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A HIGH-ORDER SPECTRAL METHOD FOR NONLINEAR WATER
WAVES OVER MOVING BOTTOM TOPOGRAPHY∗
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Abstract. We present a numerical method for simulations of nonlinear surface water waves over
variable bathymetry. It is applicable to either two- or three-dimensional flows, as well as to either
static or moving bottom topography. The method is based on the reduction of the problem to a
lower-dimensional Hamiltonian system involving boundary quantities alone. A key component of this
formulation is the Dirichlet–Neumann operator which, in light of its joint analyticity properties with
respect to surface and bottom deformations, is computed using its Taylor series representation. We
present new, stabilized forms for the Taylor terms, each of which is efficiently computed by a pseu-
dospectral method using the fast Fourier transform. Physically relevant applications are displayed
to illustrate the performance of the method; comparisons with analytical solutions and laboratory
experiments are provided.
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1. Introduction. Accurate modeling of surface water wave dynamics over bot-
tom topography is of great importance to coastal engineers and has drawn considerable
attention in recent years. Here are just a few applications: linear [16, 33] and nonlinear
wave shoaling [25, 24, 28, 27], Bragg reflection [35, 15, 36, 14, 30, 33, 4], harmonic wave
generation [3, 17, 18], and tsunami generation [37, 22]. As the publications cited above
attest, the character of coastal wave dynamics can be very complex: when entering
shallow water, waves are strongly affected by the bottom through shoaling, refraction,
diffraction, and reflection. Nonlinear effects related to wave-wave and wave-bottom
interactions can cause wave scattering and depth-induced wave breaking. In turn,
the resulting nonlinear waves can have a great influence on sediment transport and
the formation of sandbars in nearshore regions. The presence of bottom topography
also introduces additional space and time scales to the classical perturbation problem
(see, e.g., [10]).

Traditionally, the water wave problem on variable depth has been modeled using
long-wave approximations such as the Boussinesq or shallow water equations [26, 40].
See also [39] for a weakly nonlinear formulation for water waves over topography. In
recent years, progress in both mathematical techniques and computer power has led to
a rapid development of numerical models solving the full Euler equations. These can
be divided into two main categories: boundary integral methods [2, 24, 49, 7, 20, 27]
and spectral methods. In particular, efficient spectral methods based on perturbation
expansions have been developed for the computation of water waves on constant or
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infinite depth [19, 48, 13, 41, 1], and related methods have been proposed to include
the effects of an uneven bottom [33, 46, 4, 28].

In this paper, we present a new numerical method for studying nonlinear water
waves on variable depth which extends the work of Craig and Sulem [13] and Guyenne
and Nicholls [28] in several important directions. As in the work listed above, the
method is based upon Zakharov’s Hamiltonian formulation [50], which was further
refined by Craig and Sulem [13] and Craig et al. [10]. In this formulation the Dirichlet–
Neumann operator (which produces the normal fluid velocity at the water surface
given the surface shape and the velocity potential there) plays a central role. Following
previous work in the case of trivial bathymetry [8, 12, 11, 42, 44], it was recently shown
[45] that this Dirichlet–Neumann operator (DNO) is jointly analytic with respect to
deformations of both the trivial surface (quiescent water) and trivial topography (flat
bottom). Furthermore, the (pseudodifferential) terms in the (double) Taylor series of
the DNO can be formally calculated [46, 10] and, after truncation at a certain order,
used to simulate the action of the DNO. Due to the pseudodifferential character of the
operators involved, the spatial discretization of our problem is efficiently performed
by a Fourier pseudospectral method using the fast Fourier transform.

Our novel contributions are two-fold: First, the formal expressions for the Taylor
series terms of the DNO have been rewritten to eliminate the explicit appearance of
extremely unstable operators which, in a sense made clear in section 2, are “exponen-
tially unbounded.” Second, our generalized formulation of the problem now allows for
moving bottom topography so that we may, for example, simulate the sudden motion
of the bathymetry as in the case of an earthquake-generated tsunami. Finally, we
provide five physically motivated problems from the field of coastal engineering which
are, for the first time, simulated with a high-order spectral, boundary perturbation
scheme.

The paper is organized as follows: In section 2, we present the mathematical
formulation of the problem and derive Taylor series expansions of the DNO for both
static and moving bottom topography. In section 3, we give a description of the
numerical methods for discretization of the equations of motion and for wave genera-
tion/absorption in the model. Finally, we perform a series of experiments to demon-
strate the effectiveness of the model in section 4. We make some concluding remarks
in section 5.

2. Mathematical formulation. We consider the motion of a free surface, η(x, t),
on top of a fluid domain defined by

S(β, η) = {(x, y) ∈ R
n−1 × R | − h0 + β(x, t) < y < η(x, t)} ,

where β(x, t) denotes the bottom perturbation and n is the spatial dimension. The
quiescent water level is located at y = 0 and the constant reference depth is h0. We
assume the fluid is incompressible and inviscid, and the flow is irrotational, so that
the fluid velocity can be expressed as u = ∇ϕ, where ϕ denotes the velocity potential.
Under the above assumptions, the full boundary value problem for potential flow is
given by

Δϕ = 0 in S(β, η) ,(2.1a)

∂tη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η(x, t) ,(2.1b)

∂tϕ + 1
2
|∇ϕ|2 + gη = 0 at y = η(x, t) ,(2.1c)

∇ϕ · ν(β) = v(x, t) at y = −h(x, t)(2.1d)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WATER WAVES OVER BOTTOM TOPOGRAPHY 83

(see [31]), where g is the acceleration due to gravity, ν(β) = (−∇xβ, 1) is a (non-
normalized) upward vector normal to the bottom, and h(x, t) = h0 − β(x, t) is the
fluid depth. Surface tension effects are neglected but could easily be included in (2.1c)
(see, e.g., [11]). The bottom motion is determined by the normal velocity v(x, t) which
vanishes in the case of a fixed bottom.

