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This article reviews recent research progress by the authors and co-
workers, in the application of three-dimensional (3D) Numerical Wave
Tanks (NWT), based on Fully Nonlinear Potential Flow theory (FNPF),
to the modeling of extreme, overturning, ocean waves and of their prop-
erties, in both deep and shallow water. Details of the model equations
and numerical methods are presented. Applications are then presented
for the shoaling and 3D overturning in shallow water of solitary waves
over a sloping ridge, for the generation of extreme deep and interme-
diate water waves, often referred to as “rogue” waves, by directional
energy focusing, for the generation of tsunamis by solid underwater
landslides, and for the generation of surface waves by a moving pres-
sure disturbance. In all cases, physical and numerical aspects are pre-
sented and properties of generated waves are discussed at the breaking
point. Aspects of numerical methods influencing the accuracy and the ef-
ficiency of the NWT solution are detailed in the article. Specifically, the
3D-NWT equations are expressed in a mixed Eulerian-Lagrangian for-
mulation (or pseudo-Lagrangian in one case) and solved based on a
higher-order Boundary Element Method (BEM), for the spatial solution,
and using explicit higher-order Taylor series expansions for the time in-
tegration. Direct and iterative solutions of the governing equations are
discussed, as well as results of a recent application of the Fast Multi-
pole Algorithm. Detailed aspects of the model such as the treatment of
surface piercing solid boundaries are discussed as well.

1. Introduction

Over the last three decades, many studies have been carried out to achieve

a better modeling and understanding of the generation of extreme waves in

the deep ocean, as well as the propagation, shoaling, and breaking of ocean

waves over a sloping nearshore topography. Such work was motivated by

a variety of fundamental and practical ocean engineering problems. For

instance, a description of the dynamics of breaking waves is necessary to

explain the mechanisms of air–sea interactions, such as energy and mo-

mentum transfer from wind to water and from waves to currents, and the

generation of turbulence in the upper ocean. The interaction and impact

of extreme ocean waves (often referred to as rogue waves) with fixed or

floating structures in deep water is thought to represent one of the highest

hazard for the design of such structures. In nearshore areas, breaking wave

induced currents are the driving mechanism for sediment transport, which

leads to beach erosion and accretion, and also represent the design load for

coastal structures used for shoreline and harbor protection. Despite signif-

icant progress, due to its complexity, the process of wave breaking has not
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yet been fully explained. Reviews of wave breaking phenomena in shallow

and deep water can be found in Refs. 1 and 2, respectively.

In this chapter, we report on our experience with three-dimensional (3D)

numerical simulations aimed at very accurately describing the early stages

of wave breaking induced by directional energy focusing in deep water and

changes in topography in shallow water, namely the phenomenon of wave

overturning. Additionally, we report on additional applications of the same

modeling approach, to the generation of tsunamis by underwater landslides

and the generation of waves by a moving free surface pressure disturbance

representing the air cushion of a fast surface effect ship.

We concentrate on cases in which 3D effects are induced in the wave flow,

and, at the final stages of wave overturning, we pay particular attention to

large size plunging breakers which are characterized by the formation of a

more prominent jet (rather than smaller size spilling breakers). Such large

jets would create the strongest wave impact on ocean structures, as well

as cause the larger disturbances in beach sediment. A high-order 3D nu-

merical model, solving Fully Nonlinear Potential Flow (FNPF) equations

is developed and used in this work. The potential flow approximation is

justified for initially irrotational waves or flows starting from rest, con-

sidering the slow diffusion of vorticity from boundaries until the breaker

jet touches down. In fact, comparisons of two-dimensional (2D) numerical

results with laboratory experiments have consistently shown that FNPF

theory accurately predicts the characteristics of wave overturning, in deep

water (e.g., Refs. 3 and 4), as well as wave shoaling and overturning over

slopes (e.g., Refs. 5 and 6). In the latter work, the model predicts the shape

and kinematics of shoaling solitary waves over mild slopes, within 2% of

experimental measurements in a precision wavetank, up to the breaking

point. Other experiments showed that the shape of such overturning waves

is then accurately modeled up to touch down.7,8 Beyond touch down of

the breaker jet, strong vorticity and energy dissipation occur and a full

Navier-Stokes (NS) model must be used. Lin and Liu,9 Chen et al.10

and Christensen and Deigaard,11 for instance, studied the breaking and

post-breaking of solitary waves using a 2D-NS model. The latter authors

also calculated 3D turbulent fields using a LES model and Lubin12 simi-

larly performed 3D LES simulations of plunging breaking waves. Guignard

et al.13 and Lachaume et al.14 proposed a coupled model that combines

both the accuracy and efficiency of a 2D-FNPF model, used during the

shoaling and overturning phases of wave propagation, and a 2D-NS model-

ing of the surfzone.
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Due to computer limitations, detailed numerical studies of wave break-

ing with FNPF models have initially focused on 2D problems. In this

respect, significant contributions in the numerical simulation of steep fully

nonlinear waves were made by Longuet-Higgins and Cokelet,15 who first

proposed a mixed Eulerian–Lagrangian (MEL) approach for the time up-

dating, combined with a Boundary Integral Equation (BIE) formulation, in

a deep water space-periodic domain. Their computations were able to re-

produce overturning waves by specifying a localized surface pressure. Sim-

ilar methods were adopted in subsequent works, notably, by Vinje and

Brevig16 and Baker et al.,17 who considered the case of finite depth. Results

obtained by New et al.18,19 for plunging waves over constant depth, greatly

contributed to our understanding of breaking wave kinematics. These au-

thors carried out high-resolution computations for various types of breakers

and analyzed in detail the overturning motions, by following fluid particle

trajectories in the space, velocity, and acceleration planes. More recent 2D-

FNPF models can accommodate both arbitrary waves and complex bottom

topography, as well as surface-piercing moving boundaries such as wave-

makers. These models are directly implemented in a physical space region,

where incident waves can be generated at one extremity and reflected, ab-

sorbed or radiated at the other extremity (e.g., Refs. 20–23). For these

reasons, they are often referred to as Numerical Wave Tanks (NWT).

A comparatively smaller number of works have addressed, essentially

non-breaking, 3D-FNPF wave simulations, due to the more difficult geomet-

ric representation as well as the more demanding computational problems

(e.g., Refs. 24, 25, 28–33). In particular, the problem of strongly nonlin-

ear waves requires very accurate and stable numerical methods, and this

consequently leads to an increase of the computational cost. Xü and Yue34

and Xue et al.35 calculated 3D overturning waves in a doubly periodic

domain with infinite depth (i.e. only the free surface is discretized). They

used a quadratic Boundary Element Method (BEM) to solve the equations

in a MEL formulation. As in Ref. 15, the initial conditions were progres-

sive Stokes waves and a localized surface pressure was applied to make

waves break. These authors performed a detailed analysis of the kinemat-

ics of plunging waves and quantified the three-dimensional effects on the

flow,26,27 developed a similar method, for a non-periodic domain with finite

depth. They were also able to produce the initial stages of wave overturning

over a bottom obstacle. More recently, Grilli et al.36 proposed an accurate

3D NWT model, for the description of strongly nonlinear wave generation

and propagation over complex bottom topography. This NWT is based

 EBSCOhost - printed on 6/9/2020 4:59 PM via UNIV OF DELAWARE LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



November 20, 2008 16:3 World Scientific Review Volume - 9in x 6in ch3

Modeling 3D Extreme Waves 79

on a MEL explicit time stepping and a high-order BEM with third-order

spatial discretization, ensuring local continuity of the inter-element slopes.

Arbitrary waves can be generated in this NWT and, if needed, absorbing

conditions can be specified on lateral boundaries. Although an application

to the shoaling of a solitary wave up to overturning was shown, this initial

paper focused more on the derivation and validation of the numerical model

and methods rather than on the physical implications of results. Other ap-

plications and extensions of this NWT to other nonlinear wave processes

were done for the modelling of: (i) wave impact on a vertical wall;37 (ii)

freak wave generation due to directional wave focusing;38–40 (iii) tsunami

generation by submarine mass failure;41–43 (iv) the generation of waves by

a moving surface pressure disturbance;44–46 and (v) the simulation of co-

seismic tsunami generation by a specified bottom motion.47 The reader

interested in boundary integral methods, especially in applications to 3D

free surface flows, is also referred to Ref. 48.

In this chapter, we first detail equations and numerical methods for the

3D-FNPF NWT model initially developed by Ref. 36, and subsequently ex-

tended by Refs. 38, 41, 45, 50 and 49, concentrating on the different types of

boundary conditions, free surface updating, boundary representation, and

fast equation solver. We then present a number of typical applications of the

model to the breaking of solitary waves over a sloping ridge, extreme over-

turning waves created by directional energy focusing using a wavemaker,

landslide tsunami generation, and surface wave generation by a moving

disturbance. Due to the complexity of the problem and the high computa-

tional cost, our studies of 3D breakers are typically restricted to fairly small

spatial domains. Beside wave shape, various results are presented for the

velocity and acceleration fields before and during wave overturning, both

on the free surface and within the flow. We stress that no smoothing of

the solution is required, e.g., to suppress spurious waves at any time in the

computations, as experienced in most of the other proposed models.

2. Mathematical Formulation

2.1. Governing equations and boundary conditions

We assume an incompressible inviscid fluid, with irrotational motion de-

scribed by the velocity potential φ(x, t), in a Cartesian coordinate system

x = (x, y, z) (with z the vertical upward direction and z = 0 at the undis-

turbed free surface).
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Fig. 1. Sketch of typical computational domain for 3D-BEM solution of FNPF equa-

tions. Tangential vectors at point R(t) on the free surface Γf (t) are defined as (s,m)

and outward normal vector as n.

The fluid velocity is thus defined as u = ∇φ = (u, v, w) and mass con-

servation is Laplace’s equation for the potential, which in the fluid domain

Ω(t) with boundary Γ(t) reads (Fig. 1),

∇2φ = 0 . (2.1)

Applying Green’s second identity, Eq. (2.1) transforms into the BIE,

α(xl)φ(xl) =

∫

Γ

{
∂φ

∂n
(x)G(x, xl) − φ(x)

∂G

∂n
(x, xl)

}
dΓ (2.2)

where the field point xl and the source point x are both on the boundary,

α(xl) = 1
4π θl, with θl the exterior solid angle at point xl, and the three-

dimensional (3D) free-space Green’s function is defined as,

G(x, xl) =
1

4πr
with

∂G

∂n
(x, xl) = − 1

4π

r ·n

r3
(2.3)

where r = |r| = |x − xl| and n is the outward unit vector normal to the

boundary at point x.

The boundary is divided into various parts with different boundary con-

ditions (Fig. 1). On the free surface Γf (t), φ satisfies the nonlinear kine-

matic and dynamic boundary conditions, which in the MEL formulation
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read,

DR

Dt
= u (2.4)

Dφ

Dt
= −gz + 1

2∇φ · ∇φ − pa

ρ
(2.5)

respectively, with R the position vector of a fluid particle on the free surface,

g the gravitational acceleration, pa the atmospheric pressure, ρ the fluid

density and D/Dt = ∂/∂t + ∇φ · ∇ the Lagrangian (or material) time

derivative. Effects of surface tension are neglected considering the large

scale waves modeled here (however, this could be easily added to Eq. (2.5)).

