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This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a
body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable
model systems, solitary waves for the full Euler equations do not collide elastically; after
interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this
report on new numerical and experimental studies of such solitary wave interactions, we verify that
this is the case, both in head-on collisions !the counterpropagating case" and overtaking collisions
!the copropagating case", quantifying the degree to which interactions are inelastic. In the situation
in which two identical solitary waves undergo a head-on collision, we compare the asymptotic
predictions of Su and Mirie #J. Fluid Mech. 98, 509 !1980"$ and Byatt-Smith #J. Fluid Mech. 49,
625 !1971"$, the wavetank experiments of Maxworthy #J. Fluid Mech. 76, 177 !1976"$, and the
numerical results of Cooker, Weidman, and Bale #J. Fluid Mech. 342, 141 !1997"$ with independent
numerical simulations, in which we quantify the phase change, the run-up, and the form of the
residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates
the prior numerical observations of inelastic interactions in Fenton and Rienecker #J. Fluid Mech.
118, 411 !1982"$. In the case of two nonidentical solitary waves, our precision wavetank
experiments are compared with numerical simulations, again observing the run-up, phase lag, and
generation of a residual from the interaction. Considering overtaking solitary wave interactions, we
compare our experimental observations, numerical simulations, and the asymptotic predictions of
Zou and Su #Phys. Fluids 29, 2113 !1986"$, and again we quantify the inelastic residual after
collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit
into the three categories of Korteweg-deVries two-soliton solutions defined in Lax #Commun. Pure
Appl. Math. 21, 467 !1968"$, with, however, a modification in the parameter regime. In all cases we
have considered, collisions are seen to be inelastic, although the degree to which interactions depart
from elastic is very small. Finally, we give several theoretical results: !i" a relationship between the
change in amplitude of solitary waves due to a pairwise collision and the energy carried away from
the interaction by the residual component, and !ii" a rigorous estimate of the size of the residual
component of pairwise solitary wave collisions. This estimate is consistent with the analytic results
of Schneider and Wayne #Commun. Pure Appl. Math. 53, 1475 !2000"$, Wright #SIAM J. Math.
Anal. 37, 1161 !2005"$, and Bona, Colin, and Lannes #Arch. Rat. Mech. Anal. 178, 373 !2005"$.
However, in light of our numerical data, both !i" and !ii" indicate a need to reevaluate the asymptotic
results in Su and Mirie #J. Fluid Mech. 98, 509 !1980"$ and Zou and Su #Phys. Fluids 29, 2113
!1986"$. © 2006 American Institute of Physics. #DOI: 10.1063/1.2205916$

I. INTRODUCTION

Solitary waves for the Euler equations have been a topic
of interest since the time of Stokes.1 In a small-amplitude
long-wave perturbation regime, they are well described by
single soliton solutions of the Korteweg-deVries equation
!KdV", and it is a famous result that the multiple soliton
solution of the KdV equation exhibits elastic collisions. The
question is to what extent interactions between solitary

waves for Euler’s equations fail to do so. We report on new
numerical, experimental, and analytical results on this point,
concerning both copropagating and counterpropagating cases
in a range of small- through large-amplitude solitary waves.
In all cases, we quantify the degree to which interactions are
inelastic, and one of our principal results is the study of the
existence and the characteristics of the residual wave result-
ing from these interactions. However, it is remarkable to us
how small the residual is from a collision of even very large
solitary waves.a"Electronic mail: craig@math.mcmaster.ca
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In the case of a collision of two counterpropagating soli-
tary waves, prior numerical studies of solutions of the full
Euler equations have been published by Chan and Street,2

Fenton and Rienecker,3 and Cooker, Weidman, and Bale,4

and are also the topic of study of an unpublished manuscript
by Grilli and Svendsen !1990". For the case of equal ampli-
tudes, we provide independent verification of the numerical
results of Cooker, Weidman, and Bale,4 and we recover their
accurate observations of wave interactions with regard to the
run-up !or superlinear amplitude increase" on the axis of
symmetry of the interaction, the phase lag due to collisions,
and the wall residence time !or period of concurrence of the
wave crests". This information is compared with the experi-
mental observations of Maxworthy5 and with the asymptotic
predictions for the run-up and the phase lag in Su and Mirie6

!related to the prior discussions of these quantities in
Byatt-Smith7 and Oikawa and Yajima8". In addition, we re-
port on the change in amplitude !and subsequent change in
velocity" of the solitary wave components due to the colli-
sion, and we provide a description of the residual compo-
nent, the residual of the solution after the interaction, in
terms of its Fourier spectrum. We find that after a sufficient
time interval, the post-collision solitary waves separate from
each other and from the support of the trailing residual wave;
this suggests that within the amplitude ranges we considered,
solitary waves are stable to disturbances in the form of pair-
wise collisions.

The numerical method to reproduce precise solitary
wave profiles of specified amplitude is based on a modifica-
tion of the method of Tanaka.9 For well-resolved simulations
of time evolution, we use a surface spectral method of Craig
and Sulem,10 which is sufficiently accurate to resolve de-
tailed features in solutions that are up to four orders of mag-
nitude smaller than the amplitudes of the incident solitary
waves. We wish to distinguish our work on Euler’s equations
from numerical studies of counterpropagating solitary waves
for model problems, which have appeared in Mirie and Su11

and Bona and Chen,12 among others; these give qualitative
agreement with the above results without quantifying the
precise details of the residual.

In the case of two counterpropagating solitary waves of
different amplitude, we report on a direct comparison be-
tween our experimental observations of solitary wave inter-
actions in the wave channel at Penn State University and
numerical simulations of asymmetric solitary wave interac-
tions using the above methods. We find that our simulations
of the full Euler equations do well at predicting the measure-
ments of the free surface from the wave channel experi-
ments. Further numerical observations are given, focusing on
the run-up and phase lag !noting that a period of crest con-
currence is not well defined in this context", and the genera-
tion of a residual resulting from the collision.

In the case of copropagating !or overtaking" solitary
wave interactions, we compare the results of our wave chan-
nel experiments with numerical simulations, finding that the
numerical solutions are substantially more accurate in pre-
dicting the details of the interaction than the KdV equation
!see, however, Hammack and Segur13". Our further numeri-
cal studies again show that there is always a residual after the

interaction, a conclusion that is qualitatively consistent with
the asymptotic predictions of Zou and Su.14 This updates the
findings of Fenton and Rienecker,3 who found no residual to
within the order of accuracy of their numerical scheme. The
residual, as well as the changes in amplitudes and velocities
of the solitary waves involved, are in fact very small in mag-
nitude. Similar interactions of this general form are described
by Bona, Pritchard, and Scott,15 Mirie and Su,11 and March-
ant and Smyth16 in solutions of long-wave model equations.
Quantitatively, the changes in amplitude and velocity are
very different from those for counterpropagating collisions;
in the copropagating case, the larger overtaking wave gains
amplitude while the smaller loses amplitude from the inter-
action, and the amplitude of the residual is approximately an
order of magnitude smaller than in the counterpropagating
case. In every case, the maximum amplitude of the solution
at any time during the interaction is strictly less than the
maximum amplitude of the largest individual solitary wave
!the overtaking one". Focusing on the details of the interac-
tion, we compare our experiments and the numerical solu-
tions to the three regimes of KdV two-soliton interactions
described by Lax,17 finding that, in a similar manner, solitary
wave interactions maintain two distinct crests in a regime
!a", fuse to form one central crest during the collision in a
regime !c", and exhibit a regime !b" of intermediate type.
While the character of the interaction is nearly identical, the
solitary wave amplitudes at which the transitions occur be-
tween regimes are somewhat different from the KdV setting,
a fact that has been previously noted in Fenton and
Rienecker.3 Our experimental results focus on the category
!b", presenting unambiguous observations of this case #see
Weidman and Maxworthy18 for other experimental observa-
tions of this case and cases !a" and !c"$. A discussion of the
behavior of copropagating interactions of solitary waves to a
model problem, and a comparison with the Lax categories,
are given in Wu.19

Using the fact that the total mass, momentum, and en-
ergy of free surface water waves are conserved, and the fact
that solitary waves occur in a one-parameter family, we de-
rive two results. The first is a relationship between the
change of amplitude of solitary waves due to a collision and
the energy carried by the residual. Second, we prove a rig-
orous estimate giving an upper bound on the energy of the
residual of a solitary wave interaction. The latter is based on
three hypotheses, all of which are clearly consistent with our
numerical and experimental observations, but none having
yet an unimpeachable verification. The proof of this result is
more straightforward than the results for general initial data
given in Craig20 and Schneider and Wayne,21 although it is a
less accurate result. For more precise estimates we cite Bona,
Colin, and Lannes22 and Wright,23 the latter giving the cur-
rently best rigorous result on the higher-order correction
terms. The data from our numerical simulations agree with
these theoretical results, and indicate that the estimate of
upper bounds scales with the correct order as the amplitude
of the incoming solitary waves tends to zero. However, our
numerical data also show a discrepancy with the order pre-
dicted by the asymptotic calculations of Su and Mirie6 and
Byatt-Smith.24
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The paper is organized as follows. In Sec. II we review
the mathematical statement of the problem of water waves,
and we reformulate the resulting evolution equations as a
Hamiltonian system in terms of surface variables, following
Zakharov,25 expressing the Hamiltonian in terms of the
Dirichlet-Neumann operator as in Craig and Sulem.10 We
additionally describe our numerical methods based on this
formulation, and we give a description of the experimental
laboratory setup. In Sec. III we describe our results for sym-
metric counterpropagating solitary wave interactions, and in
Sec. IV we study asymmetric cases, including comparisons
of numerical computations with laboratory experiments. In
Sec. V we give our experimental and numerical results for
copropagating solitary wave interactions. Section VI gives
our straightforward and rigorous analysis of the energy loss
and amplitude variation of solitary waves undergoing such
collisions. A description of our modifications of Tanaka’s
method9 of highly accurate approximations of solitary wave
profiles is given in the Appendix.

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider the motion of a free surface of a two-
dimensional fluid in a horizontal channel under the influence
of gravity. The mean water level is located at y=0 with y the
vertical upward direction. The fluid is assumed to be incom-
pressible, inviscid, and irrotational, so that the velocity po-
tential satisfies

!" = 0 !1"

in the fluid region bounded by a uniform bottom %y=−h& and
the free surface %y=#!x , t"&, with the boundary conditions

"y = 0 on y = − h , !2"

and

'"t + 1
2 !#""2 + g# = 0

#t + #x"x − "y = 0
( on y = #!x,t" , !3"

where g is the acceleration due to gravity and the subscripts
denote differentiation with respect to the corresponding vari-
ables.