Following Craig and Sulem [13], we can reduce the dimensionality of the classical
potential flow formulation of the water wave problem, (2.1), by considering surface
quantities as unknowns. We begin with the observation that when the free surface
η(x, t), Dirichlet data at the free surface ξ(x, t) = ϕ(x, η(x, t), t), and Neumann data
at the bottom v(x, t) are specified, we can in principle solve the full problem, since ϕ
satisfies Laplace’s equation with appropriate boundary conditions [32]. In this way,
the water wave problem can be reduced from one posed inside the entire fluid domain
to one posed at the free surface alone. This fact was originally noted by Zakharov
[50] (for deep water), who reformulated (2.1) as a Hamiltonian system in terms of the
canonically conjugate variables η and ξ.

This surface formulation plays a central role in the efficiency of the numerical
method developed here to solve (2.1). For expository convenience, we will first describe
the case of a fixed (static) bottom, based on the previous work of Craig et al. [10] and
Guyenne and Nicholls [28]. Our new formulation of the more general case of a moving
(time-dependent) bottom will be addressed separately in a subsequent section.

2.1. Static bottom topography. To begin the description of our boundary
formulation, we define the DNO, which, for the solution of Laplace’s equation (2.1a),
maps Dirichlet data to Neumann data at the free surface, by

G(β, η) ξ = ∇ϕ|y=η · ν(η) ,

where ν(η) = (−∇xη, 1) is a (nonnormalized) exterior vector normal to the free sur-
face. This operator is linear in ξ, but it is nonlinear with explicit nonlocal dependence
on β and η, which determine the fluid domain. Expressing the velocity potential and
its derivatives on the free surface in terms of ξ and G(β, η)ξ, the following set of
equations equivalent to (2.1) is obtained (see [13]):

∂tη = G(β, η)ξ ,(2.2a)

∂tξ = −gη − 1

2(1 + |∇xη|2)
[
|∇xξ|2 − (G(β, η)ξ)2

− 2(G(β, η)ξ)∇xξ · ∇xη + |∇xξ|2|∇xη|2 − (∇xξ · ∇xη)
2
]
.(2.2b)

This is a Hamiltonian system in Zakharov’s formulation of the water wave problem
[50], with Hamiltonian

H =
1

2

∫
R

[
ξG(β, η)ξ + gη2

]
dx .(2.3)

The analyticity of the DNO has been studied by many authors, beginning with
the work of Coifman and Meyer [8], which built on the results of Calderón [5]. For
β = 0, Coifman and Meyer showed that if η ∈ Lip(R), then G is an analytic function
of η, from which it follows that G can be written in terms of a convergent Taylor
series

G(η) =
∞∑
l=0

G(l)(η) ,(2.4)
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for η sufficiently small, where each term G(l) is homogeneous of degree l. Craig,
Schanz, and Sulem [12] extended these results for periodic η ∈ C1(R2), and Craig and
Nicholls [11] generalized this argument for η ∈ C1(Rn−1). Nicholls and Reitich [42]
devised a direct method to estimate the G(l) (requiring the slightly stronger hypothesis
η ∈ C3/2+δ(Rn−1)) with the goal of stabilized high-order calculations. These high-
order results were exhibited in [43], and in [44] joint spatial and parametric analyticity
results were established. The most comprehensive results to date have been derived
by Hu and Nicholls [29], who used a finer analysis of the Nicholls–Reitich recursions
to permit data in Hölder classes and a Lipschitz profile. A recursion formula for the
lth-order term in (2.4) is given in Craig and Sulem [13] in two dimensions, and the
straightforward generalization to three dimensions was derived by Nicholls [41].

For l odd,

G(l) = |D|l−1D
ηl

l!
·D −

l−1∑
j=2, even

|D|j η
j

j!
G(l−j)(2.5a)

−
l∑

j=1, odd

|D|j−1G(0) η
j

j!
G(l−j) ,

and, for l > 0 even,

G(l) = |D|l−2G(0)D
ηl

l!
·D −

l∑
j=2, even

|D|j η
j

j!
G(l−j)(2.5b)

−
l−1∑

j=1, odd

|D|j−1G(0) η
j

j!
G(l−j) ,

where G(0) = |D| tanh(h0|D|) and D = −i∇x.
In the case of nontrivial bottom topography (β �= 0) the results listed above

have recently been extended by Nicholls and Taber [45], who showed that the DNO
in such a configuration is jointly analytic in all spatial and parametric (boundary)
variables and that it can be analytically continued in the two parametric variables.
The expansions listed above, (2.5), have recently been extended to the case of an
uneven bottom by Craig et al. [10], who showed that they can be used verbatim with
the exception that the first term G(0) is replaced by

G(0) = |D| tanh(h0|D|) + |D|L(β) .(2.6)

The operator |D|L(β), which takes into account the bottom variation, is derived from
the Neumann boundary condition at the bottom (2.1d) for v = 0. By an extension
of the argument in [42], it follows that |D|L can also be expressed as a convergent
Taylor series expansion in β,

|D|L(β) =

∞∑
j=0

|D|Lj(β) ,

where each term |D|Lj can be determined explicitly by a recursion formula as given
in [10].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WATER WAVES OVER BOTTOM TOPOGRAPHY 85