In earlier applications of the model, waves have been generated in var-

ious ways: (i) by directly specifying wave elevation and potential (such as

a solitary wave; e.g., Ref. 51) on the free surface at t = 0;36,37,52,53 (ii)

by simulating a (solid) wavemaker motion at the ‘open sea’ boundary side

of the model Γr1;
38–40 (iii) by specifying the motion of a solid underwater

landslide on the bottom boundary Γb;
41–43 or (iv) by a moving pressure

disturbance on the free surface.44–46,54

Over moving boundaries such as wavemakers (or landslides), both the

boundary geometry xp(t) and normal fluid velocity are specified as,

x = xp and
∂φ

∂n
= up · n (2.6)

where overbars denote specified values and up(xp, t) is the boundary

velocity.

In all cases, one (or two in case (iv)) open boundary conditions can be

specified on some vertical sections Γr2(t), of the model boundary. Follow-

ing,38,41 the open boundary is modeled as a pressure sensitive ‘snake’ flap-

or piston-type absorbing wavemaker. For a piston-type boundary in depth

ho, for instance, the piston normal velocity is specified as,

∂φ

∂n
= uap(σ, t) on Γr2(t), with, (2.7)

uap(σ, t) =
1

ρho

√
gho

∫ ηap(σ,t)

−ho

pD(σ, z, t) dz (2.8)

calculated at the curvilinear abscissa σ, horizontally measured along the

piston boundary, where ηap is the surface elevation at the piston location

and pD = −ρw{∂φ
∂t + 1

2∇φ ·∇φ} denotes the dynamic pressure. The integral

in Eq. (2.8) represents the horizontal hydrodynamic force FD(σ, t) acting
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on the piston at time t, as a function of σ. For 2D problems, Grilli and

Horrillo23 showed that this type of boundary condition absorbs well energy

from long incident waves. Shorter waves, however, will be reflected to a

greater extent by the boundary, but can directly be damped on the free

surface using an ‘Absorbing Beach’ (AB). Such a pressure always works

against the waves and hence is equivalent to an energy dissipation over

time. For 2D problems, Grilli and Horrillo23 implemented the AB over

a section of the free surface by specifying the pressure in the dynamic

boundary condition Eq. (2.5) such as to be opposite and proportional to

the normal fluid velocity,

pa = ν(x, t)
∂φ

∂n
(η(x, t)) (2.9)

in which ν, the AB absorption function, is smoothly varied along the AB

and η refers to nodes on the free surface of elevation η. This approach

was extended by Grilli et al.55 to model the effect of energy dissipation

due to bottom friction on the shoaling of 2D periodic waves. In this case,

the coefficient ν(x, t) was found at each time step by expressing a balance

between the time averaged energy dissipation on the bottom and the free

surface pressure. In some earlier applications of the 3D model,44–46 a similar

AB was specified over an area of the free surface to damp shorter waves, in

combination with the absorbing wavemaker boundary. Note, recently, Dias

et al.56 derived new free surface boundary conditions to account for energy

dissipation due to viscosity in potential flow equations. In these equations,

a correction term is added to both the kinematic and dynamic boundary

conditions, Eqs. (2.4) and (2.5), respectively. It should be of interest to

implement this new set of equations in the NWT.

Except in case (iii), a no-flow condition is specified on the bottom Γb

and other fixed parts of the boundary referred to as Γr2 as,

∂φ

∂n
= 0 . (2.10)

2.2. Internal velocity and acceleration

Once the BIE Eq. (2.2) is solved, the solution within the domain can be

evaluated from the boundary values. Using Eq. (2.2), the internal velocity

is given by,

u(xi) = ∇φ(xi) =

∫

Γ

[
∂φ

∂n
(x)Q(x, xi) − φ(x)

∂Q

∂n
(x, xi)

]
dΓ (2.11)
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with,

Q(x, xi) =
1

4πr3
r ,

∂Q

∂n
(x, xi) =

1

4πr3

[
n − 3(r · n)

r

r2

]
(2.12)

and r denoting the distance from the boundary point x to the interior point

xi. Note that the coefficient α(xi) is unity for interior points.

Similarly, we express the internal Lagrangian acceleration as,

Du

Dt
=

D

Dt
∇φ =

∂

∂t
∇φ + (∇φ · ∇)∇φ (2.13)

where the first term on the right-hand side, corresponding to the local

acceleration, is given by,

∇
∂φ

∂t
(xi) =

∫

Γ

[
∂2φ

∂t∂n
(x)Q(x, xi) −

∂φ

∂t
(x)

∂Q

∂n
(x, xi)

]
dΓ (2.14)

and the second term is computed using Eq. (2.11) and differentiating ∇φ.

This requires calculating the spatial derivatives of all components of Q and

∂Q/∂n as, (note, the index summation convention does not apply for the

two following equations)

∂Qk

∂xj
=

{
3

4πr5 rkrj , k 6= j
1

4πr3

(
3
r2 r2

k − 1
)

, k = j
(2.15)

∂

∂xj

(
∂Qk

∂n

)
=

{
3

4πr5

[
rjnk + rknj − 5

r2 (r · n)rkrj

]
, k 6= j

3
4πr5

[
r ·n + 2rknk − 5

r2 (r · n)r2
k

]
, k = j ,

(2.16)

where k, j refer to the spatial dimensions and rk stands for the k-th com-

ponent of r.

The boundary quantities ∂φ/∂t and ∂2φ/∂t∂n in Eq.(2.14) also satisfy

a BIE similar to Eq. (2.2), for φ and ∂φ/∂n. In fact, this second BIE

is solved at each time step to compute these fields, which are necessary

to perform the second-order time updating of free surface nodes; this is

detailed in Section 3.2.

2.3. Boundary velocity and acceleration

As will be detailed in Section 3.2, particle velocity u and acceleration

Du/Dt are used to perform the second-order Lagrangian time updating

of collocation nodes on the free surface. Similar terms are also needed for
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expressing boundary conditions on other moving or deforming parts of the

boundary, such as wavemakers, open boundaries, or underwater landslides.

At boundary nodes, geometry, field variables and their derivatives are

expressed in a local curvilinear coordinate system (s, m, n) (Fig. 2) defined

within a single reference element, which for practical reasons is different

from that of the BEM discretization that will be detailed in Section 3.1.

Thus, at each collocation point xl on the boundary, the unit tangential

vectors are defined as

s =
1

h1

∂xl

∂ξ
and m =

1

h2

∂xl

∂η
(2.17)

where

h1 =

∣∣∣∣
∂xl

∂ξ

∣∣∣∣ , h2 =

∣∣∣∣
∂xl

∂η

∣∣∣∣ (2.18)

and −1 ≤ (ξ, η) ≤ 1 denote the intrinsic coordinates of the reference element

(this aspect will also be detailed later). A third unit vector in the normal

direction is then defined as n = (s × m)/ sin (̂s, m).

For the initial typically orthogonal discretization in the model, the local

coordinate system (s, m, n) is also orthogonal and we simply have n =

s × m. Unlike initially assumed,36 however, the orthogonality of s and m

does not strictly hold when the boundary elements are distorted, such as

in regions of large surface deformations. Fochesato et al.50 extended the

expressions of tangential derivatives to the general case when s and m are

not orthogonal; this is summarized below.

Fig. 2. Sketch of local interpolation by fourth-order two-dimensional sliding polynomial

element of (ξ, η), for calculating tangential derivatives in orthogonal axes (s,m′,n) at

collocation point xl on the boundary.
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Using s and m in Eq. (2.17), one can define a new unit tangential

vector as (Fig. 2)

m′ =
1√

1 − κ2
m − κ√

1− κ2
s (2.19)

so that s and m′ are orthogonal (i.e., s · m′ = 0), with κ = s ·m =

cos (̂s, m) (Fig. 2). This implies that −1 < κ < 1. The unit normal vector

now takes the form

n = s × m′ =
1√

1 − κ2
s × m (2.20)

(which does yield m′ = m and s ·m = 0 only when κ = 0). For clarity, let

us introduce the following notations

( )s ≡ ∂

∂s
=

1

h1

∂

∂ξ
, ( )m ≡ ∂

∂m
=

1

h2

∂

∂η
, ( )n ≡ ∂

∂n
(2.21)

and

( )ss ≡ 1

h2
1

∂2

∂ξ2
, ( )sm ≡ 1

h1h2

∂2

∂ξ∂η
, ( )mm ≡ 1

h2
2

∂2

∂η2
. (2.22)

In the orthonormal coordinate system (s, m′, n), the particle velocity on

the boundary is expressed as

u = ∇φ = φss + φm′m′ + φnn (2.23)

where φ denotes the velocity potential. In the general coordinate system

(s, m, n), this equation thus becomes

u =
1

1 − κ2
(φs − κφm)s +

1

1 − κ2
(φm − κφs)m + φnn (2.24)

after using Eq. (2.19) and the fact that

φm′ =
1√

1 − κ2
φm − κ√

1 − κ2
φs . (2.25)

Laplace’s equation ∇2φ = 0 can be similarly expressed on the boundary,

as well as particle accelerations (by applying the material derivative to Eq.

(2.24)), which are both required to calculate second-order terms in the

time updating method (see Section 3.2). These expressions are given in

Appendix A.1.
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3. Numerical Methods

Many different numerical methods have been proposed for solving FNPF

equations for water waves in 2D or 3D (see, e.g., Ref. 57 for a recent review).

Here we solve FNPF equations using the BIE formulation outlined above,

which was initially implemented36 in this 3D model, based on initial 3D-

BEM modeling of linear waves58 and as an extension of earlier 2D-FNPF

models.20,22,23,59,60 The model benefits from recent improvements in the

numerical formulations and solution.49,50 Numerical methods are briefly

summarized below and detailed in the following subsections.

The model consists in a time stepping algorithm in which the posi-

tion vector and velocity potential on the free surface are updated, based

on second-order Taylor series expansions. At each time step, the BIE Eq.

(2.2) is expressed for NΓ collocation nodes, defining the domain bound-

ary Γ, and solved with a BEM, in which boundary elements are specified

in between nodes, to locally interpolate both the boundary geometry and

field variables, using bi-cubic polynomial shape functions. A local change

of variables is defined to express the BIE integrals on a single curvilinear

reference element, and compute these using a Gauss-Legendre quadrature

and other appropriate techniques removing the weak singularities of the

Green’s function (based on polar coordinate transformations). The num-

ber of discretization nodes yields the assembling phase of the system matrix,

resulting in an algebraic system of equations. The rigid mode technique is

applied to directly compute external angles αl and diagonal terms in the

algebraic system matrix, which would normally require evaluating strongly

singular integrals involving the normal derivative of the Green’s function.

Multiple nodes are specified on domain edges and corners, in order to eas-

ily express different normal directions on different sides of the boundary.

