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This paper gives a new derivation and an analysis of long-wave model equations for
the dynamics of the free surface of a body of water which has random bathymetry.
This is a problem of hydrodynamical significance to coastal regions and to global-
scale propagation of tsunamis, for which there may be imperfect knowledge of the
detailed topography of the bottom. The surface motion is assumed to be in a long-
wavelength dynamical regime, while the bottom of the fluid region is given by a
stationary random process whose realizations vary over short length scales and are
decorrelated on the longer principal length scale of the surface waves. Our basic
conclusions are that coherent solutions propagating over a random bottom maintain
basic properties of their structure over long distances, but however, the effect of the
random bottom introduces uncertainty in the location of the solution profile and
modifies the amplitude by random factors. It also gives rise to a random scattered
component of the solution, but this does not result in the dispersion of the principal
component of the solution, at least over length and time scales considered in this
regime. We illustrate these results with numerical simulations.

The mathematical question is one of homogenization theory in the long-wave scaling
regime, for which our work is a reappraisal of the paper of Rosales & Papanicolaou
(Stud. Appl. Math., vol. 68, 1983, pp. 89–102). In particular, we derive appropriate
Boussinesq and Korteweg–deVries type equations with random coefficients which
describe the free-surface evolution in this regime. The derivation is performed from
the point of view of perturbation theory for Hamiltonian partial differential equations
with a small parameter, with a subsequent analysis of the random effects in the
resulting solutions. In the analysis, we highlight the distinction between the effective
equations for a fixed typical realization, for which there are coherent solitary-wave
solutions, and their ensemble average, which may exhibit diffusive effects. Our results
extend the prior analysis to the case of non-zero variance σ 2

β > 0, and furthermore the
analysis identifies the canonical limit random process as a white noise with covariance
σ 2

β δ(X − X′) and quantifies the variations in phase and amplitude of the principal
and scattered components of solutions. We find that the random topography can give
rise to an additional linear term in the KdV limit equations, which depends upon a
skew property of the random process and whose sign affects the stability of solutions.
Finally we generalize this analysis to the case in which the bottom has large-scale
deterministic variations on which are superposed random fluctuations with slowly
varying statistical properties.

† Email address for correspondence: craig@math.mcmaster.ca
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1. Introduction
This paper gives a systematic derivation and analysis of the equations of motion

of water waves in the free surface of a channel of fluid lying over a variable bottom.
It is well known that in a channel of fixed constant depth, the Euler equations for
an incompressible irrotational flow have solitary-wave solutions, which propagate
momentum and energy rapidly over long distances with no attenuation. The question
is to what extent this capability is retained when the fluid is not of constant depth,
in which case approximately coherent wave motions will propagate through regions
of fluid with varying depth, and significant modulation and wave scattering may
take place. It is assumed that the detailed variations of the bottom are known only
imperfectly, so that over short spatial scales they are modelled by a stationary process
β(x; ω) of given statistics, which exhibit properties of decorrelation under spatial
translations. The correlation length of the short-scale bottom variations is of the
same order as the depth. The typical wavelength of a surface deformation is taken to
be long with respect to this correlation length. The hydrodynamical significance of this
work is to nonlinear wave propagation in coastal regions and to the hydrodynamics
of tsunamis in mid-ocean, where variations of the bathymetry of the fluid region
influence the dynamics of surface waves; however the details of the variations are
approximately but not precisely known.

The main result of this paper is that nonlinear waves propagate as coherent
structures in a fluid basin with a random bottom, but they are influenced by
its statistical properties as well as individual realizations of the bathymetry and
therefore have a degree of unpredictability. In particular, solutions are not significantly
dispersed by random scattering, at least in the space–time regime that we consider.
The influence of the bathymetry includes (i) a random phase affecting the location
of the solution (similar to the findings of Rosales & Papanicolaou 1983), (ii) a
perturbation of the amplitude of the solution by a random factor and (iii) a random
scattered component. We quantify all of these effects and show that in the long-wave
limit, the perturbations to the phase are asymptotic to Brownian motion, while the
perturbations to the amplitude and scattering are asymptotic to white noise processes.

Our point of approach to this problem is through a formulation in terms of
a perturbation theory for Hamiltonian partial differential equations (PDEs) and
through the method of averaging of Hamiltonians and transformation theory
introduced in Craig, Guyenne & Kalisch (2005). We derive in this systematic
manner an appropriate form of a Boussinesq equation and from this a version
of the Korteweg–deVries (KdV) equation which describe the propagation of long
waves in the fluid surface over the rapidly varying bottom. This is a problem in
homogenization theory, determining to what extent the free-surface motion can
be described by a PDE with deterministic ‘effective’ coefficients or in contrast
the extent to which ‘random, realization-dependent’ effects are retained in the
solution.

Our work is a reappraisal by a different method of the results of Rosales &
Papanicolaou (1983), who considered the same KdV scaling regime, in which two
cases are studied: (i) a periodically varying bottom and (ii) a random bottom. The
case in which the bottom varies periodically is shown in Rosales & Papanicolaou
(1983) to homogenize fully, a result which is recovered in Craig et al. (2005). The fact
that the periodic case homogenizes to all orders can be seen in the scale separation
lemma of the latter reference.

In the present work we take up the case of a randomly varying bottom, for which the
bathymetry is modelled as realizations of a stationary ergodic process which exhibits
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sufficiently strong properties of mixing; this quantifies the decorrelation of the statistics
of realizations of a random topography. As in Rosales & Papanicolaou (1983) we
show that this problem does not homogenize fully and that it retains realization-
dependent effects which are as significant as the dispersion and the nonlinearity in
the long-wave limit. These random terms are retained in the basic Hamiltonian PDE
for the evolution of surface waves.

The result is that for each individual realization, the equation with random
coefficients retains the property of possessing coherent solutions which propagate
mass and energy with little loss. We furthermore quantify the effects of random
modulation of solutions and random scattering that do occur. In particular, we find
that coherent solutions retain the signature of the random bottom in two ways. First,
they propagate in characteristic coordinates which are themselves random, given by a
Brownian motion, so that asymptotically, phase variations are Gaussian distributed.
Second, the amplitude of coherent solutions is subject to random modulation, given
by a white noise process which is correlated with the phase variations. Finally, there is
an effect of random scattering given again by a superposition of canonical processes.
Our analysis applies to the case in which the variance σ 2

β of the random process
β(x; ω) is non-vanishing, which was left open in the treatment given in Rosales &
Papanicolaou (1983). A proof of this result and the characterization of the limit
processes is through Donsker’s invariance principle, with one determining parameter
being the variance σ 2

β . Related work on corrections to homogenization theory and
generalized central limit theorems appears in Bal (2008).

While the model equations for each realization of the random process come from
Hamiltonian PDEs, and therefore are related to conservative evolution equations,
their ensemble average is not. In addition to giving distinct expressions for solutions
and for their ensemble averages, we derive nonlinear dissipative evolution equations
for averages of the quantities of physical interest, which again reflect the canonical
nature of the limit process that is encountered in this problem. These equations are
closely related to the KdV equation modified with a dissipation term that was derived
in Mei & Li (2004) in a perturbation theory for the ensemble average of water waves
over a random rough seabed. However in the regime we investigate, the dissipation
is of higher order and does not influence solutions at the level of the nonlinear and
dispersive effects.