We propose here an alternate recursive formulation of |D|L which proves much
more suitable for numerical simulations. Using the transformation

|D|Lj = sech(h0|D|)|D|Fj

and rearranging terms in the recursion formula of |D|Lj (see [10]), we obtain the
following: for j odd,

|D|Fj = −D ·
[
βj

j!
sech(h0|D|)|D|j−1D +

j−1∑
l=2, even

βl

l!
|D|l−2D (|D|Fj−l)(2.7a)

−
j−2∑

l=1, odd

βl

l!
tanh(h0|D|)|D|l−2D (|D|Fj−l)

]
,

and, for j > 0 even,

|D|Fj = −D ·
[

j−2∑
l=2, even

βl

l!
|D|l−2D (|D|Fj−l)(2.7b)

−
j−1∑

l=1, odd

βl

l!
tanh(h0|D|)|D|l−2D (|D|Fj−l)

]
.

The motivation for introducing |D|Fj is that the new recursion formulae (2.7)
involve bounded and smoothing operators (i.e., tanh(h0|D|) and sech(h0|D|)), while
the corresponding formulae for |D|Lj in [10] exhibit “exponentially unbounded” oper-
ators (i.e., cosh(h0|D|) and sinh(h0|D|)) which are not well defined for any function of
finite smoothness. For example, if f ∈ Hs for any s < ∞, then cosh(h0|D|)f �∈ L2. As
a consequence, the evaluation of |D|Lj through |D|Fj is numerically more robust and
stable, especially with the use of a pseudospectral method as described in section 3.

2.2. Moving bottom topography. We now turn our attention to the more
general case where the bottom perturbation β depends on both space and time (which
was not treated in [10, 28]). The solution of Laplace’s equation is now determined
by Dirichlet data ξ at the free surface and Neumann data (2.1d) at the bottom.
Accordingly, we note that the DNO now depends linearly upon two quantities, the
Dirichlet data ξ and the bottom velocity v,

G(β, η)[ξ, v] = ∇ϕ|y=η · ν(η) ,(2.8)

which maps (ξ, v) to Neumann data at the free surface.
Using an argument almost identical to the one used by Nicholls and Taber [45], we

can establish that this new DNO depends analytically jointly upon the (time-frozen)
functions β and η, provided that the (time-frozen) data ξ and v are sufficiently regular.
To be more precise, if we consider β = δb and η = εf to be small perturbations, we
can expand the DNO in the Taylor series

G(β, η)[ξ, v] = G(δb, εf)[ξ, v] =
∞∑

m0,m1=0

G(m0,m1)(b, f)[ξ, v] δm0εm1 ,(2.9)

which converges strongly in the sense of the following theorem.
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Theorem 2.1. Given any integer s ≥ 0, if b, f ∈ Cs+2, ξ ∈ Hs+3/2, and
v ∈ Hs+1/2, then G(m0,m1)(b, f)[ξ, v] ∈ Hs+1/2 and∥∥∥G(m0,m1)(b, f)[ξ, v]

∥∥∥
Hs+1/2

≤ KBm0
0 Bm1

1

for constants K,B0, B1 > 0.
Proof. As we mentioned above, the proof is nearly identical to the one presented

in [45]. Considering the elliptic boundary value problem

Δw = 0 in S(δb, εf) ,(2.10a)

w(x, εf) = ξ(x) at y = εf ,(2.10b)

∇w · ν(δb) = v(x) at y = −h0 + δb ,(2.10c)

which defines the DNO,

G(δb, εf) [ξ, v] = ∇w|y=εf · ν(εf) ,

we begin with a “domain flattening” transformation

x′ = x, y′ = h0

(
y − εf

h0 − δb + εf

)
.

This produces a transformed field

u(x′, y′; δ, ε) = w(x′, (h0 − δb(x′) + εf(x′))y′/h0 + εf(x′)),

which can be expanded in a double Taylor series

u(x′, y′; δ, ε) =

∞∑
m0,m1=0

u(m0,m1)(x′, y′) δm0εm1 .

Equation (2.10) in the transformed coordinates produces recursions for the u(m0,m1)

which differ from those found in [45] only in that the velocity function v appears
on the right-hand side. A straightforward modification of the elliptic estimate found
in [45] enables the inductive approach outlined in the rest of that paper, and the
analyticity result follows quickly, provided that v sits in the proper function space,
Hs+1/2.

One method for numerically simulating the action of the DNO is to derive forms
for the G(m0,m1) in (2.9) which can be conveniently incorporated into a numerical
algorithm. For the spectral collocation approach we advocate in this paper, several
design philosophies can be used to find these formulae (e.g., operator expansions,
field expansions, transformed field expansions; see [42, 43, 44, 9]). Here we follow
the operator expansions method devised by Milder [38] and Craig and Sulem [13];
we refer the interested reader to the work of Nicholls and Reitich [42, 43, 44] for a
detailed description of each approach together with an assessment of its strengths and
weaknesses.

To make the presentation more clear we point out that the DNO can be written
as the sum of two terms, one (G1) which is linear in ξ and independent of v and the
second (G2) which is linear in v and independent of ξ; both are, of course, nonlinearly
dependent on both β and η. One way to recognize this decomposition is to examine
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(2.10) and notice that one can write w = w1 + w2, where w1 satisfies (2.10) with v
identically zero, and w2 satisfies (2.10) with ξ identically zero.