Additional equations derived for enforcing continuity of the potential at

these nodes also lead to modifications of the algebraic system matrix. The

velocity potential (or its normal derivative depending on the boundary con-

dition) is obtained as a solution of the linear system of equations. Since the

system matrix is typically fully populated and non-symmetric, the method

has, at best, a computational complexity of O(N 2
Γ), when using an iterative,

optimized conjugate gradient method such as GMRES (see, e.g., Refs. 34

and 35). Thus the spatial solution at each time step is of the same com-

plexity as the numerical cost of assembling of the system matrix. The Fast

Multipole Algorithm (FMA) is implemented in the model to reduce this

complexity to O(NΓ log NΓ).
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3.1. Boundary discretization

A BEM is used to solve the BIE (2.2) for φ, and due to the second-order

time stepping, a similar equation for ∂φ
∂t . Thus, the boundary is discretized

into NΓ collocation nodes and MΓ high-order boundary elements are de-

fined for the local interpolation of both the geometry and field variables

in between these nodes. While standard isoparametric elements based on

polynomial shape functions can provide a high-order approximation within

their area of definition, they only offer C0 continuity at nodes located in

between elements (e.g., Ref. 61). In their 2D work, Grilli et al.20,22 showed

that such discontinuities in slope and curvature can be a source of inac-

curacy that, through time updating, may trigger sawtooth instabilities in

the model near the crest of steep waves or within overturning jets. These

authors showed that a robust treatment requires defining elements, which

are both of high-order within their area of definition and at least locally

C2 continuous at their edges. Among various types of approximations,

they proposed using so-called middle-interval-interpolation (MII) elements,

which in 2D are 4-nodes cubic isoparametric elements, in which only the

interval between the middle two nodes is used for the interpolation. In the

initially developed 3D model,36 we used an extension of the MII by defin-

ing boundary elements that are 4 × 4-node quadrilaterals associated with

bi-cubic shape functions. Only one out of the nine sub-quadrilaterals so de-

fined is used for the interpolation, typically the central one, but any other

is used for elements located at the intersections between different boundary

sections, depending on the location (Fig. 3).

Specifically, the boundary geometry and field variables (denoted here-

after by u ≡ φ or ∂φ
∂t and q ≡ ∂φ

∂n or ∂2φ
∂t∂n for simplicity) are represented

within each MII element using shape functions Nj as,

x(ξ, η) = Nj(ξ, η) xk
j (3.1)

u(ξ, η) = Nj(ξ, η) uk
j and q(ξ, η) = Nj(ξ, η) qk

j (3.2)

where xk
j , uk

j and qk
j , are nodal values of geometry and field variables, re-

spectively, for j = 1, . . . , m, locally numbered nodes within each element

Γk
e , k = 1, . . . , MΓ, and the summation convention is applied to repeated

subscripts. Here, shape functions are analytically defined as bi-cubic poly-

nomials over a single reference element Γξ,η, to which the MΓ “Cartesian”

elements of arbitrary shape are transformed by a curvilinear change of vari-

ables, defined by the Jacobian matrix Jk. The intrinsic coordinates on the
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reference element are denoted by (ξ, η) ∈ [−1, 1]. The shape function poly-

nomial coefficients are simply found analytically by requiring that u(ξ, η)

take the value uk
i at node xk

i , that is in Eq. (3.2),

u(ξ(xk
i ), η(xk

i )) = Nj(ξi, ηi) uk
j = uk

i .

Hence, for the i-th node of an m-node reference element, shape functions

must satisfy,

Nj(ξi, ηi) = δij with i, j = 1, . . . , m on Γξ,η (3.3)

and δij the Kronecker symbol.

We further define the shape functions as the product of two one-

dimensional cubic shape functions N ′
c(µ), with c = 1, . . . , 4 and µ ∈ [−1, 1],

i.e.

Nj(ξ, η) = N ′

b(j)(µ(ξ, ξo)) N ′

d(j)(µ(η, ηo)) (3.4)

with b and d = 1, . . . , 4; j = 4 (d − 1) + b, for which the property (3.3)

implies,

N ′

c(µi) = δic with µi = (2i − 5)/3 (3.5)

for i = 1, . . . , 4. Hence, solving Eq. (3.5) we find

N ′

1(µ) =
1

16
(1 − µ) (9µ2 − 1) ; N ′

2(µ) =
9

16
(1 − µ2) (1 − 3µ)

N ′

3(µ) =
9

16
(1 − µ2) (1 + 3µ) ; N ′

4(µ) =
1

16
(1 + µ) (9µ2 − 1) . (3.6)

For the MII method, the additional transformation from µ to the intrinsic

coordinates (ξ, η) on the reference element is formally expressed as,

µ(χ, χo) = χo +
1

3
(1 + χ) (3.7)

with χ = ξ or η, and χo = ξo or ηo = −1, −1/3 or 1/3, depending on which

of the 9 quadrilaterals defined by the m = 16 nodes is selected as a func-

tion of the location of the Cartesian element with respect to intersections

between various parts of the boundary (Fig. 3).

Discretized BIEs

Integrals in Eq. (2.2) are transformed into a sum of integrals over the

boundary elements Γk
e , k = 1, . . . , MΓ. Each of these integrals is calculated

within the reference element Γξ,η by applying the curvilinear change of

variables discussed above: [x → (ξ, η)], for which the Jacobian matrix is
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Fig. 3. Sketch of 16-node cubic 3D-MII Cartesian element Γ
k
e and corresponding ref-

erence element Γξ,η . Quadrilateral element nodes are indicated by symbols (•), and

additional nodes by symbols (◦). The curvilinear coordinate system (s,m,n) has been

marked at point r of the element. (ξo, ηo) marks the bottom left node of the quadrilat-

eral, transformed as part of the reference element by Jacobian J
k
.

obtained as follows. Using Eqs. (3.2) and (3.3), two tangential vectors are

defined at arbitrary boundary point x(ξ, η) as,

∂x

∂ξ
=

∂Nj(ξ, η)

∂ξ
xk

j =

{
∂N ′

b(j)(µ(ξ, ξo))

∂µ
N ′

d(j)(µ(η, ηo))
∂µ

∂ξ

}
xk

j

∂x

∂η
=

∂Nj(ξ, η)

∂η
xk

j =

{
N ′

b(j)(µ(ξ, ξo))
∂N ′

d(j)(µ(η, ηo))

∂µ

∂µ

∂η

}
xk

j

(3.8)

with j = 1, . . . , m on Γk
e (k = 1, . . . , MΓ) and, by applying Eq. (3.7), ∂µ

∂ξ =
∂µ
∂η = 1/3. The corresponding tangential unit vectors s and m are further

defined similar to Eqs. (2.17) and (2.18) for nodal points. As discussed

before, these vectors are in general non-orthogonal. A local normal vector

is defined based on these as,

∂x

∂ζ
=

∂x

∂ξ
× ∂x

∂η
(3.9)

where the corresponding unit normal vector is thus defined as,

n(ξ, η) =
1

h1 h2

∂x

∂ζ
with

∣∣∣∣
∂x

∂ζ

∣∣∣∣ = h1 h2 . (3.10)

Vector n will be pointing in the outward direction with respect to the

domain if vectors (s, m) are such that their cross product is outward ori-

ented (this is only a matter of definition of the considered element nodes

numbering).
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The Jacobian matrix is then defined as,

Jk =

{
∂x

∂ξ
,
∂x

∂η
, n

}T

and the determinant of the Jacobian matrix, to be used in boundary inte-

grals for the k-th element is thus given by

| Jk(ξ, η) |= h1 h2 for k = 1, . . . , MΓ on Γ (3.11)

which can be analytically calculated at any point of a given element by

using Eqs. (3.8) with the definitions Eqs. (3.6) of shape functions.

After elementary transformation, the discretized expressions of the in-

tegrals in Eq. (2.2) are obtained as,

∫

Γ(x)

∂φ

∂n
Gl dΓ =

NΓ∑

j=1

{ MΓ∑

k=1

∫

Γξ,η

Nj(ξ, η)G(x(ξ, η), xl) | Jk(ξ, η) | dξdη

}

∂φ

∂n
(xj) =

NΓ∑

j=1

{ MΓ∑

k=1

Dk
lj

}
∂φj

∂n
=

NΓ∑

j=1

Kd
lj

∂φj

∂n
(3.12)

∫

Γ(x)

φ
∂Gl

∂n
dΓ =

NΓ∑

j=1

{ MΓ∑

k=1

∫

Γξ,η

Nj(ξ, η)
∂G(x(ξ, η), xl)

∂n
| Jk(ξ, η) | dξdη

}

φ(xj) =

NΓ∑

j=1

{ MΓ∑

k=1

Ek
lj

}
φj =

NΓ∑

j=1

Kn
lj φj (3.13)

in which, l = 1, . . . , NΓ, for nodes on the boundary, and Dk and Kd denote

so-called local (i.e., for element k) and global (i.e., assembled for the entire

discretization) Dirichlet matrices, and Ek and Kn, Neumann matrices, re-

spectively. Note, here j follows the global node numbering convention on

the boundary and refers to nodal values of element k. Expressions for the

Green’s and shape functions, to be used in these equations are given by

Eqs. (2.3) and Eqs. (3.6), respectively.

With Eqs. (3.12) and (3.13), the discretized form of the BIE (2.2) (and

the equivalent BIE for ( ∂φ
∂t , ∂2φ

∂t∂n )) finally reads,

αl ul =

NΓ∑

j=1

{Kd
lj qj − Kn

lj uj } (3.14)

in which, l = 1, . . . , NΓ.

Boundary conditions are directly specified in Eq. (3.14); these are: (i)

Dirichlet conditions for u = φ or ∂φ
∂t ; and (ii) Neumann conditions for
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q = ∂φ
∂n or ∂2φ

∂t∂n . The final algebraic system is assembled by moving nodal

unknowns to the left hand side and keeping specified terms in the right

hand side,

{Cpl + Kn
pl}up − Kd

gl qg = Kd
pl qp − {Cgl + Kn

gl}ug (3.15)

where l = 1, . . . , NΓ; g = 1, . . . , Ng, refers to nodes with a Dirichlet condi-

tion on boundary Γf and p = 1, . . . , Np, refers to nodes with a Neumann

condition on other parts of the boundary; C is a diagonal matrix made of

coefficients αl.

3.1.1. Rigid mode method

Diagonal terms of the system matrix in Eq. (3.15) {Cll +Kn
ll} include both

Cll coefficients that can be obtained through a direct, purely geometric,

calculation of solid angles θl at nodes of the discretized boundary, and

Neumann matrix diagonal terms Kn
ll . As can be seen in Eq. (3.13), the

latter terms contain integrals, which although regularized by the separate

evaluation of their strongly singular part61 in the form of coefficients Cll,

still contain a highly varying kernel that should be integrated with great

care and accuracy.

Rather than directly computing these coefficients one can derive them

by applying a straightforward and overall more accurate method referred

to as “rigid mode”61 by analogy with structural analysis problems. By

considering a homogeneous Dirichlet problem, where a uniform field, u =

cst 6= 0, is specified over the entire boundary Γ (hence, NΓ = Ng), potential

flow theory implies that normal gradients q must vanish at each node. Thus,

for these particular boundary conditions, Eq. (3.15) simplifies to,

{Cjl + Kn
jl}uj = 0 (3.16)

which requires that the summation in curly brackets vanish for all l. Thus,

by isolating the diagonal terms in the left-hand-side, we get,

{Cll + Kn
ll} = −

NΓ∑

j(6=l)=1

Kn
jl l = 1, . . . , NΓ (3.17)

which yields the value of the diagonal term of each row of Eq. (3.16) as

minus the sum of its off-diagonal coefficients. These diagonal terms are

directly substituted in the discretized system Eq. (3.15).