Following Zakharov25 and Craig and Sulem,10 let
$!x , t"="(x ,#!x , t" , t) be the value of the velocity potential
on the free surface, and define the Dirichlet-Neumann opera-
tor

G!#"$ = )*1 + #x
2"n)y=#, !4"

which maps Dirichlet data to Neumann data on the free sur-
face, with n the unit exterior normal to the boundary. This
operator is linear in $ but it is nonlinear with explicit nonlo-
cal behavior in #, which determines the fluid domain. In
terms of the surface quantities # and $, the boundary condi-
tions !3" can be rewritten as

#t = G!#"$ , !5"

$t =
− 1

2!1 + #x
2"

%$x
2 − #G!#"$$2 − 2#x$xG!#"$& − g# . !6"

These equations are Hamilton’s canonical equations in
Zakharov’s formulation of the water wave problem as a
Hamiltonian system, with Hamiltonian

H!#,$" =
1
2+−%

%

$G!#"$ + g#2dx , !7"

and the equations of evolution !5" and !6" are in the form

$t,#

$
- = , 0 1

− 1 0
-,&#H

&$H
- . !8"

The time evolution of !8" conserves a number of physical
quantities, including the added mass

M!#" = +
−%

%

#!x,t"dx !9"

and the momentum, or impulse,

I!#,$" = +
−%

%

#!x,t"$x$!x,t"dx . !10"

This is verified by the following identities:

%M,H& = 0, %I,H& = 0, !11"

where the Poisson bracket between two functionals F and H
is given by

%F,H& =+ &#F&$H − &$F&#Hdx . !12"

Furthermore, the center of mass of a solution, given by

C!#" = +
−%

%

x#!x,t"dx , !13"

is a linear function of time. This is because its time deriva-
tive is a constant of motion,

d

dt
C = +

−%

%

x$t#!x,t"dx = +
−%

%

xG!#"$dx

= +
−%

%

$G!#"xdx = +
−%

%

$!− $x#"dx = I!#,$" . !14"

Equation !5" has been used in deducing the second equality
above, and expressions !3" and !4" in the second line.

Coifman and Meyer26 showed that the Dirichlet-
Neumann operator depends analytically on #!Lip!R", and
therefore G can be written in terms of a convergent Taylor
expansion

G!#" = .
j=0

%

Gj!#" , !15"

where the Taylor polynomials Gj are homogeneous of degree
j in #. Craig and Sulem10 then showed that explicit expres-
sions for Gj can be obtained using a recursion formula. The
first three terms are given by
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G0 = D tanh!hD" ,

G1 = D#D − G0#G0, !16"

G2 = 1
2 !G0D#2D − D2#2G0 − 2G0#G1" ,

where D=−i$x and G0 represent Fourier multiplier operators.
This formulation of the problem of water waves is con-

venient for the solitary wave interaction problem studied in
this paper, as well as in a number of other settings. These
include studies of long-wave asymptotics for waves over a
rough bottom,27 waves in sharp interfaces between immis-
cible fluids,28 and numerical studies of the propagation of
nonlinear water waves in a fluid domain with variable
bathymetry.29

B. Initial conditions

Initial conditions for the evolution equations !5" and !6"
are given by two well-separated solitary waves, which are
chosen to collide and then separate again in positive time,
remaining within the experimental or computational domain.
For the numerical simulations, data are taken to be solitary
wave solutions (#S!x , t" ,$S!x , t") on the classical bifurcation
branch of solutions.9,30,31 We have taken the bifurcation pa-
rameter to be S! #0,Smax$ corresponding to amplitude
S= /#S!x"/L%. There are two basic cases. In the first, the ve-
locities of the two waves have opposite signs !counterpropa-
gating case", and their evolution will entail a collision in
finite time and the subsequent separation of two modified
solitary waves, leaving a small residual between them. The
second case is of two solitary waves with velocities of the
same sign !copropagating case", the trailing wave being
larger amplitude, which in time will ultimately overtake and
interact with the leading wave. After the interaction there are
again two separating, slightly modified solitary waves, and
again a small residual, which in this case trails behind both.
Initial data for the numerical simulations are approximations
of the idealized situation in which the actual solution
(#S!x , t" ,$S!x , t") is asymptotic as t→−% to two infinitely
separated solitary waves

lim
t→−%

%#!x,t" − ##S1
!x − c1t − a1" + #S2

!x − c2t − a2"$& = 0.

!17"

After the interaction, the solution (#S!x , t" ,$S!x , t") will re-
sume the form of two separating solitary wave profiles, with
modified amplitudes !S1 ,S2"→ !S1

+ ,S2
+" and phases !a1 ,a2"

→ !a1
+ ,a2

+", but with additionally a residual (#R!x , t" ,$R!x , t")
such that for large t,

#!x,t" = #S1
+!x − c1

+t − a1
+" + #S2

+!x − c2
+t − a2

+" + #R!x,t" .

!18"

A principal goal of this work is to study the details of solitary
wave interactions, which include the scattering map !S1 ,S2"
→ !S1

+ ,S2
+", !a1 ,a2"→ !a1

+ ,a2
+", as well as the amplitude and

the character of the residual (#R!x , t" ,$R!x , t") resulting from
the collision.

C. Numerical methods

Numerical simulations of highly accurate solitary waves
have a long history. We generate the solitary wave profiles
for our initial data using a collocation method developed for
the purpose; it is a version of the approach developed in
Tanaka.9 Figure 1 is a plot of several solitary wave profiles
#S!x" for different amplitudes S. A description of the method
and our modifications appears in the Appendix.

The numerical methods used to solve the evolution equa-
tions !5" and !6" are similar to those proposed by Craig and
Sulem.10 We assume periodic boundary conditions in the x
direction and use a pseudospectral method for the space dis-
cretization of the problem. This is a natural choice for the
computation of G since each term in !15" consists of concat-
enations of Fourier multipliers with powers of #. The
Dirichlet-Neumann operator is approximated by a finite
number of terms, i.e.,

G!#" 0 .
j=0

J

Gj!#" . !19"

In practice, it is not necessary to use large values of J due to
the fast convergence of the series expansion for G. Both the
surface elevation # and velocity potential $ are expanded in
truncated Fourier series with the same number of modes.
Applications of Fourier multipliers are performed in spectral
space, while nonlinear products are calculated in physical
space at a discrete set of N equally spaced points. Our nu-
merical code has been developed from a set of routines for
surface spectral methods by Nicholls.32 All operations are
performed using the Fastest Fourier Transform in the West
!FFTW" routines by Frigo and Johnson.33 For perturbations
up to order J, the number of operations required is therefore
O!J2N ln N" per time step.

Time integration is performed in Fourier space. The lin-
ear terms in !5" and !6" are solved exactly by an integrating
factor technique. The nonlinear terms are integrated using a
fourth-order Adams-Bashford/Moulton predictor-corrector
scheme with constant time step.34 To initiate this scheme, the

FIG. 1. Solitary waves of height S /h=0.1,0.3,0.5,0.8 computed by the
modified Tanaka method.
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solution required at the first three time steps is provided by a
fourth-order Runge-Kutta method. In the computations !es-
pecially of steep waves", it was observed that spurious oscil-
lations can develop in the wave profile after some time of
integration, due to onset of an instability related to the
growth of numerical errors at high wave numbers. Similar
high-wave-number instabilities were observed by other
authors,35,36 who used smoothing techniques to circumvent
this difficulty. Here, at each time step !t, we applied an ideal
low-pass filter to # and $ of the form

f!k" = '1 if )k)/kmax ' ( , 0 ) ( ' 1,

0 if )k)/kmax * ( , ( !20"

where kmax is the highest wave number of the spectrum. We
found that (=0.8 suffices to stabilize the solution in most
cases, and inspection of the Fourier transform of our numeri-
cal solutions indicates that indeed both before and through-
out the interaction their Fourier spectrum is essentially con-
fined to small wave numbers and is not significantly affected
by this filtering procedure.

The performance of the code was assessed extensively
by checking the accuracy of results !on wave profiles and
conserved quantities" with respect to adjustment of the dif-
ferent numerical parameters such as domain length and den-
sity of collocation points. For instance, we checked that a
solitary wave of height S=0.3h, generated by Tanaka’s
method, propagates with negligible change of shape and
speed up to t=1000*h /g, with relative errors of only 10−7

and 5+10−7 in the conservation of the added mass M!#S"
and the energy H!#S ,$S", respectively !J=8, N=1024,
!x=0.16h, !t=0.01*h /g". For the head-on collision of
two solitary waves of equal height S=0.3h, we found
that the added mass and the energy are conserved with a
relative error of 6+10−8 and 2+10−7, respectively, up to
t=90*h /g after collision.

D. Experimental setting

The experiments reported here have been conducted at
the W. G. Prichard Fluid Mechanics Laboratory of Penn
State University, in a precisely aligned glass wave channel of
length 13.165 m and width 25.4 cm. The quiescent water
depth for the experiments was 5.0 cm, within an accuracy of
0.25 mm !corresponding to a water volume in the channel
accurate to one liter". Solitary waves were generated by the
horizontal, piston-like motion of a paddle inserted in the
channel cross section, driven by a precision software con-
trolled linear motor that allowed the generation of highly
accurate and repeatable wave profiles. The measurements of
the water surface were done by a bottom-mounted pressure
transducer and by four noncontacting wave gauges supported
above the water surface on a traveling instrumentation car-
riage. Since only four wave gauges were available on the
carriage, the water surface at only four spatial locations
could be measured during a single experiment. The precision
of the wavetank construction and the wavemaker driver
made our experiments repeatable to within a high degree of
accuracy. We used the sophistication of both the mechanical
and the electronic systems under repetition of 40 experimen-

tal runs to produce a spatial profile that spans 1.6 m in the x
direction with a spatial resolution of 1 cm and a temporal
resolution of 3.07 ms. A detailed presentation of the experi-
mental procedures including the description of the wave
channel and wave makers, the measurements, and their
analysis are given by Hammack, Henderson, Guyenne, and
Yi.37

For head-on collisions of solitary waves, we generated
KdV soliton profiles by specifying the paddle’s position and
velocity, taking into account the finite motion of the wave-
maker. Since only one wavemaker was available, it was nec-
essary to produce a first solitary wave that propagated down
the channel and reflected from the end wall. Subsequently, a
second solitary wave was generated that collided with the
reflected one near the center of the channel test section. The
instrument carriage was fixed during each of these experi-
ments.