As an extension of our approach, we generalize the long-wave perturbation analysis
to the situation in which the topography of the bottom varies deterministically over
spatial scales of the order of the typical wavelength, while at the same time there
are random short-scale variations whose statistics are also allowed to vary on a long
length scale. In this case the coefficients of the resulting KdV equation have both
deterministic long-spatial-scale dependence and variations retained from the random
effects, and the scattering due to the bottom variations depends upon both. This is
probably the most realistic situation under consideration.

The results of our asymptotic analysis are illustrated by several numerical
simulations of nonlinear wave propagation over random bathymetry. The evolution
of solutions of our model equations are computed, given various realizations of the
bottom topography. The effect of individual realizations of the bottom is seen in
these simulations, as well as the effect of the overall statistics. In particular, the
crest and centre of mass, relative to constant velocity trajectories, are perturbed by
displacements consistent with the character of Brownian motion, while the amplitude
perturbations and the scattered component are rougher and consistent with white
noise.
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There is a large physics and mathematics literature on the problem of wave
propagation in random media, principally focusing on the phenomenon of localization
for solutions of linear equations (Anderson localization in the context of the
Schrödinger operator). In the linear regime, the analogy between free-surface
dynamics and Anderson localization was pointed out in Devillard & Souillard
(1986), Devillard, Dunlop & Souillard (1988) and Nachbin (1995), after which the
analysis of this idea was pursued in a series of papers, which includes the papers of
Fouque, Garnier & Nachbin (2004) and Nachbin & Sølna (2003) on the diffusion
of the ensemble averages of solutions of the linear approximation to the shallow-
water theory over random topography. Experimental support for the idea that water
waves over a randomized bed are localized due to random-scattering effects has been
reported in Belzons, Guazzelli & Parodi (1988).

Our work concerns the nonlinear problem of surface water waves over a random
variable bottom and the associated long-wave and modulational asymptotic limits.
The earlier analyses are by Howe (1971) and Rosales & Papanicolaou (1983) which
we have cited above. Much more recent contributions include the series of papers by
Mei & Hancock (2003) and Grataloup & Mei (2003) on the modulational scaling
regime and by Pihl, Mei & Hancock (2002) on its extensions to the three-dimensional
case. This work focuses on the temporal behaviour of the ensemble averages of
solutions, and the result is that they satisfy a nonlinear Schrödinger equation with an
additional dissipative term. The analogue of this picture of theirs in the long-wave
scaling regime appears in Mei & Li (2004), in which, starting from a Boussinesq
approximation, they derive that the ensemble averages satisfy a KdV equation with
an additional linear dissipative term. In related work, Ardhuin & Herbers (2002)
derived an energy balance equation for Bragg scattering of quasi-monochromatic
waves by random topography, the variations of which are assumed to occur on
scales of the order of the surface wavelength. The paper of Nakoulima et al. (2005)
investigated the problem of soliton propagation over random topography, modelling
the evolution directly with a dissipative KdV equation. In this analysis the bottom
variations are assumed to be long compared to the soliton width, as opposed to the
case in the present paper. Much closer to the situation that we consider, Garnier,
Muñoz Grajales & Nachbin (2007) modelled the problem of long waves over short-
length-scale random topography with a version of a Boussinesq equation, from which
they derived an effective, dissipative KdV-like equation for the principal component
of the solution. In the above work, the averaged quantities are shown to attenuate
in time, with a slower rate than that predicted from the linear theory of a random
sea bed. This is consistent with our own findings, while on the other hand, we show
that for any particular realization of the bottom topography, solutions may have a
well-defined solitary-wave component which represents a permanent, non-attenuating
waveform. We also quantify the next-order corrections, which appear in the form of
a random (white noise) amplitude modulation and a scattered wave. Since in nature
we are presented with a given, albeit unknown, bottom, it is important to make
the distinction between the behaviour of the solution for a fixed realization and the
expected value of the solution which is the result of averaging over the ensemble of
realizations. This is the point of view which we retain throughout the present paper.

The organization of the paper is as follows: § 2 gives the problem of water waves
in its Hamiltonian form, describes the long-wave scaling regime in the presence of
short-scale variations of bathymetry and derives the model equations. The description
of random topography given by stationary processes is in § 3, along with the main
theorem on scale separation. Using this information about limit processes, random
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characteristic coordinates are introduced, with which we express solutions of the
model equations and their limits. These solutions are random and are realization
dependent. In § 4, we discuss the ensemble average of solutions, a deterministic
quantity which is a common focus of study. Section 5 gives an extension of our
analysis to the more complicated case of random topography for which there are
both large-scale deterministic variations and small-scale random fluctuations. In § 6,
we present numerical simulations of the long-wave model problem with random
coefficients. Concluding remarks are given in § 7.

2. Derivation of the asymptotic equations
The point of departure is the oceanographers’ approximation to the Euler equations,

namely a potential flow with Neumann boundary conditions on fixed surfaces and two
nonlinear free-boundary conditions on the dynamic free surface. Following Zakharov
(1968), we pose these equations as a Hamiltonian system. Using the approach in
Craig et al. (2005), a long-wave analysis is performed in the context of Hamiltonian
perturbation theory. To leading order, the solution decomposes into a principally
right-moving component and a secondary left-moving one which satisfy a system
of coupled equations with random coefficients. These are then solved in random
characteristic coordinates, and the solution is shown to be consistent with the degree
of approximation of the original equations.

2.1. Hamiltonian formulation and the long-wave regime

The fluid velocity is given in Eulerian coordinates by

v = ∇ϕ, �ϕ = 0, (2.1)

in the fluid domain S(β, η) = {(x, y) ∈ �n−1 × � : −h + β(x) <y <η(x, t)}, where
ϕ(x, y, t) is the velocity potential. The bottom-boundary condition is

∇ϕ · N(β) = 0 at y = −h + β(x) , (2.2)

where N(β) = (1 + |∂xβ|2)−1/2(∂xβ, −1) is the exterior unit normal. The top boundary
satisfies the usual kinematic and Bernoulli conditions

∂tη = ∂yϕ − ∂xη · ∂xϕ,

∂tϕ = −gη − 1

2
|∇ϕ|2

⎫⎬
⎭ at y = η(x, t) . (2.3)

Here β(x) denotes the bottom deformation relative to a constant reference depth h,
while η(x, t) denotes the surface elevation about the quiescent water level y = 0 and
g is the acceleration due to gravity. A sketch of the situation is given in figure 1. This
system can be written in Hamiltonian form

∂tη = δξH, ∂tξ = −δηH, (2.4)

with Hamiltonian functional given by the expression for the total energy

H =

∫ ∫ η(x)

−h+β(x)

1

2
|∇ϕ(x, y)|2 dydx +

∫
g

2
η2(x) dx

=
1

2

∫
ξ (x)G(β, η)ξ (x) + gη2(x) dx, (2.5)

where ξ (x) = ϕ(x, η(x)) gives the boundary values of the potential ϕ on the free
surface. For simplicity of notation, the dependence of η and ξ on t has been dropped.
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Figure 1. A sketch of long waves over a fluid domain with a random bottom.