This method was earlier shown20 to significantly improve the condition-

ing of algebraic systems such as Eq. (3.15), and thus the accuracy of their
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numerical solution (particularly for iterative methods such as GMRES; see

below).

3.1.2. Multiple nodes

Boundary conditions and normal directions are in general different on in-

tersecting parts of the boundary, such as between the free surface or the

bottom, and the lateral boundary of the computational domain (Fig. 1).

Such intersections are referred to as ‘edges’, and corresponding discretiza-

tion nodes as ‘corners’. To be able to specify such differences, corners are

represented by double-nodes, for which coordinates are identical but normal

vectors are different. This double or multiple node method is essentially an

extension of earlier 2D treatments.20,59 Thus, different discretized BIE’s

(Eq. (3.15)) are expressed for each node of a corner multiple-node.

For Dirichlet-Neumann boundary conditions we have, for instance, equa-

tions: (i) for l = p, on a wavemaker boundary Γr1; and (ii) for l = f , on

the free surface Γf . Since the potential must be unique at a given loca-

tion, one of these two BIE’s is modified in the final discretized system, to

explicitly satisfy, φp = φf (i.e., “continuity of the potential”), where the

overline indicates that the potential is specified on the free surface. For

Neumann-Neumann boundary conditions at corners we have, for instance,

equations: (i) for l = p, on a wavemaker boundary Γr1; and (ii) for l = b,

on the bottom Γb. The potential continuity equation for this case reads,

φp −φb = 0, both of these being unknown. Similar continuity relationships

are expressed for ∂φ
∂t at corners, in the corresponding BIE.

Note, at the intersection between three boundaries, triple-nodes are

specified for which three BIE equations are expressed, two of which are

replaced in the final algebraic system by equations specifying continuity of

the potential (and of ∂φ
∂t ).

The use of this multiple node technique makes this model especially

suitable for problems involving surface piercing bodies such as wavemakers,

slopes, or ships.

3.1.3. Numerical integrations

The discretized boundary integrals Dk
lj and Ek

lj in Eqs. (3.12) and (3.13)

are evaluated for each collocation node xl by numerical integration. When

the collocation node l does not belong to the integrated element k, a stan-

dard Gauss–Legendre quadrature is applied. When l belongs to element k,

the distance r in the Green’s function G and in its normal gradient vanishes
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at one of the nodes of the element. For such singular situations, a method

of singularity extraction is used based on polar coordinate transformations.

This method was first developed for a 3D-BEM using higher-order ele-

ments58 and later applied and extended to higher-order Green’s function.62

Grilli et al.36 optimized this method for the bi-cubic MII elements used in

this model; the reader is referred to the latter reference for details.

Due to the form of Green’s function Eq. (2.3), non-singular integrals

may still have a highly varying kernel when the distance r becomes small,

albeit non-zero, in the neighborhood of a collocation point xl. Such situa-

tions may occur near intersections of boundary parts (e.g., such as between

the free surface and lateral boundaries) or in other regions of the free sur-

face, such as overturning breaker jets, where nodes are close to elements on

different parts of the boundary. In such cases, a standard Gauss quadrature,

with a fixed number of integration points, may fail to accurately calculate

such integrals. One can refer to such cases as “almost” or “quasi-singular”

integrals. Grilli et al.,60 for instance, showed for 2D problems, that the

loss of accuracy of Gauss integrations (with ten integration points) for such

quasi-singular integrals may be several orders of magnitudes, when the dis-

tance to the collocation node becomes very small. For such 2D cases, Grilli

and Svendsen59 developed an adaptive integration scheme based on a bi-

nary subdivision of the reference element and obtained almost arbitrary

accuracy for the quasi-singular integrals, when increasing the number of

subdivisions. This method, however, can be computationally expensive and

Grilli and Subramanya22 developed a more efficient method that essentially

redistributes integration points around the location of the quasi-singularity

(point of minimum distance from an element k to the nearest collocation

node, xl). A method similar to Grilli and Svendsen’s, but applicable to 3D

problems, was implemented in the model36 and showed to be both accurate

and efficient in applications; the reader is referred to the latter reference

for details.

3.1.4. Solution of the algebraic system of equations

The linear algebraic system Eq. (3.15) is in general dense and non-

symmetric. Since the total number of nodes NΓ can be very large in 3D

applications, the solution by a direct method, of order N 3
Γ, as was done

in 2D applications,20,22 and in initial 3D applications of the model,36 be-

comes prohibitive. Hence, for large 3D applications, an iterative solver35

was implemented36,53 to solve the linear system in the model, based on
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a generalized minimal residual (GMRES) algorithm with preconditioning

(typically the “Symmetric Successive Overrelaxation” (SSOR) method with

relaxation parameter equal to 0.6), and initial solution equal to that of the

earlier time step. GMRES yields a more favorable N 2
Γ numerical complexity,

similar to that of the assembling of the system matrix and is amenable to

vectorization on a supercomputer. The downside with an iterative method,

however, is that for the second-order time stepping scheme used here, two

full systems of equations must be solved at each time step (one for φ and

one for ∂φ
∂t ) whereas with a direct method, the solution of the second sys-

tem takes only a few percent of the time needed to solve the first system.

Nevertheless, results on a CRAY-C90 showed that, for more than 2,000

nodes and a similar accuracy, the GMRES-SSOR method became faster

when used in the model than the direct solution.

To tackle very large problems with a reasonable computational time,

we more recently implemented the Fast Multipole Algorithm (FMA) in

the model, which reduced this complexity to O(NΓ log NΓ). First devel-

oped by Greengard and Rokhlin63 for the N -body problem, the FMA al-

lows for a faster computation of all pairwise interactions in a system of

N particles, and in particular, interactions governed by Laplace’s equa-

tion. Hence, it is well suited to our problem. The basis of the algorithm

is that due to the 3D Green’s function, the interaction strength decreases

with distance, so that points that are far away on the boundary can be

grouped together to contribute to one distant collocation point. A hier-

archical subdivision of space automatically verifies distance criteria and

distinguishes near interactions from far ones. The FMA can be directly

used to solve Laplace’s equation, but it can also be combined with a BIE

representation of this equation, whose discretization then leads to a lin-

ear system, as detailed above. Matrix-vector products in the system can

be evaluated as part of an iterative solver (such as GMRES), that can

be accelerated using the FMA. Rokhlin64 applied this idea to the equa-

tions of potential theory. A review of the application of this algorithm to

BIE methods can be found in Nishimura.65 Korsmeyer et al.66 combined

the FMA with a BEM, through a Krylov-subspace iterative algorithm, for

water wave computations. Following Rokhlin’s ideas, they designed a mod-

ified multipole algorithm for the equations of potential theory. First devel-

oped for electrostatic analysis, their code was generalized to become a fast

Laplace solver, which subsequently has been used for potential fluid flows.

Their model was efficient but its global accuracy was limited by the use of

low order boundary elements. Scorpio and Beck67 studied wave forces on
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bodies with a multipole-accelerated desingularized method, and thus did

not use boundary elements to discretize the problem. Neither did Graziani

and Landrini,68 who used the Euler-McLaurin quadrature formula in their

2D model. Srisupattarawanit et al.69 also used a fast multipole solver to

study waves coupled with elastic structures. We show briefly below how

the FMA can be combined with our model to yield a more efficient numer-

ical tool. Details and validation of this implementation of the FMA can be

found in Refs. 70 and 49. Other applications of the FMA to our model can

be found in Refs. 40, 42, 43, and 46.

The FMA is based on the principle that the Green’s function can be

expanded in a series of separated variables, for which only a few terms

need to be retained when the source point xl and the evaluation point

x are far enough from one another. Thus, for a point O (origin of the

expansion) close to x but far from xl, we have,

G(x, xl) ≈
1

4π

p∑

k=0

k∑

m=−k

ρkY −m
k (α, β)

Y m
k (θ, ϕ)

rk+1
(3.18)

where x−O = (ρ, α, β) and xl−O = (r, θ, ϕ) in spherical coordinates. The

functions Y ±m
k are the spherical harmonics defined from Legendre polyno-

mials. A hierarchical subdivision of the domain, with regular partitioning

automatically verifying distance criteria, is defined to determine for which

nodes this approximation applies. Thus, close interactions are evaluated by

direct computation of the full Green’s functions, whereas far interactions

are approximated by successive local operations based on the subdivision

into cells and the expansion of the Green’s function into spherical harmon-

ics. The underlying theory for this approximation is well established in the

case of Laplace’s equation. In particular, error and complexity analyses are

given in the monograph by Greengard.71

In our case, Laplace’s equation has been transformed into a BIE and a

specific discretization has been used. Thus, the FMA must be adapted in

order to be part of the surface wave model, but the series expansion (3.18)

remains the same. Hence, with the FMA, Eq. (2.2) can be rewritten as

α(xl) φ(xl) ≈
1

4π

p∑

k=0

k∑

m=−k

Mm
k (O)

Y m
k (θ, ϕ)

rk+1
(3.19)
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where moments Mm
k (O) are defined as

Mm
k (O) =

∫

Γ

{
∂φ

∂n
(x) ρkY −m

k (α, β) − φ(x)
∂

∂n

(
ρkY −m

k (α, β)

)}
dΓ .

(3.20)

Instead of considering mutual interactions between two points on the

boundary, we now need to look at the contribution of an element of the

discretization to a collocation point. The local computation of several ele-

ments, grouped together into a multipole, relies on a BEM analysis using

the spherical harmonic functions instead of the Green’s function. The in-

tegration of the normal derivative of the spherical harmonics is done by

taking care of avoiding an apparent singularity, which could generate nu-

merical errors. The BEM discretization only applies to the computation of

the moments. Thus, the rest of the FMA is unchanged, especially regard-

ing translation and conversion formulas, which allow to pass information

through the hierarchical spatial subdivision, from the multipole contribu-

tions to the matrix evaluation for each collocation node. In the model, the

implementation of the FMA thus only affected programs that involved the

assembling and the solution of the algebraic system matrix. The storage of

coefficients that are used several times for each time step, for instance, is

now done inside the cells of the hierarchical subdivision. The rigid mode

and multiple nodes techniques, which a priori modified the matrix before

the computation of matrix-vector products, are now considered as terms

correcting the result of such products, so that the linear system keeps the

same properties.

The accelerated model benefits from the faster Laplace’s equation solver

at each time step. The FMA model performance was tested by comparing

new results with results of the former model using GMRES, for a 3D appli-

cation which requires great accuracy: the propagation of a solitary wave on

a sloping bottom with a transverse modulation, leading to a plunging jet.36

The consistency of the new solution was checked but, more importantly,

the accuracy and stability of results and their convergence as a function of

discretization size was verified. In fact, by adjusting the parameters of the

FMA, i.e. the hierarchical spatial subdivision and the number of terms p

in the multipole expansions, one can essentially obtain the same results as

with the former model. In this validation application, for discretizations

having more than 4,000 nodes, the computational time was observed to in-

crease nearly linearly with the number of nodes.49,70 Using this model for

other applications,40,43,46 similar properties of the solution were observed
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as a function of the discretization when applying the model to the gener-

ation of tsunamis by underwater landslides, of freak waves by directional

focusing, and of waves by a moving surface disturbance, respectively.