To find formulae for the G
(m0,m1)
1 and G

(m0,m1)
2 , consider the family of harmonic

functions

ϕk(x, y) = (ak e
|k|y + bk e

−|k|y) eik·x ,(2.11)

which satisfy Laplace’s equation. To find G1 and G2 it is most convenient to make
two different choices for the constants (ak, bk); first, for G1, we set

(ak, bk) =

(
e|k|h

e−|k|h + e|k|h
,

e−|k|h

e−|k|h + e|k|h

)
so that ϕk = eik·x at y = 0 and ∂yϕk = 0 at y = −h0. For G2, we set

(ak, bk) =

(
1

|k|(e−|k|h + e|k|h)
,

−1

|k|(e−|k|h + e|k|h)

)
so that ϕk = 0 at y = 0 and ∂yϕk = eik·x at y = −h0. Now we insert (2.9), (2.11),
and (2.12) into (2.8) together with the boundary values

ξ(x) = ϕk(x, η(x)) , v(x) = ∇ϕk|y=−h · ν(β) .(2.12)

Expanding all terms about β, η = 0 and identifying contributions of the same degree
in β and η, this yields, at zeroth order (m0 = m1 = 0),

G
(0,0)
1 = |D| tanh(h0|D|) , G

(0,0)
2 = sech(h0|D|) ,(2.13)

where we have used the equivalence k � D [13, 42, 9, 10]. As expected, G
(0,0)
1 is

identical to G(0) for η = 0. There is a recursion formula for the higher-order terms in
the Taylor series expansions of G1 and G2 (provided below), and we distinguish two
cases. The first is the special case where either m0 = 0 or m1 = 0, and the second is
the more general case where neither m0 = 0 nor m1 = 0. The expressions are

(i) m0 �= 0,m1 = 0:

G
(m0,0)
1 = −

m0∑
l=1, odd

sech(h0|D|)|D|l−1D
βl

l!
·DG

(m0−l,0)
2(2.14a)

and

G
(m0,0)
2 = −

m0∑
l=2, even

|D|l−2D
βl

l!
·DG

(m0−l,0)
2(2.14b)

+

m0∑
l=1, odd

|D|l−2 tanh(h0|D|)Dβl

l!
·DG

(m0−l,0)
2 .

(ii) m0 = 0,m1 �= 0: m1 odd,

G
(0,m1)
1 = |D|m1−1D

ηm1

m1!
·D −

m1−1∑
l=2, even

|D|l η
l

l!
G

(0,m1−l)
1(2.14c)

−
m1∑

l=1, odd

|D|l tanh(h0|D|)η
l

l!
G

(0,m1−l)
1
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and

G
(0,m1)
2 = −

m1∑
l=1, odd

sech(h0|D|)|D|l−1 η
l

l!
G

(0,m1−l)
1 .(2.14d)

(iii) m0 = 0,m1 �= 0: m1 > 0 even,

G
(0,m1)
1 = |D|m1−1 tanh(h0|D|)Dηm1

m1!
·D(2.14e)

−
m1∑

l=2, even

|D|l η
l

l!
G

(0,m1−l)
1

−
m1−1∑

l=1, odd

|D|l tanh(h0|D|)η
l

l!
G

(0,m1−l)
1

and

G
(0,m1)
2 = sech(h0|D|)|D|m1−2D

ηm1

m1!
·D(2.14f)

−
m1−1∑

l=1, odd

sech(h0|D|)|D|l−1 η
l

l!
G

(0,m1−l)
1 .

(iv) m0,m1 �= 0:

G
(m0,m1)
1 = −

m1∑
l=2, even

|D|l η
l

l!
G

(m0,m1−l)
1(2.14g)

−
m1∑

l=1, odd

|D|l tanh(h0|D|)η
l

l!
G

(m0,m1−l)
1

−
m0∑

l=1, odd

sech(h0|D|)|D|l−1D
βl

l!
·DG

(m0−l,m1)
2

and

G
(m0,m1)
2 = −

m1∑
l=1, odd

sech(h0|D|)|D|l−1 η
l

l!
G

(m0,m1−l)
1(2.14h)

−
m0∑

l=2, even

|D|l−2D
βl

l!
·DG

(m0−l,m1)
2

+

m0∑
l=1, odd

|D|l−2 tanh(h0|D|)Dβl

l!
·DG

(m0−l,m1)
2 .
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We note again the presence of the operator sech(h0|D|) in the above equations,
which has a stabilizing effect on the calculation of the DNO. It can be checked that
recursion formulae (2.14c) and (2.14e) for G1 correspond to (2.5) for the DNO in the
case of a static, uniform bottom (β = 0, v = 0). Moreover, expressions (2.14a)–(2.14b)
are equivalent to (2.6) for G(0) (with |D|L given by (2.7) through |D|Fj) in the case
of an undisturbed free surface over static bottom topography (η = 0, v = 0).

Remark. The equations of motion equivalent to (2.2) for moving bottom topogra-
phy are obtained by simply replacing G(β, η)ξ by G(β, η)[ξ, v] in (2.2). The analogue
of the Hamiltonian (2.3) is given by

H =
1

2

∫
R

[
ξG(β, η)[ξ, v] − ζv + gη2

]
dx ,(2.15)

where ζ and v are the Dirichlet and Neumann data at the bottom, respectively. The
negative sign for the second term in (2.15) is due to the fact that v is defined as the
upward (interior) normal velocity at the bottom (see (2.1d)). The inclusion of ζ in
(2.15) requires the existence of a “Neumann–Dirichlet operator” which, given β, η, ξ,
and v (Neumann data), produces the Dirichlet data ζ. It is not difficult to show that
such an operator does exist and is well defined under reasonable hypotheses.

3. Numerical methods. In this section, we describe the numerical methods
for space and time discretizations of the model. We also discuss the implementa-
tion of techniques for wave generation and wave absorption to deal with nonperiodic
problems.