In the case of copropagating solitary waves, the wave-
maker was used to create two KdV soliton profiles in rapid
succession. Due to the relatively small differential velocity
of the two solitary waves, the collision of a larger wave
overtaking a smaller one occurs over a large distance down
the wave channel. It is thus necessary to have the instrument
carriage move in a frame of reference adapted to the mean
velocity of the two waves. There was thus always a small
uncertainty in the carriage position, especially during the ac-
celeration and the deceleration periods of the experiment.
This is discussed in Sec. V A when we compare experimen-
tal data and numerical simulations.

III. COUNTERPROPAGATING SOLITARY WAVE
COLLISIONS: SYMMETRIC CASE

The question at hand in this section and the following
one concerns the details of the collision between two solitary
waves traveling in opposite directions. In general counter-
propagating solitary wave collisions, the solution is assumed
to take the asymptotic form as t→−% of two clean solitary
wave profiles moving toward one another, as in !17". During
the collisions, the solution rises to an amplitude larger than
the sum of the amplitudes of the two incident solitary waves
!the run-up". After the collision, two similar principal waves
emerge, with amplitudes that are initially significantly below
their incident amplitudes, but which relax and regain ampli-
tude again, returning to the form of two solitary waves, now
separating from each other. As a result of this collision, the
amplitudes of the two resulting solitary waves are slightly
smaller than the incident amplitudes, their centers are
slightly retarded from the trajectories of the incoming centers
!the phase lag", and there is a small residual. This asymptotic
form as t→ +% is as described in !18".

Because of the change of velocity after collision, there is
a certain ambiguity surrounding the definition of the phase
shift; indeed, the solitary wave components have trajectories
that are asymptotic to the lines x=cjt+aj, j=1,2 for t→−%,
and x=cj

+t+aj
+, j=1,2 for t→ +%. To resolve the problem,

define the midpoint of an interaction to be the time , that
minimizes the variance
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V!t" = +
−%

% ,x −
C

M
-2

#dx; !21"

then the phase shift is well defined as the change in the
t=, intercept of these lines, namely !aj

+−aj"+,!cj
+−cj",

j=1,2.
The residual wave is supported between the two main

solitary waves, and it propagates essentially according to lin-
ear theory, which among other things dictates that for large
times after the collision, the residual is separated from the
faster nonlinear solitary wave components of the solution.
Thus this interaction has the form of a scattering event, with
initial amplitudes !S1 ,S2" being transformed by the interac-
tion to scattered amplitudes !S1

+ ,S2
+" and with a phase lag

!aj −aj
+"+,!cj

+−cj", j=1,2 and radiative loss #R!x , t". It is a
finite dimensional problem, with the scattering map
!S1 ,S2 ,a1 ,a2"! !S1

+ ,S2
+ ,a1

+ ,a2
+" and the residual

(#R!x , t" ,$R!x , t") being entirely determined by the two pa-
rameters !S1 ,S2". For counterpropagating interactions, the
major issues are !i" to quantify the run-up as a function of
initial amplitude and to compare it with previously derived
results, !ii" to quantify the phase lag !aj −aj

+"+,!cj
+−cj",

j=1,2, !iii" to exhibit a residual after each collision and to
examine its character, and !iv" to quantify the degree of in-
elasticity of such collisions by observing the changes in am-
plitude !analogously, the energy or the velocity" of the scat-
tered solitary waves.

A. Run-up and phase lag

Our results for symmetric counterpropagating collisions
between equal amplitude solitary waves consist in accurate
numerical simulations of the initial value problem. Such in-
teractions are equivalent to a single wave interacting with a
vertical wall, although our calculations do not a priori im-
pose symmetry on the solution. Two identical, well separated
profiles #Sj

!x−aj", j=1,2 with opposing velocities c1=−c2,
which have been generated by Tanaka’s method, are placed
as initial data in the computational domain. In the nondimen-
sional time interval of approximately 30 to 40 units they
interact strongly, and then separate with a slight shift of
phase and a slight change in amplitude. We display results
for two different choices of amplitude, Sj = /#Sj

/L% =0.1h
!Fig. 2" and Sj = /#Sj

/L% =0.4h !Fig. 3". Figure 2!a" #3!a"$
shows a collision between the solitary waves, with Fig. 2!b"
#3!b"$ giving a space-time trace of the local maxima of this
solution as the two individual crests merge and then separate
in the process. At the attachment and detachment times of the
individual crests, they propagate with infinite velocity. The
asymptotically linear trajectories of the crests before and af-
ter collision can be compared to quantify the phase lag.
Equivalently, Cooker, Weidman, and Bale4 use the wall resi-
dence time to quantify this degree of hesitation at the en-
counter of symmetric counterpropagating waves !a concept
that is not available for asymmetric collisions".

Figure 4 documents the time evolution of the maximum
amplitude of the solution, which is shown to rise sharply to

substantially more than twice the elevation of the incident
solitary waves, after which it descends to below this level
after crest detachment, relaxing back to almost its initial
level. This is very comparable to Figs. 4!a" and 4!b" of
Cooker, Weidman, and Bale.4 In Fig. 3, we observe that the
phase lag grows when we increase the amplitude. Further-
more, there is a residual clearly visible between the two
crests after the collision.

For these and for a series of numerical simulations with
a range of incident amplitudes from 0.025h to 0.5h, values of
run-up and wall residence time are recorded in Figs. 5 and 6,
respectively, with comparison to the numerical data of
Cooker, Weidman, and Bale4 and the asymptotic expressions
to second and to third order as given in Byatt-Smith7 and Su
and Mirie,6 respectively. We also compare our observations
of the wall residence time with the experiments of
Maxworthy,5 as reported in Cooker, Weidman, and Bale.4

The experiments of Renouard, Seabra-Santos, and
Temperville38 are consistent with these data. The very close
fit between the results of Cooker, Weidman, and Bale4 and
our own simulations represents a verification of the accuracy

FIG. 2. Head-on collision of two solitary waves of equal height S /h=0.1:
!a" !x , t" plot and !b" crest trajectory. The amplitude after collision is S+ /h
=0.0997 at t /*h /g=90. The phase lag is !aj −aj

+" /h=0.1370.
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of the present numerical method, the only significant devia-
tion occurring for calculated run-up in our largest amplitude
case S /h=0.5.

As noted in Cooker, Weidman, and Bale,4 the asymptotic
predictions of the phase lag in Oikawa and Yajima8 and Su

and Mirie6 differ from the experiments of Maxworthy.5 Our
numerical data are, however, almost indistinguishable from
the numerical results of Cooker, Weidman, and Bale,4 sup-
porting again the latter case.

B. Residual

The residual is clearly visible trailing the main crests
after the collision in the case Sj =0.4h. In the case of smaller
amplitude Sj =0.1h, any deviation from a clean interaction is
smaller than what can be seen under normal scaling. How-
ever, an image of the interaction that appears in Fig. 7 with

FIG. 3. Head-on collision of two solitary waves of equal height S /h=0.4:
!a" !x , t" plot and !b" crest trajectory. The amplitude after collision is S+ /h
=0.3976 at t /*h /g=90. The phase lag is !aj −aj

+" /h=0.3257.

FIG. 4. Time evolution of the amplitude /#!x , t"/L%!Rx" for the head-on col-
lision of two solitary waves of equal height S /h=0.4. The attachment and
detachment times ta and td are represented by circles. This is comparable to
Figs. 4!a" and 4!b" of Cooker, Weidman, and Bale !Ref. 4".

FIG. 5. Maximum run-up as a function of incident wave height: our numeri-
cal results !solid line-circles", numerical results of Cooker, Weidman, and
Bale !Ref. 4" !solid line-triangles", perturbation results to second-order
!dashed line" and third-order !dotted-dashed line" reported in Su and Mirie
!Ref. 6".

FIG. 6. Wall residence time as a function of incident wave height: our
numerical results !solid line-circles", numerical results of Cooker, Weidman,
and Bale !Ref. 4" !solid line-triangles", experimental results of Maxworthy
!Ref. 5" !stars", perturbation results to second order !dashed line" and third
order !dotted-dashed line" following Su and Mirie !Ref. 6".
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exaggerated vertical scale shows the presence of a small but
definitive residual. In this and in our further simulations, we
have found that even in the case of small to moderate inci-
dent amplitudes, there is always a nonzero energy transfer
from the incident solitary waves to a residual, representing a
qualitative confirmation of the asymptotic calculations of Su
and Mirie6 on this point. The transfer of energy from the
solitary wave components results in a change in amplitude

after passing through the interaction. In counterpropagating
interactions, the amplitude of each solitary wave decreases,
but by a remarkably small amount given the size of the in-
cident solitary waves. We observe that relative amplitude
loss is !S−S+" /S=0.0036 in the case S=0.1h, while when
S=0.4h the relative amplitude loss has only increased to
0.0065. Both of these changes are very small, which is quali-
tatively consistent with the findings of Su and Mirie6 and

FIG. 7. Head-on collision of two solitary waves of equal height S /h=0.1 at !a" t /*h /g=21 !before collision", !b" 45 !during collision", and !c" 90 !after
collision". The vertical scale is magnified in order to observe the dispersive trailing waves generated after the collision.
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Byatt-Smith,24 which predict no amplitude changes to orders
O!S3" and O!S5", respectively. However, our data show a
quantitative discrepancy with both of these asymptotic pre-
dictions, which we will return to in Sec. VI. We note that in
the early simulations of Chan and Street,2 no residual was
observed, up to the order of accuracy of the numerical simu-
lation, and in Fenton and Rienecker3 trailing residuals are
only observed for large amplitude and symmetric counter-
propagating interactions.

Table I gives the data from a sequence of numerical
simulations of symmetric counterpropagating solitary wave
interactions, with incident amplitudes S=0.025h through
0.5h. We document two sets of quantities related to the in-
elastic character of interactions. The first is the change in
amplitude of the solitary wave components passing through a
collision S /h→S+ /h, comparing it to the relative change
!S−S+" /S. The second is the total energy ET=H!# ,$" of
the solution compared with the energy of the residual
eR=H!#R ,$R". The residual is calculated by observing the
best fit of the computed solution to two independent solitary
waves !by matching amplitudes with numerically computed
solitary wave profiles" at the given time t, and subtracting
them from the solution. We additionally tabulate the relative
energy loss of the two interacting solitary waves to the re-
sidual eR /H!# ,$" that results from the collision.