3.1.5. Image method

Some applications may have a horizontal symmetry and/or a flat bottom

in the computational domain. In such cases, an image method can be

applied when computing the BIEs, with respect to the planes z = −d

and/or y = 0, to remove parts of the discretization. Doing so, the 3D free

space Green’s function is modified in the BIE, by adding contributions of

each image source. Grilli and Brandini38 show details and results of this

approach in the case of the generation of extreme waves by a directional

wavemaker over a flat bottom. The image method was also applied for a

horizontal symmetry to compute cases of wave generation by underwater

landslides,42,43 and for a flat bottom and a horizontal symmetry, to the

generation of waves by a moving disturbance on the free surface, over a flat

bottom.54

Note, in the FMA, when the original source point is far from the colloca-

tion point, so are the images. Thus, image contributions are simply added

to the multipole associated with the original point. In the usual application

of the FMA, images should be accounted for at a coarser subdivision level

than that of the original source points, since they are further away from

the evaluation point.

3.2. Time integration

A second-order explicit scheme based on Taylor series expansions is used

to update the position R and velocity potential φ on the free surface, as,

R(t + ∆t) = R + ∆t
DR

Dt
+

∆t2

2

D2R

Dt2
+ O

(
∆t3

)
(3.21)

φ(t + ∆t) = φ + ∆t
Dφ

Dt
+

∆t2

2

D2φ

Dt2
+ O

(
∆t3

)
(3.22)

where ∆t is the varying time step and all terms in the right-hand sides are

evaluated at time t.

First-order coefficients in these Taylor series are given by Eqs. (2.4) and

(2.5), which requires calculating φ, ∂φ/∂n at time t on the free surface.

Second-order coefficients are obtained from the Lagrangian time derivative
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of Eqs. (2.4) and (2.5), as

D2R

Dt2
=

Du

Dt
D2φ

Dt2
= −gw + u ·

Du

Dt
− 1

ρ

Dpa

Dt
. (3.23)

Appendix A.1 gives the expression for the Lagrangian acceleration on the

boundary, which requires calculating ( ∂φ
∂t , ∂2φ

∂t∂n ) at time t, as well as their

tangential derivatives. As mentioned above, this is done by solving a second

BIE similar to Eq. (2.2) for ∂φ
∂t . Since both BIEs correspond to the same

boundary geometry, the resulting linear algebraic system Eq. (3.15) only

needs to be discretized and assembled once. Boundary conditions for the

second BIE are expressed based on the solution of the first BIE. On the

free surface, Bernoulli equation yields the Dirichlet condition,

∂φ

∂t
= −gz − 1

2 ∇φ · ∇φ − pa

ρ
on Γf (t) . (3.24)

For wave generation by a moving boundary, such as a wavemaker (active or

absorbing) or an underwater landslide, of velocity up(xp, t) and acceleration

u̇p(xp, t), using Eqs. (2.6) and (2.24), and after some derivations, we obtain

the Neumann condition,

∂2φ

∂t∂n
= u̇p · n + up · ṅ − φnφnn − 1

(1 − κ2)2

{
(φs − κφm)

(φns − κφnm) + (φm − κφs)(φnm − κφns)

}
(3.25)

where the expression for φnn is given in Appendix A.1 and ṅ = Ω × n for

a rigid body motion with angular velocity Ω.

On stationary boundaries we simply specify,

∂2φ

∂t∂n
= 0 on (Γr2), (Γb) (3.26)

depending on the considered problem.

Time step ∆t in Eqs. (3.21) and (3.22) is adaptively selected at each

time to satisfy a mesh Courant condition,

∆t = C0
∆rmin

√
gh

(3.27)

where C0 denotes the Courant number, ∆rmin is the instantaneous mini-

mum distance between two neighboring nodes on Γf and h is a characteristic
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depth. Grilli et al.36 performed a sensitivity analysis of numerical errors

in the model (see next section) to the spatial and temporal discretization

expressed as a function of the mesh size and Courant number. They showed

that errors were minimum for C0 = 0.45 to 0.5. This is the value used in

the present applications.

This second-order time stepping scheme is explicit and uses all spatial

derivatives of the field variables at time t to calculate the position and

potential of water particles at t+∆t. This was shown in earlier applications

to provide a good stability of the computed solution, which typically can

proceed for thousands of time steps without requiring any smoothing.

Note that for absorbing wavemaker boundaries, the piston position is

updated for the next time step using Taylor series expansions similar to

those used for the free surface.

3.3. Numerical errors

In a number of earlier applications of the model to cases with known analyt-

ical solution, it was confirmed that maximum local numerical errors in the

BEM are of more than third-order in mesh size ∆rmin (typically 3.5-4th-

order46), which is expected considering the third-order boundary elements

used in the discretization. For a given mesh size, numerical errors were also

shown to be of third-order in time step ∆t, when mesh size was such as to

satisfy the Courant condition Eq. (3.27).

For general nonlinear wave generation and propagation problems, when

no a priori solution is known, the mesh size is selected based on expected

wavelength in order to have a sufficient resolution of individual waves. Time

step is then adaptively adjusted based on Courant condition Eq. (3.27).

An estimate of numerical errors can thus only be made in a global sense.

For instance, the global accuracy of the BEM solution can be checked at

each time step by calculating a nondimensional error on boundary flux

continuity as,

εC =
∆t

Vo

∫

Γ

∂φ

∂n
dΓ (3.28)

where Vo denotes the initial domain volume.

The combined global accuracy of the BEM solution and time stepping

scheme can then be estimated as a function of time, by checking the con-

servation of volume,

V (t) =

∫

Γ

znz dΓ (3.29)
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and total energy,

E(t) = 1
2 ρ

∫

Γ

(
φ

∂φ

∂n
+ gz2nz

)
dΓ (3.30)

where the first and second terms represent the kinetic and potential energy

contributions of the flow respectively, and nz is the vertical component

of the unit normal vector. Thus, a time varying nondimensional error on

volume conservation can be expressed as εV = (V − Vo)/Vo while for the

energy, the nondimensional error on total energy reads, εE = (E−Eo)/Eo.

However, to calculate the latter error, one must either start from an initial

wavefield with total energy Eo or wait for the model to achieve a quasi-

steady state, with nearly constant time average energy, expressing a balance

between wave generation and dissipation/absorption. Such error calcula-

tions for complex propagating and shoaling wave fields, dissipating their

energy in an AB, were made extensively for 2D computations.23

As mentioned above, it was found in applications that errors on volume

and energy conservation reach a minimum for C0 ' 0.45 to 0.5, indepen-

dently of mesh size. This implies in particular that ∆t could not be im-

posed too small, otherwise numerical errors would accumulate faster when

solving the BIEs at intermediate times. It is emphasized that no smooth-

ing/filtering was used to stabilize the solution in all cases we considered in

past applications as well as those reported later in this paper.

3.4. Mesh regridding and time updating

Due to the MEL time updating of the free surface nodes (identical to water

particles), during computations of wave propagation, nodes may accumu-

late in some areas of the free surface (e.g., with converging flow such as

overturning breaker jets) or move away from some areas (such as a wave-

maker boundary generating nonlinear waves with a non-zero mean mass

flux).

Hence, although this is not required in most cases to stabilize computa-

tions, it is desirable to have a means in the model of both refining the mesh

discretization in areas of formation of breaker jets, prior to their occurrence

or to periodically regrid sections of the free surface on a regular mesh. In

2D studies, regridding was done by implementing a node regridding method

in which a specified number of nodes were regridded at constant arclength

value in between two nodes selected on the free surface.22 In the initial

implementation of the 3D model,36 a two-dimensional regridding method

was implemented based on this principle. For practical reasons, the 3D
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regridding method required the free surface η(x, y) to be single-valued. In

other more recent applications, a pseudo-Lagrangian time updating was im-

plemented,45,46 in which free surface nodes can move at a velocity different

from the flow velocity. By adjusting this velocity, free surface nodes can

be updated on a purely Eulerian manner (i.e., vertically) in some regions

of the boundary or on a fully Lagrangian matter in other regions, and all

the range in between. The reader is referred to the published references for

more information on this matter.

4. Numerical Results

4.1. Shoaling and breaking of solitary waves on a sloping

ridge

After implementing the model, Grilli et al.36 first tested its accuracy and

efficiency by computing the propagation of the simplest possible nonlin-

ear wave with numerically exact shape and potential, i.e., a solitary wave.

Tanaka51 developed a method for calculating fully nonlinear solitary wave

shape and kinematics up to their maximum height of about 80% of the

local constant depth. Grilli and Svendsen59 adapted this method to calcu-

lating initial solitary solutions in their 2D model, and Grilli et al.5,6 then

calculated physical features for the shoaling and overturning of such waves

over a variety of slopes. Upon implementing the 3D model,36 such exact

solitary waves propagating over constant depth and plane slopes were also

used to validate the model and estimate the required spatial and temporal

discretization sizes; this led to the optimal value of the mesh Courant num-

ber discussed before. To produce well-controlled 3D overturning jets, they

then calculated the shoaling of solitary waves over a sloping ridge causing

3D focusing. Fochesato et al.50 later used similar test cases to validate

their implementation of a modified surface representation in the model.

Since shallow water wave breaking on sloping beaches exhibits many of the

features of a succession of solitary waves, Guyenne and Grilli53 performed

a detailed numerical study of the physics of 3D overturning waves over ar-

bitrary bottom, using the same idealized case of a solitary wave shoaling

over a sloping ridge. They analyzed shoaling and breaking wave profiles

and kinematics (both on the free surface and within the flow) and observed

that the transverse modulation of the ridge topography induces significant

3D effects on the time evolution, shape and kinematics of breaking waves.

These effects were found to be similar to those observed for periodic 3D

 EBSCOhost - printed on 6/9/2020 4:59 PM via UNIV OF DELAWARE LIBRARY. All use subject to https://www.ebsco.com/terms-of-use



November 20, 2008 16:3 World Scientific Review Volume - 9in x 6in ch3

102 S.T. Grilli et al.

(a)

(b)

Fig. 4. Bottom topography and its initial discretization for the shoaling of a solitary

wave over a sloping ridge with a 1 : 15 slope in the x-direction and a lateral sech
2
(ky′

)

modulation. Configurations with k = (a) 0.1; and (b) 0.25 are represented here.

overturning waves in deep water.35 Comparing earlier 2D results3,19 to 3D

results in the middle cross-section of the ridge, Grilli and Guyenne showed

remarkable similarities, especially for the shape and dynamics of the plung-

ing jet, indicating that late in the overturning, wave breaking is quasi-2D

and becomes almost independent from the background flow and boundary

conditions (including bottom topography), that have induced breaking.

Solitary wave breaking on a sloping ridge is illustrated in the following.

Figure 4 shows the typical sloping ridge geometry used.53 [Primes hereafter

indicate non-dimensional variables based on long wave theory, i.e. lengths

are divided by h0 and times divided by
√

h0/g.] The ridge starts at x′ =

5.225, with a 1 : 15 slope in the middle cross-section and a transverse

modulation of the form sech2(ky′). Here, we successively set k = 0.1 and

0.25, which correspond to different amplitudes for the transverse tails of

the ridge. An incident ‘Tanaka’ solitary wave of height H ′ = 0.6 with the

crest located at x′
0 = 5.785 for t′ = 0 is used in computations.

