitary waves at different 
times (listed above each frame). Solid points are experimental data. Solid line is Euler 
computations. Figure Dashed line is 2-soliton solution of the KdV equation. 
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Figure 7. Continued. 
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Figure 7. Confinued. 
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As noted earlier, Wu (1998) shows that there is an instant in time during the 
collision of two co-propagating solitary waves for which the interaction profile 
exhibits fore-and-aft symmetry. This behavior is shown in Figure 7 by both the 
measured and Euler computations at t = 4.09806s. Interestingly, the KdV model 
does not show the fore-and-aft symmetry at this time. 

6.  Summary 

High-resolution experimental data were presented for both co- and counter- 
propagating collisions between two solitary waves. The data are in the form of 
spatial wave profiles at fixed times during the collision. The data for the counter- 
propagating (head-on) collision are compared to numerical solutions of Euler 
equations and to linear superposition of two KdV solitary waves. Linear 
superposition is fairly accurate until the time at which maximum runup 
amplitude occurs. It is much less accurate thereafter. The Euler model predicts 
accurately the measured profiles and the resulting maximum runup amplitude 
and subsequent phase shifts. The maximum measured runup amplitude is 
2 . 4 5 ~ ~  which is predicted by the Euler model. Linear superposition predicts a 
value of 2.27cm 

The Euler model also agrees well with the measured data for the following 
collision; however, it over-predicts wave amplitudes. This disagreement is 
anticipated since viscous damping over the long distance spanned by the 
collision is significant in the experiments. Both the experiments and the Euler 
model exhibit a profile with fore-and-aft symmetry as predicted by Wu (1998) at 
an instant during the collision. The 2-soliton solution of the KdV equation agrees 
qualitatively with the measurements. However, it greatly over predicts 
amplitudes (more than the Euler model), and it does not show a profile with fore- 
and-aft symmetry at the instant measured and predicted by the Euler equations. 
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