In this form, the Dirichlet–Neumann operator G(β, η) expresses the normal derivative
of the velocity potential on the free surface,

G(β, η)ξ (x) = ∇ϕ(x, η(x)) · N(η)(1 + |∂xη|2)1/2, (2.6)

as a function of the boundary values ξ (x), where N(η) is the exterior unit normal
on the free surface. The Dirichlet–Neumann operator depends as well on the bottom
topography given by y = − h + β(x), as the velocity potential satisfies (2.2).

Define u : = ∂xξ and rewrite (2.4) in terms of the variables (η, u), giving

∂t

(
η

u

)
=

(
0 −∂x

−∂x 0

)(
δηH

δuH

)
, (2.7)

where

H =
1

2

∫
uM(β, η)u + gη2(x) dx, (2.8)

with DxM(η, β)Dx = G(η, β).
We now seek solutions which depend principally upon the large-scale spatial

variables X while depending upon x = X/ε at higher order in ε. With respect to
the large spatial scale of the problem, the bottom topography varies rapidly, namely
β(x) = εβ̃(X/ε), and solutions appear in the form (η, u) = (η(X, t; ε), u(X, t; ε)).

We restrict our attention in the present paper to the case of dimension n= 2. In
rescaled variables, the classical long-wave scaling

X = εx, u(x) = ε2ũε(X) η(x) = ε2η̃ε(X), (2.9)

puts us into the asymptotic regime of interest, for

ε2 =

(
h

λ

)2

=
a

h
� 1, (2.10)

where a and λ are the typical wave amplitude and wavelength, respectively. Solutions
are then observed only at the larger scales, which is to say that one measures∫

f (X)(ηε(X, t), uε(X, t)) dX (2.11)
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for test functions f ∈ S(�). The leading terms in ε of the evolution equations are
selected by the asymptotic behaviour of the quantities∫

f (X)

(
0 −∂X

−∂X 0

) (
δηH

δuH

)
dX =

L∑
l=0

εl

∫
f (X)V (l)(ηε, uε)dX + o(εL). (2.12)

Making the identification of this series to O(εL) with the effective approximate
equations, we arrive at the expression

∂t

(
ηε

uε

)
=

L∑
l=0

εlV (l)(ηε, uε). (2.13)

The asymptotic expansion and truncation of (2.12) may not necessarily retain
Hamiltonian form, but they do describe the large-scale behaviour of (2.4). The
main task in evaluating (2.12) for the water wave problem consists in expanding the
Dirichlet–Neumann operator G in powers of the small parameter ε. The reader is
referred to Craig et al. (2005) for details on the Taylor expansion of G in terms
of β and η. The problem evidently has two spatial scales, for which we denote
DX = − i∂X and Dx = − i∂x . Using this notation, the operator whose action in the
Fourier transform variables dual to x is given by multiplication by k tanh(hk) is
conveniently denoted by Dx tanh(hDx).

Adopting the Ansatz that

uε = u0(X, t) + εu1(X, t; ε), (2.14)

ηε = η0(X, t) + εη1(X, t; ε) (2.15)

the rescaled vector field calculated at O(ε2) is

V1 = −∂X

[
hε(X)uε + ε2ηεuε +

h3ε2

3
∂2

Xuε

]
, (2.16)

V2 = −∂X

(
gηε +

ε2

2
u2

ε

)
, (2.17)

where criterion (2.12) is used. The corrected depth is

hε(X) = h − ε γ (X/ε) − ε2aβ, (2.18)

where γ (x) : = sech(hDx)β(x) and aβ : = E(βDx tanh(hDx)β). We use the notation
E(μ) for the expected value of a random variable μ with respect to the underlying
probability measure P. The presence of the smoothing operator sech(hDx) implies that
an assumption of regularity of the bottom β(x) is not needed, and our analysis is valid
for any β ∈ C(�x). A general setting of this form of transformation theory is given
in Craig, Guyenne & Kalisch (2005), and the details of this particular calculation
appear in de Bouard et al. (2008) and Craig & Sulem (to appear).

2.2. Change of variables and model equations

Our focus is on the KdV scaling regime. Changing coordinates, we define

r = 4

√
g

4hε

η − 4

√
hε

4g
u,

s = − 4

√
g

4hε

η − 4

√
hε

4g
u,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.19)
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where (r, s) are solution components which propagate principally to the right and left
respectively. Consider solutions which propagate principally to the right, which is to
say that r is the dominant component, setting r = O(1) while the scattered component
s = ε3/2s1 is small. The scaling of the scattered component is a consequence of the
Donsker invariance principle (an extension of the central limit theorem). In the scaling
regime we discuss, the random bottom perturbations are O(ε) and are of zero mean
value; hence the first-term correction to this is O(ε3/2), with a coefficient proportional
to the variance of the underlying process. The amplitude of the scattered component is
directly related to this quantity. Rewrite (2.13) accordingly. In the resulting equations,
we identify those terms which will play a role in the asymptotic limit as ε → 0. This
process leads to the following systems of model equations for the free surface in this
scaling regime:

∂t r = −∂X

[
cε(X)r + ε2

(
c1∂

2
Xr +

3

2
c2r

2

)]
+ ε2b r + ε2Rε, (2.20)

∂t s1 =
√

gh∂Xs1 +
1

4

√
g

h
ε−3/2∂xγ

(
X

ε

)
r + Sε, (2.21)

where the regularized velocity is defined to be

cε(X) =
√

gh

(
1 − ε

2h
γ

(
X

ε

)
− ε2a

)
(2.22)

and where the status of the remaining terms Rε and Sε is to be considered further.
There are two free parameters in these equations, namely b and a. Set Rε = 0 = Sε

in (2.20) (2.21), and solve this system of equations. In order that the solution is
consistent with the asymptotic reduction of Hamilton’s equations, Rε and Sε must be
shown to be of o(1) when calculated on a solution. This is accomplished when the
two parameters are chosen with the following values:

a =
1

2h
aβ +

1

4h2
E(γ 2) +

1

8
E((∂xγ )2), (2.23)

b = − 1

6 × 16

7

8

√
g

h
E((∂xγ )3). (2.24)

We remark that a > 0, since aβ = E(βDx tanh(hDx)β) > 0 for non-constant β , and
therefore the average linear velocity of (2.13) is slowed with respect to the velocity
of the solution in a channel of fixed depth h. With the above choice of parameters a

and b solutions of (2.3) are modelled by the coupled system

∂t r = −∂X

[
cε(X)r + ε2

(
c1∂

2
Xr +

3

2
c2r

2

)]
+ ε2b r, (2.25)

∂t s1 =
√

gh∂Xs1 +
1

4

√
g

h
ε−3/2∂xγ

(
X

ε

)
r. (2.26)

We remark that (2.25) has a term involving b appearing at O(ε2), while (2.26) does
not. Indeed a non-zero factor b would influence the scattered component s1 as well,
also at O(ε2). This precision is however more than we have maintained for other
contributions to the scattered component, and we have chosen to retain only the
principal order of approximation, namely at O(ε3/2). More details are given in de
Bouard et al. (2008) and Craig & Sulem (to appear).
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3. Random solutions and their limiting distributions
In this section we give a procedure for solving (2.25) and (2.26), and we analyse

the behaviour of these solutions as ε tends to zero. The solutions depend upon the
two parameters a and b; if these are set to the values given in (2.23) and (2.24), then
equations (2.25) and (2.26) represent the leading-order terms of (2.20) and (2.21). In
other words, neglected terms are validated a posteriori; this is the structure of the
self-consistency analysis of the problem. This procedure requires an analysis of the
stationary processes of the problem and their limits, an understanding of random
scale separation and the construction of random characteristic coordinates.