3.1. Spatial discretization. We begin by considering the classical periodic
boundary conditions in the x-direction and use a pseudospectral method for spa-
tial discretization of the problem [23, 6, 13, 41]. This is a natural choice for the
computation of the DNO, since each term in its Taylor series expansions consists of
concatenations of Fourier multipliers with powers of β and η. For static bottom to-
pography, both operators G and |D|L are approximated by a finite number of terms
in their Taylor series,

G(β, η) �
M∑

m1=0

G(m1)(β, η) , |D|L(β) �
Mb∑

m0=0

|D|Lm0(β) ,

which is equivalent to

G(β, η) � GMb,M (β, η) ≡
Mb∑

m0=0

M∑
m1=0

G(m0,m1)(β, η),

where M and Mb are independently chosen according to the physical problem under
consideration. The same procedure applies to the approximation of (2.9) for moving
bottom topography, with 0 ≤ m0 ≤ Mb and 0 ≤ m1 ≤ M . The joint analyticity
properties of the DNO (Theorem 2.1) imply∥∥G−GMb,M

∥∥
Hs+1/2 ≤

∑
{m0>Mb} or {m1>M}

∥∥∥G(m0,m1)
∥∥∥
Hs+1/2

≤ BMb
0 BM

1

∑
{m0>Mb} or {m1>M}

KBm0−Mb
0 Bm1−M

1

≤ K̃BMb
0 BM

1 ,
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i.e., the exponential convergence of the series expansions. The constants K, B0, and
B1 (and thus the rate of the convergence of our approximation) depend primarily
upon the size and smoothness of the bottom and top deformations, β and η, respec-
tively. Consequently, for large or rough topography and/or surface waves one must
incorporate more terms. In the case of static topography we have never found this
to be a particularly steep cost for our algorithm; however, for moving bottoms it
can be more severe (see section 3.2). However, as the rate of convergence is quite
rapid (exponential) we have typically found it sufficient to select a small number of
perturbation terms, Mb and M , for quite accurate results.

To compute these Taylor terms, the three quantities η, ξ, and β are approximated
by truncating their Fourier series with the same number of modes, N . Applications
of Fourier multipliers are performed in Fourier space, while nonlinear products are
calculated in physical space at a discrete set of equally spaced points. For example,

application of the zeroth-order operators G
(0,0)
1 and G

(0,0)
2 in (2.13) is equivalent to

multiplication by |k| tanh(h0|k|) and sech(h0|k|) in Fourier space, respectively. A zero-
padding technique is used to prevent aliasing errors in the calculation of the nonlinear
terms [6], and all operations are performed using the FFTW library [21].

As pointed out in [13], expansions of the DNO as performed here are uniform
in wavenumber. Thus there are no a priori restrictions on the relative length scales
between bottom and surface variations. In particular, the method is not restricted
to slowly varying topography compared to surface waves. However, because of the
character of the Taylor series expansions and the use of fast Fourier transforms, bot-
tom and surface variations are both required to be single-valued (e.g., no overturning
waves), sufficiently smooth, and of moderate amplitude.

3.2. Time integration. Time integration is carried out in Fourier space. The
linear terms in (2.2) are solved exactly by an integrating factor technique [13, 1]. The
nonlinear terms are integrated in time using a fourth-order Runge–Kutta scheme with
constant step size.

For more efficiency in the case of static bottom topography, the operator |D|L
can be precalculated and saved before time integration begins. It can then be used (at
no extra cost) in the calculation of the DNO at every time step. The computational
cost is therefore essentially determined by the evaluation of (2.4) and (2.5). For
perturbations up to order M , the number of operations required is O(M2N lnN) per
time step. In the case of moving bottom topography, the computational cost is higher
and the number of operations required can be estimated from (2.9) and (2.14) to be
O(max(M,Mb)MMbN lnN) per time step.

In the computations (especially of large-amplitude waves; see section 4.2), it was
observed that spurious oscillations can develop in the wave profile, due to the onset
of an instability related to the growth of numerical errors at high wavenumbers. This
may be attributed to some ill-conditioning of the operator expansion method for
the DNO [42, 43, 44]. Similar high-wavenumber instabilities were observed by other
authors (e.g., [19, 1]), who used smoothing techniques to circumvent this difficulty.

Here, at every time step, we apply an ideal low-pass filter to η̂k and ξ̂k of the form

γk =

{
1 if |k|/kmax ≤ θ , 0 < θ ≤ 1 ,

0 if |k|/kmax > θ ,

where kmax is the largest wavenumber of the spectrum. Typically, we found that
θ = 0.8 suffices to stabilize the solution. Care was taken to specify a sufficiently high
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spatial resolution and a value of θ close to unity so that only energy levels located
in the high-wavenumber region of the spectrum are suppressed by filtering. This
ideal low-pass filter also further contributes to removal of aliasing errors. We point
out that, in most of our simulations with small to moderate amplitudes (e.g., with
incident Stokes waves as in sections 4.3 and 4.4), no filtering was used at all.

3.3. Lateral boundary conditions. In the present scheme, adopting a pseu-
dospectral method allows for an efficient evaluation of the DNO and equations of
motion via the fast Fourier transform, but this requires periodic boundary conditions
in the x-direction. A simple way of overcoming this limitation is to increase the size of
the computational domain until the effect of the boundaries becomes negligible. This
method, however, has a limited range of applicability and is not suitable for long-
time simulations. Here we propose efficient methods for wave generation and wave
absorption in a periodic domain using relaxation zones [4]. The goal is to extend the
range of applicability of the algorithm to more realistic situations; for example, these
methods are used to generate and dissipate Stokes waves in a channel for comparison
with laboratory experiments in sections 4.3 and 4.4.