Two facts are evident. First, that there is in every case a
nonzero energy transfer from the incident solitary waves to
the residual as a result of the collision, and second, that,
although nonzero, the energy loss is very small; the relative
loss varying from approximately 2% in the largest case
S /h=0.5 down to 0.5% when S /h=0.075.

We now address the question of the fate of the solitary
wave components after experiencing a collision and subse-
quent production of a residual. Our computations show that
solitary waves emerging from a collision separate from each
other and from the support of the residual wave generated by
the collision. Beyond a certain time interval after the colli-
sion, they propagate as clean solitary waves with slightly

modified amplitude in an essentially quiescent background.
In particular, the collision lasts for a finite time, and only a
finite portion of energy is lost in the interaction. It is a fact
related to the stability of a solitary wave that, once perturbed,
it does not continue to shed energy, even at a slow rate, as
t→ +%. This is shown in the series of images in Fig. 8, in
which two incident solitary waves of amplitude S=0.4h !a"
approach each other, !b" collide and produce a residual, and
!c" separate from the collision and from the support of the
trailing wave packet which constitutes (#R!x , t" ,$R!x , t").
Given its amplitude and the background quiescent state in
which it propagates, the residual wave evolves essentially
according to linear theory. This figure also exhibits a charac-
teristic teardrop shape of #R!x , t", resulting from the band-
limited character of the residual and the dispersion relation
-2!k"=gk tanh!hk".

Figure 9 presents the Fourier transform of the residual
#R!x , t" resulting from the collision of two solitary waves of
amplitude S=0.4h, at time t /*h /g=89.10. For reference, the
Fourier transform of #S!x" is of amplitude 19.9870. The fig-
ure documents the Fourier signature of the residual at a time
well after collision, showing a characteristic oscillating and
band-limited profile of the Fourier spectrum of #R at the
point when the solution has decomposed into two main
lumps plus residual, and the lumps are separated in space
from the residual. At all subsequent times, the Fourier trans-
form is essentially supported between wave numbers
kh= ±2. Under linear evolution, such a Fourier profile is pre-
served. This is consistent with the observation of the spatial
profiles of the residual, namely that they are not highly os-
cillatory error terms, but rather they are of specific form with
identifiable characteristics.

Fourier profiles of the signature of the residual in other
cases !S=0.1h, 0.2h, 0.3h, and 0.5h" show quite a degree of
similarity with that of the case S=0.4h in Fig. 9; we have not
presented all of these data here.

TABLE I. Ratio of the amplitude loss, and comparison of the energy of the residual with the total energy at
t /*h /g=80 as a function of incident wave height, for the head-on collision of two solitary waves of equal
height.

S /h S+ /h !S−S+" /h ET eR !+103"
eR

ET
!+103"

0.025 0.02490 0.00010 0.011 0.092 8.358

0.05 0.04983 0.00017 0.034 0.192 5.564

0.075 0.07476 0.00024 0.065 0.338 5.174

0.1 0.09964 0.00036 0.102 0.598 5.865

0.15 0.14930 0.00070 0.191 1.378 7.203

0.2 0.19892 0.00108 0.299 2.517 8.403

0.25 0.24859 0.00141 0.425 3.809 8.968

0.3 0.29834 0.00166 0.565 5.400 9.562

0.35 0.34788 0.00212 0.718 7.791 10.855

0.4 0.39738 0.00262 0.882 8.817 9.999

0.45 0.44534 0.00466 1.054 16.323 15.488

0.5 0.49311 0.00689 1.231 24.712 20.067
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IV. ASYMMETRIC COUNTERPROPAGATING
COLLISIONS

A. Experiments and numerical comparisons

Our results in the case of counterpropagating interac-
tions between two solitary waves of unequal amplitudes in-
clude both experimental measurements and numerical simu-
lations. The experiments, carried out in the Penn State wave

channel, consist of a first localized waveform being gener-
ated by the wavemaker, reflecting off of the far end of the

tank and then interacting with a second wave generated by
the wavemaker. The water surface level is measured in a
spatial window around the region of collision at regular in-
tervals of time. These two waveforms are generated to be
profiles of a soliton solution of the KdV equation !and hence
they are not strictly traveling wave solutions to the Euler
equations, but only close". In addition, the reflected wave
may well deviate further from an exact solitary wave profile
due to the interaction with the wall, and experience a slight
attenuation of amplitude due to its longer travel distance in

FIG. 8. Head-on collision of two solitary waves of equal height S /h=0.4 that are initially well separated from each other, at !a" t /*h /g=0, !b" 340, and !c"
780.
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the wavetank. Hence the interaction has a degree of asym-
metry, and it is not strictly between exact solitary waves.
Figure 10 records the wavetank measurements of the experi-
ments of this collision at eight times during the interaction,
within a window located in the middle of the wave channel.
The wavemaker and the end wall of the channel are not
included in the image. In this figure, the wave moving from
right to left is coming directly from the wavemaker, while
the one moving from left to right has reflected from the end
wall of the wave channel. The resulting measurements are
compared with two numerically generated traces, which are
superimposed on the figure. The first is a numerical simula-
tion of the water wave evolution using the above numerical
methods to solve the time evolution problem !5" and !6".
Initial data for this simulation are given to be KdV soliton
profiles, matching those being generated in the tank by the
wavemaker. The second is a linear superposition of two exact
KdV solitons, centered on the two solitary-like waves
present in Fig. 10!a" and adjusted to their amplitudes. Trans-
lating at constant !and opposing" velocity, they act as a ref-
erence for the amplitude and the phase shift of the actual
solutions that are undergoing the interaction.

The details of the interaction in the experiment are rela-
tively well represented in the numerical simulation, which in
all frames predicts the measured wave profile with small er-
ror, and which reproduces the peak locations and their am-
plitudes very well. The two exceptions are that the numerical
solution apparently slightly undershoots the measured wave
amplitude at the point of largest run-up #Fig. 10!c"$, and the
centers of the peaks in the numerical solution are slightly
delayed behind the experimental measurements after the in-
teraction #Fig. 10!h"$. Both clearly differ from the superpo-
sition of KdV solitons. Some of the discrepancy between the
experimental solution and the numerical simulation can be
attributed to the fact that neither is starting from an exact
solitary wave. Furthermore, neither a trailing residual nor
any changes in amplitude due to the inelastic nature of the
interaction can be picked out from the experimental uncer-
tainties of the wavetank measurements.

B. Run-up, phase lag, and residual

Further numerical simulations of counterpropagating in-
teractions between two exact solitary waves of different
amplitudes exhibit a number of the same features that have
been observed in the symmetric case. Figure 11 shows the
details of a collision between solitary waves of amplitudes
S1= /#S1

/L% =0.4h and S2= /#S2
/L% =0.1h. The clean propaga-

tion before the collision, the degree of run-up, the phase lag,
and the small residual are clear in the two diagrams. The plot
of the trajectories of the crests shows that the small solitary
wave is absorbed by the larger, which subsequently slows
briefly before reemitting the smaller one on the other side
and resuming !close to" its incident velocity. The phase lag is
clearly asymmetric, with the smaller solitary wave being de-
layed more significantly than the larger.

Figure 12 shows the similar behavior in an interaction
between solitary waves of amplitudes closer to each other,
respectively, S1=0.4h and S2=0.3h. In this case, the run-up is
more significant, as would be expected, the phase lags of the
two solitary waves are comparable to each other, and the
slowing of the central crest due to the interaction is signifi-
cant. Additionally, a larger residual is produced. Still, how-
ever, judging from the trajectories of the two crests, the in-
teraction has the character of an absorption of the smaller
solitary wave and its subsequent reemission at a later time,
along with a phase lag in their paths.

V. COPROPAGATING SOLITARY WAVE
INTERACTIONS

A. Experiments and numerical comparison

Our results for the copropagating case of interactions
between two solitary waves include numerical simulations of
these overtaking collisions, experimental measurements, and
numerical modeling of the experiments. As in the case of
head-on collisions, the solution is assumed to be in the
asymptotic form as t→−% of two solitary waves infinitely
separated from one another. In this case, however, these have
velocity with the same sign, and are ordered so that initially
the larger amplitude wave trails the smaller one. An overtak-
ing collision consists of the larger solitary wave catching up
with and interacting with the smaller one, subsequently pass-
ing on and separating from it, and leaving a residual
(#R!x , t" ,$R!x , t") trailing both of the resulting solitary
waves. This is consistent on a qualitative level with the
model interactions studied by Bona, Pritchard, and Scott.15

Because the interaction is occurring between solutions with
velocities of the same sign, it takes place over a long time
interval, in contrast to the case of the head-on collisions. The
solitary waves resulting from the interaction have very
slightly modified amplitudes and velocities, and they experi-
ence a substantial phase shift, which is positive !that is, their
centers are advanced from where they would be had there not
been an interaction". This is consistent with the phase shift
for the interaction of KdV solitons, and opposite in sign to
the case of head-on collisions. The major issues that involve
these interactions are !i" to exhibit a residual wave resulting
from the inelastic nature of the interactions; !ii" to quantify

FIG. 9. Fourier spectrum of the residual #R at t /*h /g=89.10, for the
head-on collision of two solitary waves of equal height S /h=0.4. For com-
parison, the Fourier spectrum of the solitary wave component of the full
solution #S!x" is of amplitude 19.9870. The Fourier spectrum of the residual,
taken well after the collision, stabilizes to be invariant in time, and is a
signature of a solitary wave collision.
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the changes in amplitude, energy, and velocity due to the
interaction !S1 ,S2"→ !S1

+ ,S2
+"; !iii" to quantify the phase shift

!aj −aj
+"+,!cj

+−cj", j=1,2 and compare it with the analog
quantity for KdV two-solitons; and !iv" to understand the
changes in amplitude and other details of the dynamics of
such interactions. As in the counterpropagating case, these
interactions have the form of a scattering event, mapping

!S1 ,S2 ,a1 ,a2" to !S1
+ ,S2

+ ,a1
+ ,a2

+" and generating the residual
(#R!x , t" ,$R!x , t"), all being determined by the two input pa-
rameters !S1 ,S2".