3.1. Stationary processes

Realizations β(x; ω) of the bottom topography are taken from an ensemble Ω , with
a probability measure (M, P) describing their statistics. For each realization, we will
solve (2.20) and (2.21). The random process is assumed to be stationary, meaning
that β(x; ω) and β(x + y; ω) = (τyβ)(x; ω) have the same statistical properties for any
translation y. Without loss of generality, let

E(β) :=

∫
Ω

β dP = 0. (3.1)

We assume that the process β(x; ω) exhibits asymptotic independence under
translation, which is the property of mixing. That is with respect to the probability
measure P, the local information given through observations A of β(x; ω) over a
window a1 <x <a2 and information B over a window b1 < x < b2, translated by y,
are statistically independent in the limit as y → +∞. Denoting the translation of the
window B by τy(B) = {b1 + y < x < b2 + y}, one quantifies the rate of decorrelation,
or ‘mixing’, as follows:

|P(A ∩ τy(B)) − P(A)P(B)| < α(y). (3.2)

For technical reasons, we ask that the decorrelation of events is sufficiently strong so

that ∫ ∞

0

α1/2(y) dy < +∞. (3.3)

Mixing implies ergodicity, among other things, and in particular for any bounded
measurable function F : Ω → �, for P-almost every realization β ,

lim
L→∞

1

L

∫ L

0

F (τyβ) dy = E(F ). (3.4)

The covariance function of the process is

ρβ(y) := E(β(0)β(y)), (3.5)

and a second consequence of (3.3) on the mixing rate is that the variance

σ 2
β := 2

∫ ∞

0

ρβ(y) dy (3.6)

is finite. The hypotheses of stationarity and mixing make the problem very different
from the periodic case studied in Rosales & Papanicolaou (1983) and Craig et al.
(2005). We will assume in the present analysis that σβ > 0, which also differs from
Rosales & Papanicolaou (1983).
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3.2. Averaging and scale separation

The most important effects of the randomness are given by products μ(X/ε)f (X),
where μ is a stationary mixing process and f is deterministic and a function of the
large spatial scale. These occur in (2.20) and (2.21), for example.

Theorem 3.1. Suppose that f (X) is a Schwartz class test function. Then, for ε small,∫
μ

(
X

ε

)
f (X) dX =

∫
(E(μ) +

√
εσμ∂XBω(X))f (X) dX + o(

√
ε), (3.7)

in the sense of convergence in law, where Bω(X) is normal Brownian motion.

This is the exhibition of the separation of scales; the first asymptotic term follows
from the ergodic theorem, while the second is based on Donsker’s invariance principle.
The implication is that the asymptotic behaviour of the expression does not converge
to a single value, but it is distributed normally, characterized by the two parameters
E(μ) and σ 2

μ. If μ(x) = ∂xν(x) in which ν(x) is another such process, then σμ = 0. The
result is related to the work of Bal (2008), in which similar random corrections
to homogenization theory are shown to be Gaussian through the generalized
form of the central limit theorem. The proof of the above theorem appears in
de Bouard et al. (2008), along with other limit theorems. For completeness, we give a
sketch of the basic argument in the Appendix.

As an illustration of the theorem, let E(μ) = 0 and consider the random variables

Zε(f ) =
1√
ε

∫ +∞

−∞
μ

(
X

ε

)
f (X) dX. (3.8)

In the limit as ε tends to zero, its covariance is

E(Z0(f )Z0(g)) = σ 2
μ

∫
f (X)g(X) dX. (3.9)

Indeed, we have

E(Zε(f )Zε(g)) =
1

ε

∫ ∫
ρμ

(
X − X′

ε

)
f (X)g(X′) dXdX′

=

∫ ∫
ρμ(x ′)f (X)g(X − εx ′) dXdx ′

=

∫ ∫
ρμ(x ′)f (X)

(
g(X) − εx ′∂Xg(X) +

ε2

2
x ′2∂2

Xg(X) + · · ·
)

dX dx ′.

(3.10)

Noting that the term at O(ε) vanishes because ρμ is an even function, we have

E(Zε(f )Zε(g)) =

∫
ρμ(x ′) dx ′

∫
f (X)g(X) dX + O(ε2), (3.11)

which is consistent with the fact that the stationary process of ‘white noise’ σμ∂XBω(X)
has covariance σ 2

μδ(X − X′).

3.3. Random characteristics and solutions

Using result (3.7) of the previous section, the asymptotic random wave speed (2.22)
as ε → 0 is given by

c0(X, ω) =
√

gh

(
1 − ε3/2σγ

2h
∂XBω(X) − ε2a

)
, (3.12)
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where γ = sech(hDx)β , and we remark that a short calculation shows that σγ = σβ .
However, working with this expression directly is problematic, as the coefficients
are too singular for techniques of stochastic differential equations. The natural
regularization for the characteristic vector field for (2.20) is

dX

dt
= cε(X, ω), X(0) = Y, (3.13)

where cε =
√

gh(1 − (ε/2h)γ (X/ε) − ε2a) is given in (2.22). Since sech(hDx) is a
smoothing operator, γ ∈ C∞. The characteristic flow of (3.13) is described by

X(t, Y ; ε) = (Y + t
√

gh) − ε2

2h

∫ (Y+t
√

gh)/ε

Y/ε

γ (s, ω) ds −
√

gh

(
a +

1

4h2
E(γ 2)

)
ε2t + · · · .

(3.14)
As ε tends to zero, the characteristics tend to the limiting distribution

X(t, Y ) = Y + t
√

gh − ε3/2σβ

2h
4
√

ghBω(Y )(t) − ε2
√

gh

(
a +

1

4h2
E(γ 2)

)
t, (3.15)

which describes straight-line trajectories perturbed by Brownian motion. For Y1 
= Y2,
Bω(Y1) and Bω(Y2) are independent Brownian paths as long as t

√
gh < |Y1 − Y2|.