The principle of relaxation zones is to relax the numerical solution towards a
specified analytical solution over a limited region near the boundary. This is achieved
by simply defining a relaxation coefficient 0 ≤ cr(x) ≤ 1 and an exact desired solution

(η̃, ξ̃). At each time step, the solution within the relaxation zone is then redefined to
be (

η(x, t)

ξ(x, t)

)
= cr(x)

(
η(x, t)

ξ(x, t)

)
+ [1 − cr(x)]

(
η̃(x, t)

ξ̃(x, t)

)
.

In the two-dimensional applications presented here, the computational domain is spec-
ified in the following way: an absorbing zone at both ends of the domain and a wave-
maker zone near the left end, adjacent to the first absorbing zone. A typical relaxation
coefficient we used is given by

cr(x) =
1

2
+

1

2
tanh

(
2π

(
x

L
− 1

2

))
,

which is defined in a region of characteristic length L, which is chosen long enough to
span at least 3–4 wavelengths. For wave generation, the specified solution is the third-
order Stokes wave and, for wave absorption, (η̃, ξ̃) = (0, 0). This technique is easy to
implement and is very effective, as illustrated in Figure 3.1. An incident Stokes wave

0 20 40 60 80 100 120
−0.02

−0.01

0

0.01

0.02

x

y

Fig. 3.1. Wave generation and absorption using relaxation zones. The incident wave is a
Stokes wave of amplitude a0/h0 = 0.01 and wavenumber k0h0 = π, moving from left to right on
constant depth. The solution at t/

√
h0/g = 600 is a near-perfect, steadily progressing wave.
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Fig. 3.2. Time evolution of the Hamiltonian, (2.3), for a Stokes wave of amplitude a0/h0 = 0.01
and wavenumber k0h0 = π generated and absorbed using relaxation zones. A steady state is reached
around t/

√
h0/g = 400.

of amplitude a0/h0 = 0.01 and wavenumber k0h0 = π is specified, moving from left
to right on constant depth (M = 4, Mb = 0, L = 10). The result at t/

√
h0/g = 600

is a near-perfect, steadily progressing wave between the two absorbing zones at the
extremities of the domain. It is shown in Figure 3.2 that the solution has reached
a steady state and the Hamiltonian (2.3) is well conserved. This clearly indicates
that the outgoing wave is absorbed well by the relaxation zones and negligible wave
reflection is produced.

Another effective method for wave absorption which can be easily incorporated
into the present algorithm is the so-called sponge layer or numerical beach [46, 7].
This consists in (explicitly) adding localized damping terms (e.g., pressure terms) in
the equations of motion (2.2). We have performed computations with a damping term
of the form

− 1√
1 + |∇xη|2

√
gh0

( x

L

)2

∇ϕ|y=η · ν(η) ,

added to the right-hand side of (2.2b), which also gives good results (not shown here).
Note that we have not attempted to model in detail wavemaker and absorbing

boundary conditions as used in laboratory experiments, and it would be worthwhile
to consider more sophisticated methods for wave generation and absorption (or ra-
diation) in the future. The primary goal in this paper is rather to show that our
numerical method is flexible and robust and can be adapted to a variety of water
wave problems with bottom topography. The following applications demonstrate the
practical effectiveness of our methods.

4. Numerical results. In this section, we present a series of two-dimensional
(n = 2) simulations to demonstrate the performance of our numerical method. The
first four examples consider the case of static bottom topography, while the last deals
with moving bathymetry. The accuracy of the computations are assessed by compar-
ison with analytical and experimental results. Unless stated otherwise, all variables
are nondimensionalized according to long-wave theory; i.e., lengths are divided by h0

and times divided by
√

h0/g.

4.1. Linear wave shoaling. We begin by studying the linear wave shoaling
problem in which linear waves are distorted when propagating from deep to shallow



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WATER WAVES OVER BOTTOM TOPOGRAPHY 93

(a)
−60 −40 −20 0 20 40

0

1

2
x 10

−4

x

y

(b)
−60 −40 −20 0 20 40

−1

−0.5

0

x

y

Fig. 4.1. Shoaling of a linear wave of amplitude a0 = 10−4 and wavenumber k0 = 2 over a
smooth bathymetry: (a) comparison between the computed wave profile (solid line) and the envelope
predicted by linear theory (dashed line) at t = 500 in the steady state; (b) bottom profile.

water. We specify a smooth bathymetry given by

β(x) =
h0 − h1

2

[
1 + tanh

(
sin(πx/L)

1 − (2x/L)2

)]
,

as shown in Figure 4.1(b), with h0 = 1, h1 = 0.1, and L = 45. A linear wave
of amplitude a0 = 10−4 and wavenumber k0 = 2 is generated at the left end of the
domain and absorbed at the opposite end to prevent reflection. A bottom topography
of large amplitude is generally specified in such an experiment in order to describe
the transition from deep to shallow water. Accordingly, we choose a large value of
Mb, so that the linear waves “feel” the effects of the bottom variations.

Figure 4.1(a) shows the computed wave profile in the steady state (M = 0, Mb =
15), along with the amplitude envelope predicted by energy conservation [16, 33]:

a

a0
=

[
k(1 + 2h0k0/ sinh(2h0k0))

k0(1 + 2hk/ sinh(2hk))

]1/2

.(4.1)

We see that the wave amplitude first decreases slightly over the bottom slope and then
rapidly increases and stabilizes over the plateau at a level higher than the incident one.
Such features agree very well with the linear prediction (4.1). That the wavenumber
increases as the wave travels from deep to shallow water is also an expected phe-
nomenon [4, 34]. A few wave crests slightly exceeding the predicted amplitude and
occurring over the top of the slope may be explained by the (small) amplification of
numerical harmonics during the shoaling process.