Figure 13 shows a sequence of spatial profiles taken of
an experimental overtaking collision between two waves in
the Penn State wave channel. Superposed on these profiles
are two further traces: a sequence of spatial profiles predicted

FIG. 10. Asymmetric head-on colli-
sion of two solitary waves of height
S1=1.217 cm, S2=1.063 cm at !a"
t=18.29993 s, !b" 18.80067 s, !c"
19.05257 s, !d" 19.10173 s, !e"
19.15088 s, !f" 19.19389 s, !g"
19.32905 s, and !h" 19.50109 s: nu-
merical results !solid line", experimen-
tal results !dots", sum of two KdV soli-
tons !dashed line".
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by our numerical simulations, and the KdV two-soliton that
best fit the initial frame of the data. Initial data for the nu-
merical simulations were chosen in a similar way to those for
the head-on collision experiments, with superimposed KdV
single solitons, as the wavemaker was programmed to pro-
duce these profiles. Experimental measurements are taken
from a moving carriage above the wavetank, in order to keep
the interaction within the frame of the instrument assembly.
Because of uncertainties in the precise carriage position, we
had difficulty aligning the reference frame of the experimen-
tal data and the two sets of numerical profiles. For this rea-
son, the sequence of profiles in Fig. 13 is calibrated to be at
precisely the same times during the interaction, but they are
plotted in the frame by individually aligning their respective
centers of mass. Therefore, amplitude and relative phase in-
formation are accurately reproduced, but absolute phase has
been neglected.

One first notes that, while the shape of the experimental
data and the numerical simulations are very well correlated

throughout the interaction, the amplitude of the experiment
decays in time and in the last frame in particular its ampli-
tude is rather attenuated when compared to the simulation.
The numerical simulation also overpredicts the phase shift
after the interaction, especially that of the trailing wave.
These two errors may be due to the presence of dissipative
processes in the experiment that are not taken into account in
the equations of motion !5" and !6". These can be expected to
play a greater role in overtaking interactions than in head-on
collisions, as dissipative effects have more time to accumu-
late. These effects are discussed in detail in Weidman and
Maxworthy,18 where experimental observations of overtak-
ing solitary wave collisions are reported. On the other hand,
the experiments are also compared to the KdV equation; one
sees that the KdV two-soliton solution has overshot the am-
plitude in almost all frames, and is giving a different picture
of the crest interactions at the peak of the interaction. Over-
all, this result gives us a certain confidence in the predictive
power of our numerical simulations.

FIG. 11. Asymmetric head-on collision of two solitary waves of height
S1 /h=0.4, S2 /h=0.1: !a" !x , t" plot and !b" crest trajectory. The amplitudes
after collision are S1

+ /h=0.3996, S2
+ /h=0.0992 at t /*h /g=90 for the large

and small wave, respectively. The phase lags are !a1−a1
+" /h=0.1211 and

!a2−a2
+" /h=0.3597, respectively.

FIG. 12. Asymmetric head-on collision of two solitary waves of height
S1 /h=0.4, S2 /h=0.3: !a" !x , t" plot and !b" crest trajectory. The amplitudes
after collision are S1

+ /h=0.3987, S2
+ /h=0.2983 at t /*h /g=90 for the large

and small wave, respectively. The phase lags are !a1−a1
+" /h=0.3021 and

!a2−a2
+" /h=0.3223, respectively.
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B. Phase shift and bounds on amplitude

In a sequence of further numerical simulations, we have
studied overtaking solitary wave collisions between moder-
ate to large amplitude waves. In Figs. 14–17 we present the
resulting space-time plots of the surfaces and the trajectories
of the crests, in the cases of amplitudes 0.4h and 0.3h, 0.4h
and 0.1333. . .h, 0.4h and 0.113h, and 0.4h and 0.1h, respec-

tively. The plots are given in a coordinate frame moving
approximately with the mean velocity of the two initial soli-
tary waves, in order to localize the interaction into the frame
of the image.

A feature of all of these interactions is that the scattering
event amplifies the larger of the solitary waves. After the
interaction, the larger solitary wave #S1

+ is of slightly larger

FIG. 13. Overtaking collision of two
solitary waves of heights S1
=2.295 cm, S2=0.730 cm at !a"
t=2.90304 s, !b" 5.50196 s, !c"
6.40513 s, !d" 7.05025 s, !e"
7.60014 s, !f" 8.50024 s, !g"
9.50478 s, and !h" 11.30191 s: nu-
merical results !solid line", experimen-
tal results !dots", KdV two-soliton so-
lution !dashed line". The three sets of
data are plotted in a reference frame
with zero relative speed for the centers
of mass.
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amplitude than #S1
, a phenomenon that has been reported

previously in Fenton and Rienecker.3 The data from our nu-
merical simulations are given in Table II.

It is clearly seen that the amplitude increase is of 0.1%
or less in all cases. This is an order of magnitude smaller
than the changes in amplitude observed in counterpropagat-
ing interactions. We have to comment that while this is in
qualitative agreement with the numerical study in Ref. 3 !of
a single copropagating interaction", our measurements differ
quantitatively from their findings in that the increases
!S1

+−S1" /h we observe are significantly smaller than that re-
ported in their paper. The difference can perhaps be attrib-
uted to the higher precision of our numerics.

A second feature of each of these interactions is that the
amplitude of the actual solution #!x , t" never exceeds that of
the larger solitary wave, nor does it dip below the amplitude
of the smaller. That is, at each time t!R, there is the esti-
mate from above and below

/#S2
!x"/Lx

% ) /#!x,t"/Lx
% ) /#S1

+!x"/Lx
%, !22"

where we are labeling the initial solitary waves so that
/#S2

!x"/Lx
% ) /#S1

!x"/Lx
%. This fact is verified in Fig. 18, in

which the maximum of the solution is plotted in nondimen-
sional time !solid line", with the upper and lower bounds
/#S1

+!x"/Lx
% and /#S2

!x"/Lx
% superimposed in horizontal dashed

lines. The greatest dip in the amplitude of #!x , t" occurs at
the peak time of the interaction. This is in contrast to coun-
terpropagating collisions, where the amplitude at the peak of
the interaction experiences a run-up of a significant factor
greater than the sum of the initial solitary waves. In the case
of copropagating interactions, the result is to lower the maxi-
mum at the peak of the interaction, and by a significant fac-
tor. In Figs. 18!a" and 18!b", the maximum dips below the
arithmetic mean of the incoming amplitudes 1/2#/#S1

!x"/Lx
%

+ /#S2
!x"/Lx

%$. In Fig. 18!c", the dip is not so exaggerated, but
nevertheless it is significant. We recall for the reader that the
estimate !22" also holds for KdV two-solitons.

FIG. 14. Overtaking collision of two solitary waves of height S1 /h=0.4,
S2 /h=0.3: !a" !x , t" plot and !b" crest trajectory. The amplitudes after colli-
sion are S1

+ /h=0.4004, S2
+ /h=0.2999 at t /*h /g=4000 for the large and

small wave, respectively. The phase shifts are !a1
+−a1" /h=6.5665 and !a2

+

−a2" /h=5.6194, respectively. The collision is represented in a reference
frame moving approximately with the mean velocity of the two solitary
waves.

FIG. 15. Overtaking collision of two solitary waves of height S1 /h=0.4,
S2 /h=0.1333: !a" !x , t" plot and !b" crest trajectory. The amplitudes after
collision are S1

+ /h=0.4001, S2
+ /h=0.1332 at t /*h /g=1000 for the large and

small wave, respectively. The phase shifts are !a1
+−a1" /h=2.7424 and !a2

+

−a2" /h=4.0591, respectively.
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A third feature of overtaking collisions is that there are
large phase shifts !aj

+−aj"+,!cj
+−cj", j=1,2; the larger over-

taking wave is shifted forward while the smaller is shifted
backward. This is consistent with the phase shifts that occur
in the KdV two-soliton solution, although the actual values
of the phase shifts for the KdV solitons are for the most part
somewhat larger. We have tabulated the phase shifts for our
numerical simulations along with the phase shifts for the
KdV solitons with the same amplitudes in Table III.

C. Residual

What is not evident from the plots presented in Figs.
14–17 is the presence of a residual #R!x , t" emerging from
the collision. In fact the residual exists, but it is very small;
we have imaged it with an essentially 100-fold magnification
in the scale of the vertical axis in Fig. 19. This figure plots
the interaction of two solitary waves with S1=0.4h and S2
=0.3h, at three points in time. A small depression forms be-
hind the two main peaks during the collision, which develops

into a well defined but very small trailing residual as the two
main solitary waves separate from the interaction; it is virtu-
ally undetectable in the nonmagnified plot or in numerical
simulations with less precision. On this matter, Fenton and
Rienecker3 did not observe a residual in their simulations of
overtaking collisions for the full Euler equations, up to the
degree of precision of their calculation. We note that numeri-
cal observations of residuals resulting from an overtaking
collision of solitary waves to model equations are well
known.11,15

D. The Lax categories

A comparison between the different cases represented in
Figs. 14–17 brings us to a discussion of the geometry of
overtaking solitary wave collisions. We find that these inter-
actions can be categorized into three types, closely related to
the three Lax categories of two-soliton collisions for the
KdV equation. When the amplitudes of the two incident soli-
tary waves are close to being comparable, then the interac-

FIG. 16. Overtaking collision of two solitary waves of height S1 /h=0.4,
S2 /h=0.113: !a" !x , t" plot and !b" crest trajectory. The amplitudes after
collision are S1

+ /h=0.4001, S2
+ /h=0.1129 at t /*h /g=1000 for the large and

small wave, respectively. The phase shifts are !a1
+−a1" /h=2.5462 and !a2

+

−a2" /h=3.3274, respectively.