The computational domain is of width 8 or 16h0, for each case respec-

tively, in the y-direction and is truncated at x′ = 19 in the x-direction,
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with minimum depth z′ = −0.082 in the middle (y′ = 0). The initial

discretization for the bottom and free surface consists of 50 × 20 or 40

quadrilateral elements in the x- and y-directions, respectively (∆x′
0 = 0.38

and ∆y′
0 = 0.4). The lateral boundaries have grid lines connecting the edge

nodes of the bottom and free surface, with four elements specified in the

vertical direction. Consequently, the total number of nodes is NΓ = 2862

or 5102, and the initial time step is set to ∆t′0 = 0.171 for C0 = 0.45.

Computations are performed in this initial discretization as long as global

errors on wave mass remain acceptable (i.e., less than 0.05% or so). A

two-dimensional regridding to a finer resolution is then applied at a time

when the wave profile is still single-valued. The discretization is increased to

60×40 or 70 quadrilateral elements, respectively, in the portion 8 ≤ x′ ≤ 19

of the bottom and free surface (∆x′ = 0.18, ∆y′ = 0.2 and NΓ = 6, 022

or 9,982). For instance, regridding was applied at t′ = 4.900 for k = 0.25,

when errors on volume and energy conservation are 0.010% and 0.013%

respectively.

Figure 5 shows results just before jet touch-down, at a time when global

errors on mass and energy are still acceptable (typically less than 0.1% with

respect to initial wave mass or energy). Figure 5a shows wave shapes for

k = 0.1 at t′ = 8.958, seen from two different angles, and Fig. 5b shows

results for k = 0.25 at t′ = 9.268. In the former case, the wave develops

into a wide barely modulated breaker while in the latter case, for which

the incident wave propagates over a laterally steeper ridge, the overturning

wave develops into a narrow, well developed and more strongly plunging

jet. These computations were performed in 2003-04, using GMRES as a

solver, on a single processor Compaq Alpha GS160 computer. Without any

particular optimization, the CPU time per time step for NΓ = 6, 022 was

of O(10) minutes (for a few hundred time steps). As we shall see, a much

faster solution was achieved for more recent computations using the FMA

method in combination with GMRES.

The model is general and various cases of breaking induced by com-

plex nearshore bathymetry can be simulated. Figure 6, for instance, shows

the breaking of a solitary wave over a sloping bar, a case that would be

of interest for studying the sensitivity of wave-induced nearshore currents

to breaker characteristics and bar shape, designing submerged breakwa-

ters used for coastal protection, or surfing reefs aimed at inducing certain

breaker types and shape. For more results, details, and discussion of the

physics of 3D overturning waves over shallow water topography, the inter-

ested reader is referred to the literature.53
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(a)

(b)

Fig. 5. Solitary wave profiles for (a) k = 0.1 (t′ = 8.958), (b) k = 0.25 (t′ = 9.268).
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Fig. 6. Example of solitary wave breaking over a sloping bar.

4.2. Generation of extreme waves by directional energy

focusing

Three-dimensional directional wave energy focusing is one of the mecha-

nisms that contribute to the generation of extreme gravity waves in the

ocean, also known as rogue waves. Grilli and Brandini38,39 and Fochesato

et al.40 used the 3D-BEM FNPF model to simulate and analyze this phe-

nomenon over constant depth, by specifying the motion of a snake wave-

maker on one side of the model boundary and an open snake absorbing

boundary on the other side, thus creating a 3D Numerical Wave Tank

(NWT). The wavemaker law of motion was specified such as to linearly

focus periodic waves in the middle of the tank.72 Using the image method

in the z direction to reduce the size of the discretization initial stages of 3D

extreme breaking waves were simulated.38,39 Computations however could

not proceed further, in part because of the lack of resolution of the breaker

jet and because the more accurate free surface representation developed

later50 was not used. By contrast, in more recent work,40 all model im-

provements detailed in this paper were used, including the image method

in both y and z directions, and the FMA combined with GMRES as a

solver, whose efficiency made it possible to generate finely resolved 3D fo-

cused overturning waves and analyze their geometry and kinematics. In

the following, we only present a typical simulation of an overturning rogue

wave. A literature review, and further computations and sensitivity analy-

ses of extreme wave geometry and kinematics to water depth and maximum

angle of directional energy focusing can be found in Ref. 40. In particu-

lar, in the latter work, we show that an overturning rogue wave can have
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different properties depending on whether it is in the focusing or defocusing

phase at breaking onset. The maximum focusing angle and the water depth

largely control this situation, and therefore the main features of the rogue

wave crest, such as its 3D shape and kinematics.

In the following application, we generate an overturning rogue wave

by specifying the superposition of 30 wave components at the snake wave-

maker. These wave components have identical frequency Ω = 0.8971 rad/s

(i.e., linear period of T = 7 s, linear wavelength L = 2π/k = 72 m, in depth

d = 20 m) and amplitude A = 0.19 m, but directions varying between −45

and 45 degrees. With these parameters, linear wavemaker theory yields a

stroke amplitude of a = 0.2 m for each individual wave. The amplitude at

the linear focal point (specified here at the distance xf = 250 m from the

wavemaker) would thus theoretically be A∗ = 6.3 m. This is clearly a large

value, in accordance with our goal of generating a large overturning wave

early in the generation process, before the wave reaches the far end of the

tank where, despite the absorbing boundary condition, some reflection may

occur that may perturb wave focusing. The NWT used in this computation

has a 440 m length (or 22d) and a 600 m width (or 30d). For the selected

focusing distance, this NWT length is such that, when overturning of the

extreme wave occurs, only very few small waves will have reached the far

end of the tank. Hence, the absorbing boundary condition will barely be

activated in this computation. The half width of the NWT along y is di-

vided into 70 elements (∆y = 4.3 m), and its depth into 4 elements. At

the beginning of computations, the discretization has 90 elements in the

x−longitudinal direction (∆x = 4.9 m), which corresponds to roughly 15

nodes per wavelength, which makes a total of NΓ = 7, 626 nodes (consid-

ering the image method eliminates the bottom and one lateral boundary).

In order to better resolve the wave steepening towards breaking (defined

as the occurrence of the first vertical tangent on the free surface), the x-

resolution is later improved by using 120 elements with an irregular grid,

refined around the breaking wave for t > 43.39 s (= 6.20T ), bringing the

total number of nodes to NΓ = 9, 906. The present simulations using the

FMA required 2 min per time step (in scalar mode) on a biprocessor Xeon

(3Ghz, 2Gb of RAM) and lasted for more than 350 time steps (i.e., a total

of 700 min). Although processors clearly differ, such computational times

per time step are clearly much faster than in the previous application that

only used GMRES as a solver.

Figure 7 shows the free surface elevation at a time the focused wave

has started to overturn. A detailed analysis of the earlier stages of this
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(a)

(b)

(c)

Fig. 7. Free surface evolution of focused wave shown at t = 6.89T , when overturning

starts, with the wave crest located at x = 211 m (or 10.55 d): (a) wave elevation in

arbitrary gray scale; (b) wave horizontal velocity u/
√

gd; (c) vertical section at y = 0,

with the arrows showing the projected internal velocity vectors (the arrow in the upper-

right corner represents the unit nondimensional velocity vector; the vertical axis scale is

exaggerated by a factor of 9). [Note that contours shown in this figure are less smooth

than the actual wave surface in the BEM, because of the plotting algorithm.]
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computation would show that the initially flat NWT free surface starts

oscillating near the wavemaker and, due to the ramp-up of the wavemaker

motion specified over three wave periods, a first moderate amplitude wave

is generated. This first wave then almost disappears at the plot scale while

the wavemaker amplitude of oscillations further increases, to give rise in the

middle of the tank to an even larger wave and, eventually, after the ramp-up

is over to achieve complete focusing, with an even larger wave, that starts

overturning around xc = 211 m (or 10.55 d) as shown in Fig. 7a. This

is closer to the wavemaker than the linearly estimated focal point (12.5d).

Behind this breaker, we see on the figure that the phenomenon is starting to

repeat itself, with a new curved crest line appearing and converging towards

the center of the NWT. Figure 7b shows the horizontal velocity component

u/
√

gd values over the free surface; we see that, at overturning, very large

values only occur in the upper third of the focused wave crest, approaching

0.9 at the wave crest tip, while the wave linear phase speed is c/
√

gd =

0.73. The focused wave crest thus tends to move forward faster than the

phase velocity of its basic wave components, thus initiating overturning and

breaking. The cross-section in Fig. 7c shows internal velocity fields, which

illustrate the more intense kinematics at incipient breaking immediately

below the wave crest. The full 3D fields would show that particle velocities

are essentially upwards, with the upper part of the fields having nearly

uniform values. Accelerations are negative, with greater values (' 2g)

nearest the crest.

The properties of this extreme focused wave agree qualitatively well with

observed characteristics of rogue waves. Figure 7a shows a circular trough

located just in front of the overturning wave (the so-called “hole in the sea”

reported by rogue wave eyewitnesses). Behind the wave, an even deeper

trough has formed (which is more clearly seen in Fig. 7c), separating the

main wave from the curved crest line that follows it. This trough has more

of a crescent shape, due to the directions of the incoming waves. Due to the

significant directionality, the overturning part of the wave is quite narrow

and also located in the middle of a curved front, hence illustrating strong 3D

effects. The amplitude of the overturning wave is significantly larger than

that of the following waves, which have not yet converged, and the wave has

a strong back-to-front asymmetry (this is also more clearly seen in Figs. 7c

and 8). In the vertical cross-section of Fig. 7c the wave profile appears

similar to that observed in rogue wave measurements or observations (see

for example the extreme wave measured under the Draupner platform in

the North Sea on January 1st 1995), as well as in earlier 2D numerical
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Fig. 8. Close-up of the overturning rogue wave for case of Fig. 7.

studies, for instance those related to modulational instabilities of a wave

packet.73 A large crest (Ac = 7.16 m or 0.358d) is preceded and followed

by two shallower troughs; the back trough is deeper than the front one

(At1 = 3.60 m and At2 = 2.14 m, or 0.180d and 0.107d, respectively).

Wave height is H1 = Ac + At1 = 10.76 m or 0.538d, which is less than the

linearly predicted upper bound value 2A∗ = 12.6 m. This is because of the

early breaking of the wave and the incomplete focusing. The wavelength

of the nonlinear focused wave can be estimated to λ ' 78.0 m (or 3.90

d), by averaging the rear and front wavelengths, which is more than the

linear value, due to amplitude dispersive effects. This yields a steepness

H/λ = 0.138, which is greater than the limiting steepness predicted by

Miche’s law for this depth (about 0.132 for a symmetric maximum Stokes

wave). Hence, the asymmetric and transient 3D extreme wave generated

in the NWT in this application grows further than the theoretical limiting

steepness, before it overturns. This may have important implications for

structural design of offshore structures (e.g., Ref. 74). Finally, Fig. 8 shows

a closeup of the development of the plunging jet in Fig. 7. We did not

attempt to accurately follow the overturning jet beyond this stage, although

as seen in the previous application, the model is clearly capable of doing

so, given a proper discretization. Hence, here, we did not discuss wave

breaking characteristics in detail, but limited our analyses to the initiation

of breaking. Note nevertheless the similarity of this 3D breaking crest with

some of the shallow water breaking waves shown in the previous section

and in Ref. 53.