4.2. Solitary wave shoaling on a slope. Our second experiment concerns
the evolution of solitary waves traveling up a plane slope, and our computations are
compared with results obtained by a boundary element (BE) method [25, 24, 27].
The latter method has been extensively tested and validated against both theoretical
and experimental results. The bottom geometry is specified as follows: a uniform
depth h0 for x < d, and a slope s for x ≥ d (Figure 4.2); the initial condition is a
fully nonlinear solitary wave of height a0 computed by Tanaka’s method [47]. This
corresponds to a numerically exact and permanent solution of nonlinear potential flow
theory, and we have checked that such a wave propagates with negligible change of
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Fig. 4.2. Bottom topography and initial condition in the solitary wave shoaling problem. The
two solitary waves are of amplitude a0 = 0.3 and the bottom slope is s = 1/18.
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Fig. 4.3. Comparison of solitary wave profiles between boundary element (dashed line) and
spectral (solid line) methods for a0 = 0.3 at times (a) t = 12 and (b) t = 13.6.

shape and speed on uniform depth in our model. Because rigid lateral boundaries
are used in the BE code, both the bottom geometry and the initial condition in the
spectral model are specified symmetrically about the center of the domain in order
to simulate a rigid boundary condition at some distance up the slope. As shown in
Figure 4.2, the situation is two solitary waves propagating symmetrically towards a
submerged island between them.

We present results for two experiments with incident solitary waves of amplitudes
a0 = 0.3, 0.4 (we used M = 8 and Mb = 4). In both cases, the bottom slope is
fairly steep (s = 1/18), starting at x = d = 8 and ending at x = 25. A resolution
of N = 512 points was specified over the whole domain 0 ≤ x ≤ 52. (Preliminary
results have appeared in [28] for a different implementation of the DNO.) Figures 4.3
and 4.4 show the comparison of wave profiles at two advanced stages of shoaling for
a0 = 0.3, 0.4, respectively. The BE solution exhibits a slightly sharper and higher wave
crest than the spectral solution, and these discrepancies become more pronounced as
the solitary waves approach breaking. It is not surprising that near the onset of
breaking the BE results are more reliable, since the present method uses a Fourier
spectral decomposition and requires that the free surface be represented as the graph
of a function, y = η(x, t). Nevertheless, our results are found to be close to the BE
ones until near the time of breaking. In both cases a0 = 0.3, 0.4, the rear faces of the
waves match almost perfectly and the wave crests have nearly the same locations.

4.3. Bragg reflection over sinusoidally varying topography. We now con-
sider Bragg reflection over a sinusoidal bottom “ripple patch.” This problem has
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Fig. 4.4. Comparison of solitary wave profiles between boundary element (dashed line) and
spectral (solid line) methods for a0 = 0.4 at times (a) t = 10.2 and (b) t = 12.

drawn considerable attention in the literature (e.g., [36, 14, 30, 33]) because it rep-
resents a simple situation of the interaction between surface water waves and sed-
iment transport with applications in coastal engineering. For small incident wave
and bottom slopes, reflection near Bragg resonance is predicted well by multiple-scale
linearized perturbation theory [36]. Here we numerically examine higher-order non-
linear effects using our spectral method. The conditions in Davis and Heathershaw
[15] are used in order to compare with their experiments. The bottom “ripple patch”
is defined by

β(x) = d sin(kbx) for − L0 ≤ x ≤ L0 ,

as depicted in Figure 4.5. The ripple slope is kbd = 0.31, the ripple amplitude is
d = 0.16, and L0/λb = 10 (i.e., a patch with 10 sinusoidal ripples, where λb = 2π/kb).

Figure 4.6 shows the computed reflection coefficient for incident waves of steep-
ness ka0 = 0.05 and wavenumber k near the (linearized) Bragg resonance condition
2k/kb = 1 (M = Mb = 2). We use the least-squares method of Mansard and Funke
[35] to evaluate the reflection coefficient from time series in the steady state. For com-
parison, we also show in Figure 4.6 the experimental data of Davis and Heathershaw
[15] along with the linear perturbation solution obtained by Mei [36]. The downshift
of the resonant peak relative to the linear value is clearly observed, which is consistent
with the experimental data. This wavenumber downshift is not predicted by linear
theory and can be attributed to nonlinear effects associated with the problem. Similar
results were reported in [33, 4], where different numerical models were used.

4.4. Harmonic generation over a submerged bar. It is well known that
regular waves decompose into higher-frequency free waves as they propagate past a
submerged bar, as shown in experimental work [3, 17, 18]. As the waves travel up the
front slope of the bar, higher harmonics are generated due to nonlinear interactions,
causing the waves to steepen. These harmonics are then released as free waves on
the downslope, producing an irregular pattern behind the bar. This experiment is
particularly difficult to simulate because it includes nonlinear interactions and requires
accurate propagation of waves in both deep and shallow water, over a wide range of
depths. Therefore it has often been used as a discriminating test case for nonlinear
models of surface wave propagation over a variable bottom [17, 46, 4]. Here we
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Fig. 4.5. Bottom topography with a patch of 10 sinusoidal ripples of amplitude d = 0.16 and
slope kbd = 0.31, as described in the experiments of Davis and Heathershaw [15].
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Fig. 4.6. Bragg reflection coefficient near the linearized resonance condition 2k/kb = 1 for
ka0 = 0.05, kbd = 0.31, d = 0.16: experiments (circles), linear perturbation theory (dashed line)
[36], and our new numerical simulations (squares-solid line).

compare our spectral method with the experimental data of Dingemans [17]. The
bottom variation is defined by

β(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.05 (x− 6) for 6 ≤ x ≤ 12 ,

0.3 for 12 ≤ x ≤ 14 ,

0.3 − 0.1 (x− 14) for 14 ≤ x ≤ 17 ,

0 elsewhere ,

in scaled units (meters), as illustrated in Figure 4.7.
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x (m)

y 
(m

)

Fig. 4.7. Submerged bar for harmonic wave generation as described in the experiments of
Dingemans [17].