In characteristic coordinates, there is an explicit deterministic expression for (2.20).
Define r = ∂XR and Q(Y, τ ) = R(X, t) for τ = ε2t . Then up to terms o(1) in ε, Q

satisfies the equation

∂τQ = −c1∂
3
Y Q − 3

2
c2(∂Y Q)2 + bQ (3.16)

in the sense of criterion (2.12). The quantity q(Y, τ ) = ∂Y Q(Y, τ ) satisfies q(Y, 0) =
r(Y, 0) = r0(Y ); the initial data for (2.20) and

∂τq = −c1∂
3
Y q − 3c2q∂Y q + bq (3.17)

holds. Inverting this transformation, an expression of the resulting approximate
solution rε(X, t) for fixed ε > 0 is

rε(X, t) = ∂XQ(Y (t, X; ε, ω), ε2t) = ∂Y Q(Y (t, X; ε, ω), ε2t)∂XY (t, X; ε, ω) . (3.18)

Denoting R(0)(X, t) = Q(X −
√

ght, ε2t),

rε(X, t) = ∂X

(
R(0)

(
X +

ε2

2h

∫ X/ε

(X−
√

ght)/ε

γ (θ) dθ, t

))
, (3.19)

which is an expression in the form of the derivative of a deterministic function
evaluated along a random curve. An expansion in powers of ε describes the asymptotic
limit of this expression,

r(X, t) = ∂X

(
R(0)

(
X +

ε3/2σβ

2h
4
√

ghBω(X)(t), t

))

= R
(0)
X

(
X +

ε3/2σβ

2h
4
√

ghBω(X)(t), t

)(
1 +

ε3/2σβ

2h
4
√

gh∂XBω(t)

)
. (3.20)

The scattered component is

s1(X, t) = s0
1 (X +

√
ght) +

ε−3/2

4h

∫ X+
√

ght

X

∂xγ

(
θ

ε

)
r

(
θ, t +

X − θ√
gh

)
dθ, (3.21)
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with initial data s1(X, 0) = s0
1 (X). The random component of s1 appearing as the

second term of (3.21) is expressed at lowest order by

ε−3/2

4h

∫ X+
√

ght

X

∂xγ

(
θ

ε

)
R

(0)
X

(
θ, t +

X − θ√
gh

)
dθ. (3.22)

Using Theorem 3.1 and by integration by parts, we find that in the limit as ε → 0,
the asymptotic behaviour of the scattered component s1 is

s1(X, t) = s0
1 (X +

√
ght) − σβ

4h

∫ X+
√

ght

X

∂θR
(0)
X

(
θ, t +

X − θ√
gh

)
dBω(θ)

− σβ

4h

(
∂XBω(X)R(0)

X (X, t) − ∂XBω(X +
√

ght)R(0)
X (X +

√
ght, 0)

)
. (3.23)

The asymptotic behaviour of solution (3.20) is seen to be given by a deterministic
function R

(0)
X whose phase is shifted in a random way by a Brownian motion at

O(ε3/2). In addition, the amplitude of the solution is modified by the Jacobian of the
transformation to characteristic coordinates, which is in the form of a white noise, also
at O(ε3/2). The phase shift and the amplitude variations are correlated. The scattered
component s1(X, t) is given in (3.23) by a stochastic integral along a backward
left-moving characteristic, with weight depending upon R(0), with additionally two
impulsive sources due to interaction with the bottom, which are given in the limit
by white noise. The statistics of the bottom appear in the solution only through the
homogenized quantities a and b and the variance σβ .

3.4. Attenuation of solutions

A phenomenon which is exhibited by solutions of (3.17) is the occurrence of the
additional linear term bq . This term results from multiple Bragg scattering of a
solution with the rough bottom, and expression (2.24) for the coefficient b is an
outcome of the consistency analysis of (2.20) and (2.21), in arriving at the model
system (2.25) and (2.26). It represents O(1) contributions of the expressions Rε and
Sε for the solution of the model equations, given the scale separation theorem. A full
analysis of the Hamiltonian equations and their reduced form in the asymptotic limit
is given in de Bouard et al. (2008).

If b = 0, then (3.17) is the classical KdV equation. If the statistics of the ensemble
(Ω, M, P) are reversible in x, meaning that the inversion β(x) → β(−x) preserves
the probability measure P, then γ = sech(hDx)β satisfies E((∂xγ )3) = 0, implying b =0.
However, for general stationary processes, this is not the case, and in particular a
process with skew statistics results in a non-zero b. This is illustrated in figure 2,
which is a configuration which attenuates wave propagation to the right.

The sign of b is significant to the long-time stability of solutions q(Y, τ ) of (3.17)
and hence to the model equations. A straightforward indication of this is given by
the behaviour of the L2-norm of solutions:

∂τ

∫
q2 dY = 2b

∫
q2 dY. (3.24)

When b < 0, solutions are stable and the- quantity ‖q(·, τ )‖2
2 = e2bτ ‖q0(·)‖2

2 decays to
zero. When b > 0, the same expression shows that the L2-norm is growing with τ , the
usual time scale for the KdV equation.
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Figure 2. A sketch of a fluid domain with a bottom for which b=−(7/768)
√

(g/h)E((∂xβ)3)<
0, which indicates that large positive slopes are more probable than large negative ones.

4. Ensemble averages
We have focused on solutions r(X, t) of (2.20) for each realization β(·; ω) of the

bottom. In the field of stochastic differential equations, it is common to study the
expected value p(X, t) = E(r(X, t)) of these solutions, or their variance, or other
quantities such as their higher moments, as standard statistical predictors of their
behaviour.

As we discussed in § 1, in the present problem there is a qualitative difference
between solutions for an individual realization and the mean value; in particular the
latter has the possibility of exhibiting diffusion (Nachbin & Sølna 2003) which the
former does not. In this section, we show that diffusion is however a higher-order
effect in the present scaling regime. Indeed taking the expected value of the regularized
equation (2.20), we find

∂tp = −∂X

[
E(cε(X)r) + ε2

(
c1∂

2
Xp +

3

2
c2E(r2)

)]
+ ε2bp. (4.1)

To leading order in ε, E(r2) = p2 because of the character of (3.14). Computing
E(cε(X)r), we use the expression

cε(X)r =
√

gh

[
1 − ε

2h
γ

(
X

ε

)
− ε2a

][
q + ∂X

(
q

ε

2h

∫ X

X−
√

ght

γ

(
θ

ε

)
dθ

)]
. (4.2)

The main contribution is therefore
√

gh∂Xp. Using that γ is of zero mean, the
principal non-trivial higher-order contribution to E(cε(X)r) comes from the term

−
√

gh
ε

2h
γ ∂X

(
q

ε2

2h

∫ X/ε

(X−
√

ght)/ε

γ (θ) dθ

)
. (4.3)

Thus

E(cε(X)r) =
√

gh(1 − ε2a)p −
√

gh
ε2

4h2

(
E(γ 2) − ργ

(
t
√

gh

ε

))
p

−
√

gh
ε3

4h2
∂Xp

∫ X/ε

(X−
√

ght)/ε

ργ

(
θ − X

ε

)
dθ + o(ε2), (4.4)
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where ργ is the covariance of the process γ . As ε → 0, the mixing rate implies that
ργ (t

√
gh/ε) → 0. Thus,

E(cε(X)r) =
√

gh

(
1 − ε2

(
a +

1

4h2
E(γ 2)

))
p

−
√

gh
ε3

4h2
∂Xp

∫ 0

−
√

ght/ε

ργ (θ)dθ. (4.5)

In the limit as ε → 0, the asymptotic behaviour of this expression is

√
ghp − ε2

√
gh

(
a +

1

4h2
E(γ 2)

)
p −

√
gh

ε3

8h2
σ 2

β ∂Xp. (4.6)

Therefore asymptotically, the expected value p(X, t) obeys an equation of the form

∂tp = −
√

gh

[
1 − ε2

(
a +

1

4h2
E(γ 2)

)]
∂Xp − ε2

(
c1∂

3
Xp + 3c2p∂Xp

)
+

√
gh

ε3

8h2
σ 2

β ∂2
Xp + ε2bp + o(ε2), (4.7)

in which the diffusion appears at O(ε3). It therefore does not play a significant role
in this scaling regime at the order of the calculations of § 3.