FIG. 17. Overtaking collision of two solitary waves of height S1 /h=0.4,
S2 /h=0.1: !a" !x , t" plot and !b" crest trajectory. The amplitudes after colli-
sion are S1

+ /h=0.4003, S2
+ /h=0.0999 at t /*h /g=1000 for the large and

small wave, respectively. The phase shifts are !a1
+−a1" /h=2.2974 and !a2

+

−a2" /h=3.6159, respectively.
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tion looks like the one pictured in Fig. 14; namely, at each
point in time there are two well-defined and separate crests in
the solution. The amplitude of the trailing crest is initially the
larger S1, and it decreases monotonically through the inter-
action to the lower amplitude S2

+. The leading crest does the
opposite, increasing monotonically in time. Throughout the
interaction they never meet. This is the same behavior as the
KdV two-solitons of category !a", as described in Lax.17 In
the situation in which the amplitudes of the incident solitary
waves are very different, the interaction looks like the one
pictured in Fig. 17. As the two waves approach each other,
the smaller crest is drawn toward the larger wave and ab-
sorbed by it, a process that accelerates the crest of the larger
wave. After a time interval during which there is a unique
central crest, the smaller wave is reemitted from the back of
the principal wave, slightly modified in amplitude, after
which it separates from the larger wave. This is the behavior
of KdV two-soliton solutions in the Lax category !c" !except
for the inelastic changes in amplitude". Between these two
cases is an intermediate one, which for solitary wave inter-
actions is pictured in Fig. 15. It is a more complicated pic-

ture; the smaller crest is first absorbed and then reemitted
from the larger wave, after which there is a central region
consisting of two crests. In this region, the smaller one grows
while the larger shrinks until they have essentially traded
their relative sizes; the interaction then undoes itself in a
similar way. The pattern of crest absorption and reemission is
given in Fig. 15!b", and it is essentially identical to the in-
teraction of KdV two-solitons in Lax’s category !b". What is
different for solitary wave solutions of Euler’s equations is
that the transitions occur for different values of the two in-
cident amplitudes. For the KdV equation, when considering
two-soliton interactions with amplitudes, respectively, S1
.S2, the transition from category !a" to !b" occurs at the
ratio S1 /S2= !3+*5" /212.62. . ., and the transition from !b"
to !c" when S1 /S2=3. In the case of interactions of solitary
waves, the transition curves between categories occur for
different values of S1 and S2, and are not simply functions of
the amplitude ratio. In a series of trials with S1=0.4h and
with varying S2, we have found the transition value from
category !a" to !b" and from !b" to !c" to be given by

S1

S2
' 2.941 category !a" ,

TABLE II. Ratio of the amplitude loss, and comparison of the energy eR of the residual to the total energy ET

of the full numerical solution at t /*h /g=4000 !S2 /h=0.3", t /*h /g=1000 !S2 /h=0.1333,0.113,0.1" as a func-
tion of incident wave heights, for the overtaking collision of two solitary waves of different heights.

S1 /h S1
+ /h !S1

+−S1" /h S2 /h S2
+ /h !S2−S2

+" /h ET

eR
!+105"

eR

ET
!+105" Category

0.4 0.4004 0.0004 0.3 0.2999 0.0001 0.689 19.458 28.235 !a"
0.4 0.4001 0.0001 0.1333 0.1332 0.0001 0.497 8.310 16.717 !b"
0.4 0.4001 0.0001 0.113 0.1129 0.0001 0.480 7.801 16.235 !c"
0.4 0.4003 0.0003 0.1 0.0999 0.0001 0.471 1.886 4.001 !c"

FIG. 18. Time evolution of the amplitude /#!x , t"/L%!Rx" for the overtaking
collision of two solitary waves of height !a" S1 /h=0.4, S2 /h=0.3; !b" 0.4,
0.1333; and !c" 0.4, 0.1.
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2.941 )
S1

S2
' 3.536 category !b" , !23"

3.536 )
S1

S2
category !c" .

In the simulations presented in Figs. 14, 15, and 17, this ratio
is 1.33¼, 3, and 4, respectively. At the transition point from

TABLE III. Comparison of phase shifts between the KdV and the full Euler
equations, for the overtaking collision of two solitary waves of different
heights.

S1 /h S2 /h
!a1

+−a1" /h
Euler

!a2
+−a2" /h
Euler

!a1
+−a1" /h
KdV

!a2
+−a2" /h
KdV

4 0.3 6.5665 5.6194 5.8414 6.0612

0.4 0.1333 2.7424 4.0591 3.0761 5.1022

0.4 0.113 2.5462 3.3274 2.1699 4.9797

0.4 0.1 2.2974 3.6159 1.5605 4.9685

FIG. 19. Overtaking collision of two solitary waves of height S1 /h=0.4, S2 /h=0.3 at !a" t /*h /g=1190 !before collision", !b" 1490 !during collision", and !c"
1740 !after collision". The vertical scale is magnified in order to observe the dispersive trailing wave generated after the collision.
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category !b" to !c", the central single crest at the peak of the
interaction is just on the edge of splitting for an instant into
two separated crests, and it apparently propagates with infi-
nite velocity at this instant; this is captured in Fig. 16.

The appearance of three categories of two-soliton inter-
action is an algebraic fact about the KdV equation, but it was
not evident to us that copropagating solitary wave interac-
tions for the water waves problem would be so restricted. We
made some attempt to find other geometric categories of in-
teractions, for example between very large waves or between
waves of very different amplitudes. However, in all of our
simulations we found that the interactions fell within one of
the three categories.

There have been previous studies that compared the Lax
categories for KdV two-solitons with water waves. Weidman
and Maxworthy18 made experimental observations of over-
taking collisions in the three categories. Numerical simula-
tions of overtaking collisions are reported by Mirie and Su11

and Wu19 for model long-wave equations, and by Fenton and
Rienecker3 for Euler’s equations. The latter reference also
notes the shift in the transition boundaries for these catego-
ries, presenting a case of a category !b" overtaking interac-
tion.

With this discussion in hand, we return to comment on
the sequence of experimental measurements in Fig. 13. Not-
ing that the amplitudes of the two incident waves are 0.730
and 2.295 cm, respectively, their ratio is 3.14¼, which for
the KdV equation is of category !c". However, for solitary
waves it apparently falls well into the geometric category
!b", and therefore a KdV two-soliton cannot be expected to
be able to reproduce the detailed features of an overtaking
collision in this regime. Considering the geometry of the
wave profile, the numerical simulations of solitary waves
observed in the laboratory do quite well in reproducing the
evolving free surface in the experimental measurements in
Fig. 13, despite the disagreements in the amplitudes due to
the attenuation of the waves in the experiment.

The category of an interaction is observed to have an
influence on the degree of inelasticity of the solitary wave
interaction. Table II contains the data from a sequence of
numerical simulations of copropagating solitary wave inter-
actions, where a wave of height 0.4h overtakes ones of
height 0.3h, 0.1333h, 0.113h, and 0.1h, respectively. We
document the change in amplitude of the two component
waves due to the collision, as well as the energy of the re-
sidual that is created as a result of the interaction. In all of
our simulations, the larger solitary wave gains amplitude as a
result of the interaction, at the expense of the smaller, which
loses amplitude. However, it appears that this phenomenon
does not change monotonically with the sizes of the two
incident solitary waves. Furthermore, the relative energy loss
to the residual, which again is an order of magnitude smaller
than that for counterpropagating interactions, is also not ob-
served to be uniformly decreasing as the amplitude of the
smaller wave decreases, at least over the range we have ex-
amined. It is apparent from the data that category !a" inter-
actions are closer to being elastic, while category !b" and !c"

interactions are less clean than those of category !a", and are
more effective at transferring energy to the residual of the
collision.

VI. AN ANALYSIS OF THE RESIDUAL

The purpose of this section is to present two relations
satisfied by the residual (#R!x , t" ,$R!x , t") resulting from a
solitary wave collision. We show !i" there is a relationship
between !Sj and the energy eR carried by the residual, and
!ii" we prove a rigorous estimate giving an upper bound for
eR. The estimate !ii" holds under the assumption that solitary
wave collisions satisfy three hypotheses, which are observed
to hold in our numerical simulations. However, we do not at
present have a rigorous proof of this fact, and they remain
hypotheses of the result.

Our discussion of the residual is based on three con-
served quantities: the added mass M!#", the momentum
I!# ,$", and the energy H!# ,$", defined, respectively, in !9",
!10", and !7". Exact solitary wave profiles occur in one-
parameter families (#S!x− tc" ,$S!x− tc"), with S! #0,Smax$.
The solitary wave solutions have well defined values of the
three conserved quantities, which we denote, respectively, as
m!S"=M!#S", /!S"= I!#S ,$S", and e!S"=H!#S ,$S". A solitary
wave of amplitude S moving from left to right has positive
momentum /!S", while one of the same amplitude moving
from right to left has identical mass m!S" and energy e!S",
and negative momentum of the same absolute value.

We give initial data with asymptotic behavior for
t→−% as in !17", so that the values of the total added mass,
total momentum, and total energy for our solution
(#!x , t" ,$!x , t") are given by

MT = m!S1" + m!S2" ,

IT = /!S1" + /!S2" , !24"

ET = e!S1" + e!S2" .

Because they are conserved quantities, these values are pre-
served after an interaction, where we have observed that the
solution takes the form !18", consisting of two separating
solitary waves !#S1

+ ,$S1
+" and !#S2

+ ,$S2
+", with in addition a

residual (#R!x , t" ,$R!x , t").
Our first assumption, which we denote !H1", is that this

will be the case in every binary solitary wave interaction;
therefore, after the interaction, the conserved quantities can
be calculated to be

MT = m!S1
+" + m!S2

+" + mR,

IT = /!S1
+" + /!S2

+" + /R, !25"

ET = e!S1
+" + e!S2

+" + eR.

Taking the difference before and after the interaction gives us
the relations

#m!S1" − m!S1
+"$ + #m!S2" − m!S2

+"$ = mR,

#/!S1" − /!S1
+"$ + #/!S2" − /!S2

+"$ = /R, !26"
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#e!S1" − e!S1
+"$ + #e!S2" − e!S2

+"$ = eR.

Let !Sj =Sj −Sj
+ for j=1,2; the mean value theorem implies

that for j=1,2 there exist intermediate values Sj
*!m", Sj

*!/",
and Sj

*!e" in the intervals #min%Sj
+ ,Sj& ,max%Sj

+ ,Sj&$ such that

m!Sj" − m!Sj
+" = m!#Sj

*!m"$!Sj ,

/!Sj" − /!Sj
+" = /!#Sj

*!/"$!Sj , !27"

e!Sj" − e!Sj
+" = e!#Sj

*!e"$!Sj .

To avoid overly clumsy notation, we will write m!#Sj
*!m"$

=mj!, and similarly for / j! and ej!. The three relations !26" are
rewritten

m1!!S1 + m2!!S2 = mR,

/1!!S1 + /2!!S2 = /R, !28"

e1!!S1 + e2!!S2 = eR.

In practice, the differences !Sj =Sj −Sj
+ are very small, im-

plying that the quantities mj!, / j!, and ej! are very close to the
values for the derivatives m!!Sj", /!!Sj", and e!!Sj", respec-
tively, which are specified by the initial data.