More computational cases and further discussions can be found in

Ref. 40.
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4.3. Landslide tsunami generation

While the scientific community has worked for decades on the modeling of

tsunamis directly generated by the bottom motion caused by an earthquake

(so-called co-seismic tsunamis), in the past ten years, the 1998 Papua New

Guinea (PNG) tsunami has focused the interest of a sizeable part of the sci-

entific community on the lesser studied landslide tsunamis. After years of

field surveys and modeling work following the PNG event, an almost unan-

imous consensus was reached in the community that the large tsunami,

whose coastal runup on the nearby shore reached 16 m at places, while

associated with a moderately tsunamigenic 7.1 magnitude earthquake, had

been triggered by an underwater mass failure, itself triggered (with a 15

min. delay) by the earthquake (e.g., ground acceleration and induced ex-

cess groundwater pore pressure). Field work further showed that the mass

failure responsible for the triggering of the tsunami was a large rotational

slide (i.e., a slump), of at least 6 km3, initiated at an average depth of

1,500 m, about 60 km offshore of the main impacted area of PNG (see, e.g.,

Ref. 75 for a recent review of this event, including field work and modeling).

Thus, following PNG, a number of laboratory and modeling stud-

ies were conducted, aimed at better understanding the physics of land-

slide tsunami generation and relating initial tsunami parameters (i.e., the

tsunami source), to geometrical, geological, and geotechnical parameters of

the underwater slide. In most of the work so far, the more complex trig-

gering phase was largely ignored to concentrate on tsunami generation by

the moving underwater slide. While tsunamis, once generated, eventually

behave in the far field as long gravity waves, which in deep water can even

be well approximated by linear long wave theory, near their source, land-

slide tsunamis are generated by the complex 3D flow field induced by the

moving slide. Moreover, if the slide is initiated in very shallow water (or is

partly emerged as a so-called subaerial slide), initial waves may be strongly

nonlinear or even breaking.

In view of these features of landslide tsunamis and to address the prob-

lem in the most general manner from the fluid point-of-view, Grilli and

Watts76 developed a 2D-FNPF model of landslide tsunami generation and

initial propagation. The slide law of motion in this model was that of a

solid body moving down a plane slope, under the action of gravity, buoy-

ancy, basal friction, hydrodynamic drag and inertia (added mass) forces.

Grilli and Watts77 performed additional work in this direction, and applied

an updated version of this initial model to a large set of parameters, in
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Fig. 9. General view of experimental set-up for landslide tsunami experiments: slope,

rail, landslide model, wave gauges/step motors, and supporting I-beams.

Fig. 10. BEM domain and variable set-up for 3D-FNPF computations of landslide

tsunami generation.

combination with 2D laboratory experiments used for validation. In par-

ticular, these authors showed that most of the tsunami generation occurs for

t < t0 = ut/a0, a characteristic time, function of the slide terminal veloc-

ity ut and initial acceleration ao, both of these being themselves functions
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Fig. 11. Example of experimental surface elevations generated for d = 0.12 m at t ' to.

Note, the submerged model slide is visible underwater at the top of the picture.

of the problem parameters. Based on this numerical work, Watts et al.78

developed semi-empirical relationships expressing the main tsunami char-

acteristics (such as initial depression) as a function of the slide parameters

(for both translational landslides and slumps). Such relationships allowed

to rapidly design a 3D landslide tsunami source and conduct case studies,

using more standard long wave models (see Ref. 79 for details). While it

was shown that landslide tsunamis are fairly directional and, hence, 3D ef-

fects in their sources are less prominent than for co-seismic tsunami sources,

Grilli et al.41 performed 3D-FNPF landslide tsunami simulations, by modi-

fying the present FNPF model. Enet and Grilli42,43,80 later performed large

scale 3D laboratory experiments that validated both results of this model,

as well as the empirical relationships developed earlier, based on 2D simula-

tions. They also performed new simulations of their 3D experiments, using

the more recent and optimized version of the 3D-FNPF model detailed in

this paper.

The following illustrates some of these 3D landslide tsunami simulations

and their experimental validation; more results and details can be found

in the references. Figure 9 shows the experimental set-up for the earlier

experiments.42,80 A smooth bi-Gaussian-shaped aluminum body (length

b = 0.395 m, width w = 0.680 m, and maximum thickness T = 0.082
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Fig. 12. Typical laws of motion for rigid underwater landslides, as a function of non-

dimensional time t/to: dimensionless motion parallel to the slope s/s0 (—–), velocity

u/ut (- - - -), and acceleration a/a0 (— - —), where (s0, ut, a0) denote characteristic

distance of motion, terminal velocity, and initial acceleration, respectively, all function

of the slide and set-up physical parameters.

m) is used to represent a solid underwater slide moving down a 15◦ slope,

from a series of initial submergence depths d. [This shape reduces flow

separation and hence makes potential flow theory fully relevant to model

such cases.] Experiments were performed in the 3.6 m wide, 1.8 m deep

and 30 m long wavetank of the Department of Ocean Engineering, at the

University of Rhode Island. Figure 10 shows the BEM model set-up used

in numerical simulations, which is similar to the earlier work,41 but uses

two absorbing pistons, open boundaries, in the negative and positive x

directions, representing the onshore and offshore directions, respectively. A

shallow shelf of depth h1 is modeled onshore of the slide, while the depth

levels-up to ho offshore of the slide. As mentioned, the model uses the

image method to remove half of the unknowns for y < 0 and the FMA

(combined with GMRES) is used for the BEM solution at each time step.

For these simulations, which were performed on a PC-Pentium computer

circa 2005, this led to about 4 min per time step for NΓ = 4146 nodes (half

domain).

Landslide motion, and the corresponding deformation of the bottom

discretization, are specified as a boundary condition, based on laws of mo-

tion derived earlier77 and adapted to the 3D model80 (Fig. 12). Note that

the landslide is represented in the BEM model as a space and time varying

“wave” of elevation z, specified for the bottom elements (of fixed coordi-

nates x and y) located on the underwater slope, between x = xo + lo and
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Fig. 13. Landslide tsunami shapes computed at t = t0/4; (b) t0/2; (c) 3t0/4; and (d)

t0, for initial slide submergence d = 120 mm, for which t0 = 1.74 s at laboratory scale

(vertical scale is exaggerated).
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Fig. 14. Comparison of experiments (symbols) with model results (—–) for d = 0.140
m at gauge: 1 ◦; 2 ♦; and 4 � (only 10% of experimental data points are shown).

xo + do (see Fig. 10, and41 for detail). Figure 13 shows typical free surface

elevations computed at various times t ≤ t0 for an initial slide submergence

d = 0.12 m. Figure 11 shows a picture of the free surface observed in the

tank at the time of Fig. 13d. Both observed and simulated surfaces exhibit

a typical double crescent-shaped crests, in a ' 30◦ angular sector centered

in the direction x of slide motion. Figure 14 shows a comparison of nu-

merical simulations with experiments for d = 0.14 m (for which t0 = 1.87

s), for 3 wave gauges. [Note, in these simulations, in order to more closely

model tank experiments, only one absorbing boundary was used on the

offshore side of the NWT, while the length of the onshore shelf, of depth

h1 was adjusted to yield the same volume as for the sloping bottom.] The

agreement between both of these is quite good, with absolute differences

between computations and measurements on the order of 1 mm, which

considering meniscus effects on the wave gauges, is within the experimental

error. The first gauge (1) is located above the initial middle location of the

slide at xi = 0.846 and y = 0 (Fig. 10), and essentially records the initial

tsunami depression induced by the slide motion (4 mm at model scale; also

see Fig. 13b). As expected, this surface depression, which represents the

initial tsunami generation (i.e., source), occurs for t < 0.5t0. At later times,

the depression ‘rebounds’ into large offshore propagating oscillatory waves,

gradually spreading with a leading depression wave, and smaller onshore

propagating waves (causing coastal runup), indicating strong dispersive ef-

fects (see Fig. 13). Gauge (2) is located further downslope and off-axis, at
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x = 1.469 m and y = 0.35 m. Here, the tsunami has developed into a disper-

sive train (see Ref. 80 for longer time series of experimental measurements)

whose first wave has a 11-12 mm height. Finally, at gauge (4), further off-

shore and off-axis at x = 1.929 m and y = 0.50 m, the tsunami also has an

initial depression followed by a train of oscillatory waves. The interested

reader will find more cases and details of experiments and simulations in

Refs. 42,43 and 80.

4.4. Waves generated by a surface disturbance

In recent years there has been broad interest in high speed ships, not only

for special purpose military crafts, but also for fast passenger ferries and

commercial sealift. In this respect, one of the most promising concepts

is the Surface Effect Ship (SES), which features an air cushion located,

unlike hovercrafts, within a cavity built in a rigid hull. Numerical simu-

lations were conducted with the 3D-FNPF model, as part of the design

of a new type of SES with catamaran hull (the Harley SES), which also

involved performing tow tank experiments and analyses with a 2.3 m long

SES model. Specifically, among various resistance terms, experimentally

measured wavemaking drag was compared to that calculated in an ideal-

ized numerical model of twin air cushions. Indeed for such very low draft

planning ship hulls, wavemaking drag is the main hydrodynamic resistance

component, which essentially corresponds to the integrated cushion pres-

sure force acting on the sloping free surface η(x, y) within the air cushions.

For high speed sealift and hence high pressure in the cushions, free sur-

face shape may become quite steep within the cushions and no longer be

approximated by linear wave theory.

To simulate this problem, Sung and Grilli44–46 modified the 3D-FNPF

NWT detailed in this paper, by expressing time updating equations in a

coordinate system (x′, y, z) moving with the ship/cushion velocity U(t), in

the x direction. A side effect of this method is that the MEL updating will

gradually transport free surface nodes downstream, at a mean velocity U .

Hence, a variety of free-surface updating schemes were tested, that allowed

for pseudo-Lagrangian updating of free surface nodes, allowing these to

keep a fixed x location. Specifically, in this application, the potential is

expressed as (more details can be found in the references),

φ(x, t) = Ux + ϕ(x, t) with x′ = x +

∫ t

0

U(τ)dτ (4.1)
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(a)

(b)

(c)

Fig. 15. Computed free surface elevations for waves generated by twin air cushions

moving at speed U = (a) 4, (b) 6, and (c) 8 m/s, with displacement W = 445 N. Quasi-

steady state is established after 300 time steps (for t = 18, 12, and 9 s, respectively).[Note,

dimensions are made nondimensional using cushion half-length a = 0.745.]
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and the pseudo-Lagrangian operator is,

D̃

Dt
=

∂

∂t
+

∂ϕ

∂y

∂

∂y
+

{
∂ϕ

∂t
+

∂η

∂x
(U − ∂ϕ

∂x
)

}
∂

∂z
. (4.2)

Another problem when using such relative axes is that, at the upstream edge

of the NWT, a fast mean current flows under an essentially flat free surface,

which typically causes the appearance of instabilities and high frequency

oscillations in the model that must be damped using an absorbing beach.