In Nachbin & Sølna (2003), the authors have studied (2.1) and (2.3), linearized
and in the shallow-water regime, with rapidly varying topography. In contrast to
the present work in which the bottom is in the form y = − h + εβ(X/ε), they have
admitted larger bottom variations, of amplitude

√
ε. In their linear analysis, the

expected value of their solutions is shown to exhibit diffusive behaviour at O(ε2).
In the nonlinear problem, this scaling of the bottom variations will introduce many
additional terms into the asymptotic analysis, whose effects must be understood.
It would be an interesting future study to extend the nonlinear analysis to this
situation.

5. Slowly varying statistics
We now extend our analysis to the more general case in which the bottom varies

both on a length scale of O(1) and on a longer scale. An illustration is given in
figure 3. As in previous sections, the topography of the bottom is described by its
variations from constant depth β = β(x, X, ε; ω), which is taken from a statistical
ensemble of realizations. One may always decompose β = β0 + β1, where β0(X, ε) is
deterministic and β1 =β1(x, X, ε; ω) represents random variations in the short spatial
scale with zero mean value.

Introducing a local corrected depth,

hε(X) = h − εβ0(X) − εγ1(X/ε, X) − ε2aβ1
(X),

where γ1(x, X) = sech(hDx)β1 and aβ1
(X) = E(β1(·, X, ε)

(
Dx tanh(hDx)β1

)
(·, X, ε)) and

where we have used the fact that sech(hDx)β0(X) = β0(X) + O(ε2). As in § 2.2, the
resulting Hamiltonian is

H (η, u, β; ε) =
ε3

2

∫
(hε(X)u2+gη2) dX+

ε5

2

∫ (
ηu2 − h3

3
(∂Xu)2

)
dX+o(ε5). (5.1)
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Figure 3. A sketch of long waves over a fluid domain with a random bottom with slowly
varying statistical properties.

Transforming to scattering variables (2.19) and rescaling to anticipate a scattering
situation in which right-moving solutions dominate, the analogous Hamiltonian is

Hε
2 =

ε3

2

∫ (√
ghε

(
r2 + ε3s2

1

)
− ε2h3

3

(
∂X

(
kεr − ε3/2kεs1

))2

+
ε2

2
kε

(
r3 − ε3/2r2s1 − ε3rs2

1 + ε9/2s3
1

) )
dX + o(ε5 ), (5.2)

where kε(X) = 4

√
g

4hε(X)
.

5.1. Modulated averaging and scale separation

The situation in which the statistical component β1 = 0 is analysed in e.g. van
Groesen & Pudjaprasetya (1993), and is one of the problems addressed in Craig
et al. (2005). Our goal in this section is to discuss the case in which the topography
of the bottom has short spatial scale variations, which have slowly varying statistical
properties as well as a slowly varying mean value. Realizations of the bottom
topography are given by functions β = β(x, X, ε; ω) which represent families of
stationary processes in x ∈ �x parameterized by the long-scale variables X ∈ �X . We
take β ∈ C(�X : Ω), where Ω =C(�x) such that β(·, X, ε; ω) is a stationary ergodic
process in x ∈ �x with translation-invariant probability measure P(X). We assume
that P(X) is weakly continuous in X and that the family of processes is jointly mixing
with a uniform and sufficiently fast rate. Then the model for multiple-scale bathymetry
is to set the bottom variations to β =β(X/ε, X, ε; ω). Details of this construction and
results on its statistical behaviour are given in the Appendix.

The mean value of β is given by

β0(X, ε) =

∫
Ω

β(·, X, ε; ω)dP(X) := EX(β(·, X)),

so that β1 = β − β0 is of zero mean value. The variance σβ1
(X) of this process is

defined by a limiting argument that is sketched in the Appendix. The effect is that
the asymptotics of the integrals such as given in (3.7) is modified, described by an
analogue to Theorem 3.1.

Theorem 5.1. Consider μ(x, X) a family of jointly stationary mixing processes as
introduced above, and assume that the variance σμ(X) is bounded and bounded away
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from zero. Let f (X) be a Schwartz class test function. Then for small ε,∫
f (X)μ

(
X

ε
, X

)
dX =

∫
f (X)E(μ)(X) dX +

√
ε

∫
f (X)σμ(X) dBω(X) + o(

√
ε), (5.3)

in the sense of convergence in law.

This result follows from Donsker’s invariance principle with an argument related
to that of Theorem 3.1; the proof is given in the Appendix.

5.2. Derivation of the asymptotic equations

Following the steps of § 3, we derive a system of reduced equations for r and s1 of
the form

∂t r = −∂X

(
cε(X)r + ε2

(
c1∂

2
Xr +

3

2
c2r

2

))
+ ε2b(X)r + ε2Rε, (5.4)

∂t s1 = ∂X(cε(X)s1) +
1

4

√
g

h
ε−3/2

(
ε∂Xβ0 + (∂x + ε∂X)γ1

(
X

ε
, X

))
r + Sε, (5.5)

where Rε and Sε are o(1). In (5.4) and (5.5), the regularized wave speed cε is given by

cε(X) =
√

gh

(
1 − ε

2h
(β0 + γ1) − ε2a(X)

)
. (5.6)

We assume that the variations of the deterministic component of the bottom varies
on scales longer than those of the surface elevation ∂Xβ0(X) = o(ε1/2) (van Groesen &
Pudjaprasetya 1993). A physical situation in which this occurs is for example for
long waves propagating over a slowly varying beach slope. The implication of this
hypothesis is that the presence of a slowly varying mean value β0(X) of β(x, X) does
not significantly change the conclusions of the analysis.

The parameters a(X) and b(X) are slowly varying functions that are determined
through a consistency analysis, yielding

a(X) =
1

2h
aβ1

+
1

8h2

(
β2

0 + 2E
(
γ 2

1

))
+

1

8
E((∂xγ1)

2), (5.7)

b(X) = − 1

16h

√
g

h
∂XE(γ 2

1 ) − 1

16

√
gh∂XE((∂xγ1)

2)

− 1

6 × 16

7

8

√
g

h
E((∂xγ1)

3), (5.8)

where aβ1
(X) = E(β1Dx tanh(hDx)β1).