In particular, in the symmetric counterpropagating
case, we have SªS1=S2, which implies by symmetry that
!Sª!S1=!S2 and IT=0 and /R=0. Equations !28" give
relations between the mass and energy of the residual and the
change in amplitude of the solitary waves due to the interac-
tion,

2m!!S = mR, 2e!!S = eR. !29"

For small amplitudes S, solitary waves behave similarly to
KdV solitons, and in particular their added mass, momen-
tum, and energy scale asymptotically in parallel with the
KdV soliton profile #S12S sech2!*Sx". That is,

m!S" = M!#S" 1 C1
*S ,

/!S" = I!#S,$S" 1 C2S3/2, !30"

e!S" = H!#S,$S" 1 C3S3/2.

Comparing this with our numerical simulations of solitary
waves, Fig. 20 is a log-log plot showing the power-law be-
havior of the energy of the solitary wave family through the
range of solutions that we have generated using Tanaka’s
method; it is well matched to the power law C3S3/2.

From !30", the asymptotic behavior of !Sj, j=1,2 and
the quantities mR, /R, and eR for small Sj are related. In the
symmetric case, Eqs. !29" determine the relationship

C1S−1/2!S = mR,
!31"

3C3S1/2!S = eR

between the asymptotic behavior of !S and the quantities mR
and eR as S→0.

A. Estimates of the residual

To continue this analysis, we make a second assumption
!H2", that for sufficiently large time t+ after the interaction,
the two solitary wave components of the resulting solution
are well separated both from each other and essentially from
the support of the residual !as observed in Fig. 8". Therefore,
because !#S1

+ ,$S1
+" and !#S2

+ ,$S2
+" are small where #R!x , t" is

important, we have

mR = M!#R", /R = I!#R,$R", eR = H!#R,$R" . !32"

The relation !28" can then be used to form an estimate for the
residual term. Our considerations are divided into three
cases.

1. Symmetric counterpropagating case

In this instance, solutions satisfy IT=0 and IR=0, which
also implies that !S1=!S2. Equations !29" imply that

eR = 0!S"mR for 0!S" =
e!
m!

1
$e

$m
!S" . !33"

Given the condition !H2" that the residual is essentially sepa-
rated from the two scattered solitary waves, this states that
H!#R ,$R"=0!S"M!#R", which is to say that

1
2 + $RG!#R"$R + g#R

2dx = 0!S" + #R!x,t"dx . !34"

After the interaction at a time t+ at which the assumption
!H2" holds, the two solitary wave components are separated
by a distance 2L.

We will further assume !H3" that the principal contribu-
tion to the residual, in the counterpropagating case, lies
within the interval !−L ,L" !as is clearly shown in Fig. 8".
The identity !34" gives rise to an estimate for the residual
over this interval; indeed, the Cauchy-Schwartz inequality
implies

FIG. 20. Total energy ET vs wave amplitude S /h: numerical results !circles",
power law !S /h"3/2 !solid line".
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+
−L

L

#R!x,t+"dx ' *2L,+
−L

L

#R
2!x,t+"dx-1/2

. !35"

Used in the relation !34", this implies that

g

2
+

−L

L

#R
2!x,t+"dx ' 0!S"*2L,+

−L

L

#R
2!x,t+"dx-1/2

, !36"

which is to say that there is a bound on the potential energy
of the residual,

,+
−L

L

#R
2!x,t+"dx-1/2

'
20!S"

g
*2L . !37"

Using this in the relation !34" for a second time gives control
of the kinetic energy as well, that is,

1
2 + $RG!#R"$R + g#R

2dx

' 0!S"*2L,+
−L

L

#R
2!x,t+"dx-1/2

' 02!S"
4L

g
. !38"

This estimate is valid throughout the parameter range for
which our hypotheses !H1", !H2", and !H3" hold. From our
numerical simulations we anticipate that they will hold for at
least 0.025'S /h'0.5.

Estimate !38" gives rise to a quantitative bound on the
residual in the setting of interactions between small solitary
waves. From !30" we have that e!S"1C4m3!S" and therefore
0!S"=$me1C5m2. We conclude that, at least for small initial
amplitudes S, the energy carried from the interaction by the
residual is bounded above by

H!#R,$R" ' 02!S"
6L

g
' C6S2. !39"

That is, energy loss due to inelastic collisions is bounded
above by the second power of amplitude. The relative energy
loss in this case is bounded by

H!#R,$R"/ET ' C7S1/2. !40"

2. General counterpropagating case

The general case follows an argument along similar
lines. Expression !28" gives three equations for the two un-
knowns !S1 and !S2. This implies that there is an additional
relation between the quantities mR, /R, and eR, which in turn
can give rise to information on the residual !#R ,$R". One
checks that the function $m/!S" is monotone increasing !in-
deed we have checked that the impulse as a function of the
mass increases faster than linearly, at least over the interval
0'S /h)0.5, which covers all of our experiments and nu-
merical simulations", which implies that system !28" can be
solved for !!S1 ,!S2" as a function of !mR ,/R". The result
gives an explicit extra relation between the conserved quan-
tities for the residual, in the form

eR = 1!S1,S2"/R + 0!S1,S2"mR. !41"

Assuming that !H2" is valid, this is the identity

1
2 + $RG!#R"$R + g#R

2dx

= 1!S1,S2" + #R$x$Rdx + 0!S1,S2" + #R!x,t"dx .

!42"

Under the Galilean transformation !x ,$R"→ !x− t!c ,$R
−x!c" this becomes

1
2 + $RG!#R"$R + g#R

2dx

= !1 − !c" + #R$x$Rdx

+ ,0 + 1!c −
!!c"2

2
- + #R!x,t"dx . !43"

Making the choice of !c=1, we then have

1
2 + $RG!#R"$R + g#R

2dx = ,0 +
12

2
- + #R!x,t"dx . !44"

We denote by 0!=0+12 /2 the result of the Galilean coordi-
nate transformation. In the asymmetric counterpropagating
case, relying upon assumption !H3" that the most important
component of the residual lies between the two scattered
solitary waves, and using the line of argument above, the
deduction is that the energy of the residual is bounded,

1
2 + $RG!#R"$R + g#R

2dx ' #0!!S1,S2"$24L

g
. !45"

Consider small-amplitude interactions. For )S)21 we param-
etrize S1=a1S ,S2=a2S, with the difference a2−a11S. Then
an estimate analogous to !39" shows that

H!#R,$R" ' #0!!S"$24L

g
' C8S2, !46"

and similarly for the relative error in !40". When a2−a1
=O!1", a more accurate rigorous upper estimate would be of
interest.

3. Copropagating case

Finally, in the copropagating case, the numerical simu-
lations clearly show the residual to be trailing both of the
scattered solitary waves #S1

+ and #S2
+. We replace the assump-

tion !H3" with its analog for this situation, namely !H3!" that
the principal contribution to the residual #R remains in mo-
tion in the same direction as the solitary waves themselves.
The role of the interval #−L ,L$ in the analysis is replaced by
the interval #0,L!$, where at time t+ after the interaction L! is
sufficiently large for this interval to contain the most impor-
tant component of !#R ,$R". The extra identity derived from
!28" is similar in character to !45". We note that the interval
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#−L ,L$ in the counterpropagating case is relatively short, as
the dynamics of a head-on collision are a rapid process.
Overtaking collisions, on the other hand, take a long time to
complete, and therefore we expect that the interval #0,L!$ is
substantially longer, and the estimate analogous to !46" in
this case is weaker since the overall constant factor is larger.

B. Comparison with data

We focus on the case of symmetric counterpropagating
interactions, comparing the data in Table I with the relation
!29". Figure 21 is a log-log plot of the data in column 3 of
Table I, representing the change in amplitude of a solitary
wave due to a symmetric head-on collision. The data fit a
power law !S /h131!S /h"p1 with p1=1.5 and 31=1.05
+10−2. There are two exceptional points, corresponding to
S=0.025h and S=0.05h, which overestimate !S /h to some
extent !by 5+10−5 and 6+10−5, respectively". This is pos-
sibly related to the fact that the solitary waves emerging from
a collision of this form have amplitudes lower than their
asymptotic values, and require a certain relaxation time to
reach them. For collisions of small-amplitude waves, the re-
laxation time is very long, and our measurements of the am-
plitudes Sj

+ /h are possibly taken before the time at which the
solution has effectively achieved its final state up to the ac-
curacy of the simulation.

Figure 22 is a log-log plot of the total energy of the
residual eR. The data fit a power law in the form
eR132!S /h"p2 with p2=2 and 32=5+10−2. The same two
data points S=0.025h, S=0.05h are again measured slightly
larger than the linear fit to the bulk of the data !by similarly
small amounts", for what seems to us to be the same reason.
We note that p1 and p2 satisfy the relationship indicated by
!31" as required, namely p2= p1+1/2. We further note
that, while the estimate !39" is simply an upper bound on the

energy of the residual, our observations are that it scales
in powers of the amplitude S /h in an optimal manner as
S /h→0.

With these data, the reasoning for small residual and
amplitude changes is not from a high order effect in powers
of S /h, rather it can be attributed to being a consequence of
the constants 3 j, j=1,2 being very small.

These findings are at odds with Su and Mirie6 and
Byatt-Smith,24 who predict that a residual is generated by the
interaction only at order O#!S /h"3$ in an asymptotic expan-
sion, with the result that the energy of the residual is
eR=O#!S /h"11/2$. They also predict that the changes in am-
plitude are !S /h=o#!S /h"3$. Using the relation !31", this be-
havior of eR implies that in fact !S /h=O#!S /h"5$. Both of
these predictions disagree with the data from our simulations
over the range !S /h"! #0.025,0.5$. Two of the possible rea-
sons for this difference are that !i" the regime of validity of
the asymptotic expansion in Ref. 6 is limited to values of S /h
smaller than those in the range of our simulations, or !ii" the
asymptotic analysis of Refs. 6 and 24 predicts well the ini-
tiation of a wave collision, but represents less well the de-
tailed dynamics during the height of the collision, and the
subsequent separation of the solution into two solitary waves
plus residual. This latter possibility would also account for
the fact that Ref. 6 predicts very well the run-up of a solitary
wave collision, but less well the later details of the interac-
tion, see Fig. 6.

C. Discussion of previous rigorous results

There are a certain number of rigorous results on the
approximation of general solutions of the problem of surface
water waves by solutions of model equations. In particular,
the KdV equation plays a role when the initial data are taken
to be in the form of #0!x"=42q!4x", $0!x"=4p!4x" for suffi-
ciently small 4=*S /h, which is the appropriate scaling for

FIG. 21. Change in amplitude !S /h= !S−S+" /h vs wave amplitude S /h:
numerical results !circles", power law !S /h"3/2 !solid line".