We present numerical results for two different incident wave conditions: (T0, a0)
= (2.02 s, 0.02 m) and (2.525 s, 0.029 m), where T0 and a0 denote the incident wave
period and height, respectively. Time histories of the surface elevations at various
locations are shown in Figure 4.8. In both cases, computations were performed using
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Fig. 4.8. Time series of surface elevations at various locations for waves passing over a bar:
experiments (dashed line) and numerical simulations (solid line). Left column: incident wave with
T0 = 2.02 s and a0 = 0.02 m. Right column: incident wave with T0 = 2.525 s and a0 = 0.029 m.
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a resolution of N = 2048 points with M = Mb = 8. The time origin has been shifted
so that the numerical results match the measurements for the first wave gauge at
x = 2 m. Overall, the computations compare reasonably well with the experimental
data in both cases. In particular, the asymmetry of the shoaling waves and the
generation of higher harmonics are reproduced well by the numerical model. Note
that, in the second case (which corresponds to an incident wave of larger amplitude
than in the first case), some discrepancies are observed for gauges beyond the crest
of the bar (i.e., x > 13.5 m). This may be explained by the occurrence of spilling
breakers in the experiments as reported in [17] for this case. As we have mentioned
before, due to our choice of coordinates, wave breaking is a phenomenon not permitted
in the present algorithm.

4.5. Tsunami due to impulsive bottom displacement. Tsunamis are long
waves of great destructive power, generated by disturbances associated primarily with
earthquakes occurring at or just below the ocean floor. In deep water, a tsunami is
usually of small height (only a few feet or less), but, as it reaches shallow water, its
amplitude increases rapidly. Understandably, such waves have been the subject of
serious attention recently.

In this final example, we consider the simple, idealized problem of a tsunami
generated by the sudden uplift of a localized region of the bathymetry at t = 0. In
order to prevent instabilities in the computations, a smooth motion of the bottom is
prescribed by

β(x, t) = f(t)β0(x) ,

where β0(x) denotes the spatial dependence of β and f(t) is a relaxation function
depicted in Figure 4.9. The relaxation time was chosen small enough (∼ 0.1) to
closely model an impulsive bottom displacement, and the vertical bottom velocity in
this case is given by v(x, t) = ∂tβ.
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Fig. 4.9. (a) Time dependence f(t) and (b) spatial dependence −h0 + β0(x) for the bottom
geometry in the case where β(x, t) = f(t)β0(x), meant to simulate a tsunami-generating “earth-
quake.”

Figure 4.10 shows the resulting wave profile at t = 100. The simulations were
run for N = 1024 and M = Mb = 4. The bottom disturbance was specified to be
relatively small (‖β0‖∞ = 0.2) in order to be close to realistic conditions and to allow
for a meaningful comparison with the linear solution [37],

η(x, t) =
1

2π

∫
R

eikxβ̂0(k)
cos(ωt)

cosh(h0k)
dk ,

where β̂0(k) denotes the kth Fourier component of β0(x). Overall, the amplitude and
profile of the tsunami computed by the spectral model are close to those predicted
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Fig. 4.10. Surface elevation (due to impulsive bottom displacement) at t = 100: linear (dashed
line) and fully nonlinear (solid line) solutions.

by linear theory. The main difference we observe is that the leading wave in the
fully nonlinear solution is larger and has progressed further compared with the linear
solution. This is similar to the results obtained by Fructus and Grue [22], who used
a boundary integral method to study this problem.

5. Conclusions. We have developed a numerical method to simulate nonlinear
free-surface waves on an ocean of variable depth. The model is applicable to both
static and moving (time-dependent) bottom topography. As an extension of the work
of Craig and Sulem [13], Craig et al. [10], and Guyenne and Nicholls [28], it is based
on the expansion of the DNO as a Taylor series in terms of the surface and bottom
variations; however, the terms in the Taylor series have been reformulated to eliminate
all reference to the “exponentially unbounded” operators which appear in [10, 28].
Spatial discretization can be efficiently performed by a pseudospectral method using
the fast Fourier transform, thus allowing for the rapid evaluation of the DNO. Efficient
procedures for wave generation/absorption have also been implemented to simulate
nonperiodic boundary conditions.

By a series of physically relevant experiments, we have shown that the method
is robust and accurate and can be applied to a wide range of problems in coastal
engineering. In particular, despite the limitations inherent to the particular represen-
tation (operator expansions; see [42, 43, 44]) of the Taylor coefficients of the DNO,
satisfactory results have been obtained even for fairly steep waves over highly varying
bottom geometries. Finally, we emphasize that this approach is not restricted to two-
dimensional flows. The mathematical formulation of the method is presented here
for any spatial dimension n ≥ 2, and we envision computations of three-dimensional
free-surface waves in the near future.
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