If β0 = 0 and the statistics of β1 are fixed, then (5.7) and (5.8) reduce to (2.23) and
(2.24) of the previous case. As before, the component r(X, t) is expressed in terms
of a solution to a deterministic KdV-type equation through a random change of
coordinates:

rε(X, t) = ∂Y Q ∂XY

= q(X −
√

ght, ε2t)

+ ∂X

(
q(X −

√
ght, ε2t)

(
ε

2h

∫ X

X−
√

ght

(
β0(s) + γ1

(
s

ε
, s

))
ds

))
, (5.9)
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where q satisfies

∂τq = −c1∂
3
Y q − 3c2q∂Y q + b

(
Y +

√
gh

τ

ε2

)
q, (5.10)

with τ = ε2t and
dX

dt
= cε(X, ω), X(0) = Y. (5.11)

In (5.10), we note that the coefficient b depends on ε when expressed in terms of Y

and τ . We impose the additional hypothesis that the statistics of the bottom stabilize
for large positive X, which implies that b(X) tends to a constant value b0. We thus
obtain a KdV equation with an additional linear term, of the form

∂τq = −c1∂
3
Y q − 3c2q∂Y q + b0q, (5.12)

as in our prior analysis.

5.3. Random characteristics and limiting solutions

We solve (5.11) perturbatively. Write

X(t, Y ) = Y +
√

ght + εZ, (5.13)

where Z =Z0 +
√

εZ1; then at lowest order,

Z0 = − 1

2h

∫ Y+
√

ght

Y

β0(θ) dθ. (5.14)

Furthermore, at next order, we have

dZ1

dt
= − 1

2
√

ε

√
g

h
γ1

(
Y +

√
ght

ε
+ Z0, Y +

√
ght

)

− 1

2

√
g

h
∂xγ1

(
Y +

√
ght

ε
+ Z0, Y +

√
ght

)
Z1, (5.15)

whose solution is given by

Z1 = − 1

2h
√

ε

∫ Y+
√

ght

Y

γ1

(
θ

ε
+ Z0

(
θ − Y√

gh

)
, θ

)
dθ + O(ε). (5.16)

The limiting distribution of Z1 as ε tends to 0 is obtained as an application of
Theorem 5.1. We find that

Z1 = − 1

2h

∫ Y+
√

ght

Y

σβ1
(θ) dBω(θ) + o(1), (5.17)

where Bω is a normal Brownian motion. The characteristic coordinates take the form,
in the limit ε → 0,

X(t, Y ) = Y +
√

ght − ε

2h

∫ Y+
√

ght

Y

β0(θ)dθ − ε3/2

2h

∫ Y+
√

ght

Y

σβ1
(θ)dBω(θ)+o(ε3/2) (5.18)

or, equivalently,

Y (t, X) = X−
√

ght+
ε

2h

∫ X

X−
√

ght

β0(θ) dθ+
ε3/2

2h

∫ X

X−
√

ght

σβ1
(θ) dBω(θ)+o(ε3/2). (5.19)
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The Jacobian of the transformation to characteristic coordinates is expressed
asymptotically as

dY

dX
∼ 1 +

ε

2h
(β0(X) − β0(X −

√
ght))

+
ε3/2

2h
(σβ1

(X)∂XBω(X) − σβ1
(X −

√
ght)∂XBω(X −

√
ght)). (5.20)

Substitution of the above expression for random characteristic coordinates in (5.9)
gives the form of the asymptotic solutions of (5.4),

r(X, t) = q(Y (t, X), ε2t)
dY

dX
. (5.21)

This form of the solution exhibits phase translations given by a diffusion process
about the classical trajectories and the modulation of the amplitude by two terms: a
deterministic one and a random one which takes the form of a modulated white noise.
The scattering term s1 is obtained by integration along left-moving characteristics
which, to principal order, are given by straight-line motion at velocity −

√
gh, with

a forcing term given by the interaction of the principal component r(X, t) and the
bottom topography. The asymptotic behaviour of s1 is

s1(X, t) = s0
1 (X +

√
ght) − 1

4h

∫ X+
√

ght

X

σβ1
(θ)∂θR

(0)
X

(
θ, t +

X − θ√
gh

)
dBω(θ)

− 1

4h

(
σβ1

(X)∂XBω(X)R(0)
X (X, t) − σβ1

(X +
√

ght)∂X

× Bω(X +
√

ght)R(0)
X (X +

√
ght, 0)

)
, (5.22)

which is the analogue to (3.23) using Theorem 5.1.

6. Illustration of random effects with numerical simulations
In this section, we integrate numerically the model equations (2.25) and (2.26) for

small but finite values of ε. System (2.25) and (2.26) consists of an equation similar to
the KdV equation, coupled with a linear equation for the scattered component. Using
the solution method of § 3.3, expression (2.25) reduces to integrating a deterministic
nonlinear equation in random characteristic coordinates. The scattering component is
given by the integration of a transport equation along characteristics with a random
forcing term.

6.1. Numerical model

The numerical simulations consist of three parts. The first part is deterministic: solve
(3.17) for q(Y, τ ). The second part introduces the random effects: perform the phase
shift (3.14), and apply the Jacobian ∂XY which modulates the solution’s amplitude, in
order to obtain r(X, t). The third part evaluates the scattered component s(X, t) and
determines the free-surface elevation η(X, t) from r and s.

To solve (3.17), we consider a periodic domain of length L in the Y -direction
and use a pseudo-spectral method for space discretization. More specifically, q is
approximated by a truncated Fourier series with N modes. Differentiation in Y is
performed in the Fourier space, while the nonlinear term is evaluated in physical
space at a discrete set of N equally spaced points. These operations can be efficiently
performed using the fast Fourier transform. Zero-padding is applied to suppress
aliasing errors.
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The integration in τ is carried out in Fourier space, which allows the linear terms
(i.e. the third-order dispersive term and the b-term) to be solved exactly by the
integrating factor technique. For the integration of the nonlinear term, a fourth-order
Runge–Kutta scheme with constant time step �τ is used. The corresponding values
of t are obtained by the change of variables τ = ε2t . Tests were conducted to assess
the convergence of this numerical model, e.g. by checking the conservation of mass,
energy and wave profile for a KdV soliton when b = 0.

The phase shift (3.14) and the amplitude modulation ∂XY are computations
involving β . Since β is a function of x, it is specified on an auxiliary domain of
length l such that L = εl. We have chosen a random model for the bathymetry
such that a typical realization of the bottom has a sawtooth geometry (as shown
in figure 2) in which a unit (a sawtooth) represents the characteristic (short) length
scale of β . The amplitude of each unit is then assigned a random number which
is uniformly distributed between −ε and ε. The back-and-forth asymmetry of the
sawtooth geometry determines the sign of b.

In (3.14), the functions γ , ∂xγ and βDx tanh(hDx)β are computed by pseudo-
spectral method on the auxiliary x-domain, and their expected values are evaluated
as spatially averaged values on this same domain. As for the integral term in β , it
is approximated using the trapezoidal rule on the interval [Y/ε, (Y + t

√
gh)/ε] (or

equivalently [(X − t
√

gh)/ε, X/ε]) in which the endpoints are mapped to points in the
auxiliary domain by nearest neighbour interpolation. For each Y , the transformation
yields a value X (with the corresponding q) which is then recast into the computational
domain of length L using again nearest neighbour interpolation. We also used cubic
spline interpolation and obtained similar results, which is probably due to the fact
that a sufficiently fine spatial resolution was specified in our simulations. The Jacobian
∂XY is approximated by

∂Y

∂X
= 1 +

ε

2h

[
γ

(
X

ε

)
− γ

(
X − t

√
gh

ε

)]

and is evaluated by the same interpolation method.
The scattered component s is computed by integrating (2.26) for s1 using the

trapezoidal rule, which is equivalent to evaluating the integral expression (3.21), and
multiplying s1 by ε3/2. The free-surface elevation η is then determined from r and
s by inverting (2.19). All variables are non-dimensionalized according to long-wave
theory; i.e. lengths are divided by a constant reference depth h0, and times are divided
by

√
h0/g so that g =1.