FIG. 22. Energy of the residual eR vs nondimensional wave amplitude S /h:
numerical results !circles", power law !S /h"2 !solid line".
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the long-wave limit. This has a bearing on the problem of
solitary wave collisions when the initial data consist of two
KdV solitons, as they are taken to approximate the interac-
tion. An initial step in this direction appears in Craig,20

where the result is a justification of the use of solutions of
the KdV equation to approximate solutions of the water
wave problem in two space dimensions. The work of
Schneider and Wayne21 extends Ref. 20, allowing for solitary
wave initial data, and for the phenomenon that data for the
water wave problem, adapted suitably to the scaling of the
KdV regime !and somewhat localized", break up into an es-
sentially left-moving component and an essentially right-
moving component as time evolves, with each of these com-
ponents being well approximated by solutions of two
decoupled KdV equations,

− 2$Tq− = 1
3$X−

3 q− + 3q−$X−
q−,

!47"
2$Tq+ = 1

3$X+

3 q+ + 3q+$X+
q+,

where X±=4!X± t" and X is a Lagrangian spatial coordinate
in long-wave scaling. Rigorous theorems on the higher-order
corrections to the approximation given by the KdV equation
are given in recent papers of Wright23 and Bona, Colin, and
Lannes,22 following prior work of Wayne and Wright39 on
the Boussinesq and KdV models. The corrections derived in
the former paper consist of two linearized KdV equations,
one for each direction of propagation, and an inhomogeneous
wave equation coupling the two KdV equations. In Ref. 23,
these are

− 2$Tf− = 1
3$X−

3 f− + 3$X−
!q−f−" + J−,

2$Tf+ = 1
3$X+

3 f+ + 3$X+
!q+f+" + J+, !48"

$,
2p − $X

2 p = 3$X
2#q−!X − ,,42,"q+!X + ,,42,"$ .

The functions J± are explicit nonlinear expressions in q± and
their derivatives. These corrections enter the solution at order
O!44"=O#!S /h"2$, and the rigorous Sobolev bounds on the
resulting higher-order error are of order O!411/2"
=O#!S /h"11/4$. In the case of solitary wave collisions, the
role of this inhomogeneous wave equation is essentially to
describe the residual, and its order of magnitude is consistent
with our error bounds above. For it to be consistent with the
results of Ref. 6, the correction p would have to vanish. Of
course, these results are only valid for small 4.

VII. CONCLUSIONS

The results in this paper include experimental measure-
ments of precisely generated solitary wave interactions, ac-
curate numerical simulations of such collisions, and an ana-
lytic result on their scattering that gives an upper bound on
energy loss to the inelastic nature of the collision process. In
a first sequence of numerical simulations of counterpropagat-
ing interactions between identical solitary waves, we repro-
duce the findings of Cooker, Weidman, and Bale4 using our
independent methods, thereby providing a validation of our
numerical approach and giving a verification of their as well

as our own findings. Elements of the comparison include
measurements of the run-up and wall residence time of col-
lisions. Our numerical results on run-up are consistent with
the predictions of Su and Mirie,6 while our results on the
wall residence time are very close to those of Cooker,
Weidman, and Bale,4 which deviate from the expressions
given in the former article. Both the latter reference and our
results correspond to the experimental observations in
Maxworthy.5

In addition, the accuracy of our numerical simulations
allows us to quantify the degree of inelasticity of these sym-
metric solitary wave collisions, which we have found to be
very small but nonetheless nonzero in all cases we have ex-
amined. In the case of counterpropagating interactions be-
tween solitary waves of different sizes, we have taken the
wavetank data from head-on solitary wave collisions and
compared them with matched numerical simulations, finding
that the run-up, the phase lag, as well the details of the ge-
ometry of the numerical solitary wave collisions predict
quite accurately the measurements taken of the experiments.
With this confidence in the precision of our numerical meth-
ods, the simulations allow us to measure the changes in
mass, momentum, and energy, as well as amplitude and ve-
locity, of solitary waves due to an inelastic head-on collision.
The resulting residual wave possesses a characteristic-shaped
oscillatory profile, and it propagates essentially as a solution
of the linear equations, at least subsequent to a point in time
somewhat after the collision. The post-collision solitary
waves exhibit strong evidence of stability, propagating away
from the residual and leaving an interval of quiescent water
surface between itself and the residual. The existence of a
residual is qualitatively consistent with the asymptotic pre-
dictions of Su and Mirie6 and Byatt-Smith.24 However, on a
quantitative level our numerical data are at odds with their
findings. In all cases we observed, both solitary waves exit
from the collision with amplitudes slightly smaller than their
entering values, with the amount of this change being di-
rectly related to the energy carried away from the collision
by the residual.

Our observations and numerical simulations of copropa-
gating solitary wave interactions provide insight into this
class of overtaking collisions. Again in all cases we observe
the formation of a residual, in these cases trailing behind the
smaller of the solitary waves after the collision. However,
this residual is typically even less pronounced than in the
counterpropagating case. Additionally, we observed that the
larger solitary wave exits from an interaction with slightly
increased amplitude, while the smaller one loses amplitude.
While counterpropagating collisions resulted in the maxi-
mum amplitude of the solution !the run-up" being substan-
tially more than the sum of the entering solitary wave ampli-
tudes, copropagating collisions are of a very different
character; in all cases the maximum of the solution does not
exceed the maximum among the amplitudes of the two inci-
dent and the two resulting solitary waves from the collision
!which we find to be the amplitude of the largest exiting
solitary wave". Nor does the maximum of the solution at any
time lie below the minimum of the amplitudes of the four
involved solitary waves.
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We further find that interactions between copropagating
solitary waves fit very neatly into the three geometrical cat-
egories introduced by Lax17 to describe two-soliton solutions
of the KdV equation. However, the transition points between
the categories for solitary waves are not identical to their
values for the KdV equation. This difference serves to ex-
plain in part the good fit between the experimental observa-
tions of copropagating solitary wave interactions and the nu-
merical simulations, and the discrepancies between both of
these and the KdV approximation to the interaction. We have
also found that the category of a solitary wave interaction
influences the degree to which it is inelastic; category !a"
interactions are apparently very close to elastic, while inter-
actions in categories !b" and !c" are more effective in gener-
ating a residual.

Under three hypotheses on the nature of a solitary wave
collision, we formulate a rigorous result for an upper bound
on the energy loss in a solitary wave collision due to its
inelastic nature. The hypotheses are essentially that !H1"
solitary wave collisions are binary interactions and result in
two exiting solitary waves plus a residual, !H2" in the regime
of amplitudes considered, solitary waves are stable !to two-
dimensional perturbations caused by collisions", and !H3"
the residual lies essentially in the expected region of the free
surface. From these assumptions, using the conservation of
added mass, momentum, and energy, we derive an upper
bound on the possible energy transfer to the residual from a
collision. For small-amplitude counterpropagating interac-
tions, this estimate is seen to give the sharp order of magni-
tude for the energy of the residual.
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APPENDIX: MODIFIED TANAKA’S METHOD

Tanaka’s method for computing exact solitary waves is
based on Cauchy’s integral theorem for the complex velocity
potential, in a reference frame moving with the wave speed
c. The crest velocity Vc fully defines the wave field and the
dimensionless crest velocity qc=Vc /c is used as a parameter
in the problem. The original method by Tanaka9 was modi-
fied by Cooker40 to use the wave height S instead of qc as a
parameter. We propose here a modified version that is based
on an alternate integral formulation.

Following Tanaka,9 we introduce the complex velocity
potential W="+ i5, choosing "=0 at the crest and 5=0 at
the flat bottom. The fluid region is mapped onto the strip
0)5)1, −%)")% in the W plane with 5=1 correspond-
ing to the free surface. We also introduce the quantity
6=ln!dW /dz", where z=x+ iy !x being the horizontal coor-
dinate and y the vertical one pointing upward". In terms of
the magnitude q of the velocity and the angle 7 between the
velocity and the x axis, 6 can be expressed as 6=,− i7 with
,=ln q. Throughout the fluid region, 6 is an analytic func-
tion of z and W, which tends to zero at infinity.

The Bernoulli condition at the free surface and the kine-
matic condition at the bottom can then be expressed as

dq3

d"
= −

3
F2 sin 7 on 5 = 1 !A1"

and

7 = 0 on 5 = 0, !A2"

respectively, where F=c /*gh is the Froude number.
The problem of finding solitary wave solutions is thus

transformed into the problem of finding a complex valued
function 6 that is analytic with respect to W within the unit
strip 0)5)1, that decays at infinity, and satisfies the two
boundary conditions !A1" and !A2". This can be done by
iteration.

The main steps in the iterative procedure are as follows:

!1" Fix an initial guess for 0)qc)1 and ,!"", such that
,!0"=ln qc and ,!%"=0.

!2" Compute the singular integral

− 7!"" = PV+
−%

% ,!"!"

2 sinh,8!"! − ""
2

-d"! !A3"

for 7!"" !see Woods41". This formulation of 7!"" !in-
volving the Hilbert transform for a fixed strip" is com-
pletely equivalent to that in the original method. How-
ever, it is computationally more efficient, as it does not
require us to solve a linear system for 7!"" at each it-
eration and only one integral needs to be evaluated in-
stead of three integrals #see Eq. !3" in Tanaka9$.

!3" Integrate to find F2 from 7!"";

1 − qc
3 = −

3
F2+

0

%

sin 7!""d" . !A4"

!4" Evaluate
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q3!"" − qc
3 = −

3
F2+

0

"

sin 7!"!"d"! !A5"

to find q3!"" from 7!"" and F2.
!5" Determine new ,!""=ln q!"".
!6" Repeat steps 2–5 until convergence is achieved for F2.

The wave profile and velocity potential are determined
from the free surface velocity. As in Tanaka,9 for the calcu-
lation of steep solitary waves, the variable transformation

" = 13 + 3m !A6"

is introduced, where 1 is a positive real number and m a
positive odd integer. Lagrangian interpolation and trapezoi-
dal rule are used to evaluate numerically the integrals in
!A3"–!A5". Typically, for S=0.4h, 1=0.01, m=5, and a con-
vergence criterion on F2 equal to 10−10, it was found that 60
iterations are necessary to achieve convergence. This is es-
sentially the same number of iterations as required by Tana-
ka’s original method.
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