Here, this is done by specifying an artificial pressure over a narrow strip of

free surface near the leading edge as, pa = −νϕ.

Although the 3D model is capable of simulating the full surface piercing

ship hull, we only specify here the surface disturbance caused by a traveling

air cushion. As mentioned, for a high speed SES, wavemaking drag is

essentially due to cushion pressure effects. Following Harris and Grilli,54

we perform simulations at model scale, for waves generated by a twin air

cushion moving at speed U =4, 6, or 8 m/s in the x direction. A free surface

pressure pa(x, y) is specified in the model (in Eq. (2.5)) over cushions of

length 2a = 1.49 m, width 0.23 m, and total surface area Sc = 0.685 m2.

The cushions are set one width apart and their initial x-location is 4.95 m

(down from the tank leading edge), in a tank 13.4 m long, 2.3 m wide (10

cushion widths), and 7 m deep (corresponding to the actual experimental

towing tank depth). The pressure distribution over the cushions is similar

to that used earlier,44,45 i.e., a double ‘tanh’ shape in x and y directions,

with falloff parameters α = 5 and β = 10. We assume a total displacement

of W = 445 N for the modeled vehicle and hence an average pressure

needed to support this displacement of po = W/Sc = 649 N/m2. An

absorbing boundary (snake wavemaker) condition is specified in the NWT

downstream of the cushions, and no flow conditions on the side walls. We

use 81, 45 and 25 nodes in the (x′, y, z) directions, respectively. [Note,

due to symmetry, only half the domain is represented in the y direction.]

For a total of NΓ = 14, 946 nodes, the CPU time per time step, using the

FMA-GMRES method is about 4.5 min on a 2 GHz x8664 single processor

with 3Gb of RAM (i.e., a total of 1350 min; one of two processors on

a Microways 4-bipro node cluster). In separate but similar applications,

Sung and Grilli46 reported a ∼ N1.32
Γ growth of CPU time, using the FMA-

GMRES method on a single processor computer. [Note, these computations

included the set-up time of the BEM system matrices, which normally grows

as N2
Γ.]
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Fig. 16. Wave resistance coefficient as a function of time, for each test case in Fig. 15:

(a) (—-); (b) (- - -); (c) (— - —).

After a smooth ramp-up of both cushion speed and pressure over 40

time steps, the model reaches a quasi-steady free surface elevation (Fig. 15)

and resistance coefficient value (Fig. 16),

CW =
ρga

Wp0

∫

Sc

p
∂η

∂x
dS . (4.3)

Figure 15 shows free surfaces computed after 300 time steps, for the 3 cush-

ion speeds, which all appear in a form similar to the classic Kelvin wave

pattern. [Note, because of the finite depth, changes in patch velocity induce

changes in the angle of the Kelvin wake.] Figure 16 indicates that the total

wave drag coefficients reach stable values in the 3 test cases. Harris and

Grilli54 show that these values agree quite well with experimental measure-

ments, particularly for the two highest speeds (for which the proportion of

frictional drag in the experiments is very small).

5. Conclusions

We report on the development, validation, and application of an accurate

and versatile model solving FNPF theory with a free surface, using both

a higher-order BEM and MEL explicit free surface time updating, in a

3D domain of arbitrary geometry. Various boundary conditions can be

specified to generate or absorb waves, such as complex snake wavemakers,

actively absorbing boundaries, absorbing beaches, or moving underwater

or free surface bodies. In particular, the model is well-suited to simu-

late wave interactions with surface-piercing moving bodies and the complex
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problems occurring in corners and edges, particularly with respect to well-

posed boundary conditions and accurate numerical integrations. Although

the model yields theoretically fully-populated system matrices, a sparse

structure with improved performance can be achieved through using an

efficient FMA, combined with the iterative solver GMRES. Recent compu-

tations on a single processor computer show a numerical complexity ap-

proaching a linear growth with mesh size, beyond some minimum number

of nodes.

It should be stressed that our approach, is probably unique and dif-

fers in aim from that of more recent faster FNPF solvers that have been

implemented to simulate complex sea states over large areas but are lim-

ited to non-breaking waves and/or use space periodic domains, and often

approximate the FNPF problem to some extent, thus limiting the wave non-

linearity that can be achieved (e.g., Refs. 30–33). Here, we sacrifice some

potential gain in computational efficiency by implementing a very accurate

method in both surface description (including higher-order inter-element

continuity), MEL time updating, and costly numerical BEM integrations,

that allow to accurately model overturning waves and their properties up

to very close to the impact of breaking jets on the free surface, as shown

in applications presented in this paper. Such results have been repeat-

edly shown to approach measurements in precision experiments, to within

a surprising degree of accuracy. Another advantage of the present model

is its easiness and versatility to simulate complex boundary condition and

moving boundaries (both bottom and lateral), including those on surface

piercing bodies. An additional advantage of our approach is the capability

of validating simpler models and finding their range of validity.

Although the model is not capable of describing wave motion beyond

the impact of the plunging jet on the free surface (which terminates com-

putations), its results can be (and have been) used to accurately initial-

ize wave kinematics and pressure close to the breaking point in numeri-

cal models solving full NS equations (e.g., using a volume of fluid (VOF)

method for the interface reconstruction and tracking). Usually, NS models

are computationally very costly (particularly in 3D) and suffer from nu-

merical diffusion, leading to artificial loss of energy over long distances of

wave propagation and hence limiting them to fairly small spatial exten-

sion. Provided they are properly initialized, such NS models can neverthe-

less realistically simulate the splash-up phenomenon, as reported in studies

of 2D breaking waves using Reynolds averaged NS equations with a k–ε

turbulent transport equation,9 and using direct NS simulations,10 or 3D
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breaking waves using a NS model with LES of the turbulent fields.11,12 A

promising development seems to be the actual coupling of BEM-FNPF and

VOF-NS models, for pre- and post-breaking waves respectively. This was,

e.g., done for 2D13,14 and 3D52 problems; the latter work simulated the

breaking and post-breaking of solitary waves on a sloping ridge. Similarly,

Corte and Grilli74 initialized a 3D-VOF-NS model with an extreme focused

wave, obtained in the 3D-FNPF model as in Ref. 40 or as shown in one

of the applications reported in this paper, to calculate extreme wave loads

on cylindrical piles of wind mills to be installed in 40-60 m of water in the

North and Baltic Seas. The coupling of 3D-FNPF results to other methods

such as those based on Smoothed Particle Hydrodynamics (e.g., Ref. 81)

would also be an interesting line of work that some scientists have started

investigating.

Some of the work reported here is still in progress, such as the FNPF-

VOF coupling, the FNPF simulations of wave resistance and dynamic trim

angle of various ships, with hulls of complex geometry (with or without an

air cushion). In this respect, to be able to sufficiently resolve both the ship

hull and the free surface, the image method is being fully integrated with the

FMA (in both y and z directions) for the ship generated wave simulations,

similar to the latest computations of rogue waves, and the FMA method is

being parallelized, using a newly acquired library, to implement it on large

computer clusters.

A.1. Detailed Expressions of Laplace’s Equation and

Accelerations on the Boundary

In the general non-orthogonal curvilinear system (s, m, n) on the boundary,

with κ = cos (s, m), Laplace’s equation for the potential reads,

φnn =
1

1 − κ2

{
2κφsm − φss − φmm +

φs

1 − κ2
{(xss + xmm − 2κxsm) · s

− κ(xss + xmm − 2κxsm) · m} − φm

1 − κ2
{κ(xmm + xss − 2κxsm) ·s

− (xss + xmm − 2κxsm) · m} + φn{xss + xmm − 2κxsm} ·n

}
.

(A.1)
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Then, substituting Equation (A.1) into the expression for the particle ac-

celeration on the boundary yields,

Du

Dt
=

(
∂

∂t
+∇φ · ∇

)
∇φ

=
s

1−κ2

[
φts−κφtm+φnφns−κφnφnm+

1

1−κ2

{
φsφss−2κφsφsm

+ κ2φsφmm − κφmφmm + (1 + κ2)φmφsm − κφmφss

}
+

φ2
s

(1 − κ2)2{
(2κxsm − xss − κ2xmm) ·s + κ(xss − 2κxsm + κ2xmm) · m

}

+
φsφm

(1 − κ2)2

{
(2κxss − (1 + 3κ2)xsm + κ(1 + κ2)xmm) · s

− ((1 + κ2)xss − κ(3 + κ2)xsm + 2κ2xmm) ·m

}
+

φ2
m

(1 − κ2)2

{
κ

((1 + κ2)xsm − κxss − κxmm) · s + (κxss − (1 + κ2)xsm + κxmm)

·m

}
+

φsφn

1 − κ2
κ

{
2xsm − κxss − κxmm

}
·n +

φmφn

1− κ2

{
κxss −

(1 + κ2)xsm + κ3xmm

}
· n

]
+

m

1 − κ2

[
φtm − κφts − κφnφns +

φnφnm +
1

1 − κ2

{
(1 + κ2)φsφsm − κφsφss − κφsφmm + φmφmm −

2κφmφsm + κ2φmφss

}
+

φ2
s

(1 − κ2)2

{
(κxss − (1 + κ2)xsm + κxmm)

·s−κ(κxss−(1+κ2)xsm+κxmm) · m

}
+

φsφm

(1−κ2)2

{
(−2κ2xss+

κ(3+κ2)xsm−(1+κ2)xmm) ·s+(κ(1+κ2)xss−(1+3κ2)xsm+

2κxmm) · m

}
+

φ2
m

(1−κ2)2

{
κ(κ2xss−2κxsm+xmm · s) ·s+

(2κxsm − κ2xss − xmm) · m

}
+

φsφn

1 − κ2

{
(κ3xss − (1 + κ2)xsm +

κxmm) ·n} +
φmφn

1 − κ2

{
κ(2xsm − κxss − κxmm) · n

}]
+

n

1 − κ2

[
(1 − κ2)φtn + φsφns − κφsφnm − κφmφns + φmφnm − φnφss +

2κφnφsm − φnφmm +
φ2

s

1 − κ2

{
(xss − 2κxsm + κ2xmm) · n

}
+
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2φsφm

1 − κ2

{
((1 + κ2)xsm − κxss − κxmm) · n

}
+

φ2
m

1 − κ2

{
(κ2xss −

2κxsm+xmm) · n

}
+

φsφn

1−κ2

{
(xss−2κxsm+xmm) · s+κ(2κxsm

− xss − xmm) · m

}
+

φmφn

1 − κ2

{
κ(2κxsm − xss − xmm) · s + (xss

− 2κxsm + xmm) · m

}
+ φ2

n

{
(xss − 2κxsm + xmm) · n

}]
. (A.2)

For κ = 0, the orthogonal case, Eqs. (2.24), (A.1) and (A.2) sim-

plify to the expressions given in36 (Equations (60), (61) and (62)). Note

that, when s · m = 0, one has the identities xss · m = −xsm ·s and

xsm ·m = −xmm ·s.
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simulations of extreme waves in open seas. Nat. Hazards Earth Syst. Sci., 7,
109–122.
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