6.2. Numerical results

We performed simulations for ε = 0.1, 0.2 and several realizations of the bottom
topography. Smaller values of ε produce random effects of smaller amplitude and
require the use of finer resolutions (thus a larger computational cost) in order to
resolve the corresponding small-scale variations. Therefore, the small but finite values
ε = 0.1, 0.2 were found to be a good compromise for our numerical simulations.

We specified as initial condition a KdV soliton for the component r0(X), while
s0
1 (X) = 0. A typical situation, with a realization of the bottom topography, is depicted

in figure 4 for h = 1 and ε = 0.2. The length scale of the bottom variations is chosen so
that the width of the surface soliton corresponds to about 1/ε = 5 units of the bottom
topography. For these parameter values, the coefficient b is very small in magnitude
(b = −7.03 × 10−5) and can be considered to be essentially indistinguishable from the
case b = 0.
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Figure 4. The upper curve represents the initial profile of r . The lower curve represents one
realization of the bottom topography −h + εβ(x). In this simulation, h = 1 and ε = 0.2. The
bottom topography is traced in actual scale relative to h, while the vertical scale for the initial
profile has been magnified by a factor ε−2.

Corresponding snapshots of the free surface at times t = 0, 12, 36, 60 are shown
in figure 5. The numerical parameters are L = 140, N =8192 and �τ = 10−3. The
basic effect which is exhibited is that a coherent nonlinear wave propagates without
significant deformation and attenuation over the interval of time considered. The
development of scattering is evident and is clearly distinguished from the principal
component in the decomposition given in figure 6. We see that the scattered
component is of much smaller amplitude than the principal one and propagates
in the opposite direction as expected.

In order to illustrate more clearly the effects of the random bottom on the principal
component, figure 7 presents a close-up of the profiles of figure 6 near the soliton.
It shows small displacements of the crest due to phase modulation, as well as profile
deformations.

The phase modulation is revealed more clearly in figure 8 which shows space–
time curves describing the deviation in position of the crest of r with respect to a
soliton unperturbed by bottom variations. The three curves represent three different
realizations of the bottom geometry, and their irregular oscillations are consistent
with Brownian motion. Figure 9 represents the deviation of the centre of mass for the
same three realizations. These curves are smoother than their counterparts in figure 8,
but overall, they follow similar random trajectories. Here, we used a finer resolution
(N = 16 384) to capture these deviations more accurately.

In the previous simulations, the coefficient b is so small in magnitude that its effect
is not noticeable, even over long intervals of time. Considering a set of simulations
with markedly skewed statistics of the triangular basic bottom geometry, and with
a smaller ratio (average depth/characteristic bottom length scale), we obtain more
significant values of the parameter b. This situation is illustrated in figure 10 which
shows a realization of the bottom topography (with b < 0) together with snapshots
of the free surface for h =1/4 and ε = 0.1. The numerical parameters are L =20,
N = 1024 and �τ =2 × 10−4. Note here that the height and width of the soliton are
smaller than in the previous situation because h is smaller, and the length scale of
the bottom variations relative to the soliton width is also shorter than previously
because ε is smaller. For these parameter values, b = − 8.85 × 10−3, and we note that
it is negative. As expected, it can be seen that the solution’s amplitude decreases, an
effect which we have illustrated over a long interval of time (O(103)). This amplitude
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Figure 5. Profiles of the free surface η for ε =0.2 (h =1) at t = 0, 12, 36, 60 showing the
development of a scattered component. The vertical scale has been enlarged by a factor ε−2.
The lower panel represents the corresponding bottom geometry.
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Figure 6. Decomposition into principal and scattered components of the simulation described
in figure 5. Profiles of r (dashed line) and s (solid line) are given at the sequence of times t = 0,
12, 36, 60.

decrease is indicated more clearly in figure 11 which shows the time evolution of
the profile of r and in figure 12 which presents the time evolution of the L2-norm
of r . The exponential decay of the solution is especially apparent in the latter
figure.

7. Conclusions
This paper studies surface water waves in a fluid domain with a randomly varying

bottom. We describe the asymptotic regime of small-amplitude long waves, for which



Water waves over a random bottom 101

61 62 63 64 65 66 67 68 69 70 71

0

0.2

0.4

0.6

0.8

1.0

r

73

0

0.2

0.4

0.6

0.8

1.0

r

0

0.2

0.4

0.6

0.8

1.0

r

0

0.2

0.4

0.6

0.8

1.0

r

74 75 76 77 78 79 80 81 82 83

85 86 87 88 89 90 91 92 93 94 95

97 98 99 100 101 102 103 104 105 106 107

X

Figure 7. Details of the evolution near the peak of the principal component r (solid line)
compared with the reference solution computed with flat bottom (dashed line) at t = 6, 18, 30,
42.

the correlation length of the bottom is short compared to the wavelength. We first
consider the case in which the bottom is random with uniform statistical properties.
In this regime, random effects are equally or more important than nonlinear and
dispersive ones. We then extend our analysis to the case in which the bottom has
large-scale deterministic variations as well as small-scale random fluctuations, whose
statistical properties are allowed to vary slowly.

We find that the problem does not fully homogenize and that one sees important
contributions to the solution which are realization dependent. Nevertheless, in the
KdV limiting regime, there is an essentially explicit solution method which exhibits
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Figure 8. Variation of the position of the crest of the principal component r , relative to
that of the reference solution with flat bottom, for three different realizations of the bottom
topography (h = 1, ε = 0.2).
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Figure 9. Variation of the centre of mass of the principal component r in the same situation
as in figure 8, exhibiting smoother behaviour.

the principal features of the problem. We show that coherent wave-like solutions
persist, and they maintain in many cases the same basic properties of momentum
and energy transport as in the classical problem of a flat bottom. However these
solutions are modified by two random and realization-dependent effects. First, the
phase of the solutions has a random component which, in the asymptotic limit, is
governed by a canonical diffusion process, essentially a Brownian motion. This is as
in the work of Rosales & Papanicolaou (1983) and Garnier et al. (2007). Second,
there is a modulation of the solutions’ amplitude by a white noise process. These two
manifestations of randomness are correlated. This quantifies the degree of uncertainty
in determining the phase and amplitude of nonlinear waves over a random bottom.
Wave propagation over a variable bottom gives rise to scattered wave fields. We
quantify the scattered solution in our scaling regime; we express it in explicit form in
terms of a related diffusion process which is a weighted integral of white noise; and
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Figure 10. Profiles of the free surface η for ε =0.1 (h =0.25) at t = 0, 3900. The vertical scale
of the solution has been enlarged by a factor ε−2. The lower panel represents the corresponding
bottom geometry, for which b < 0.
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Figure 11. Profiles of the principal component r at t = 0 (dashed line), 2700 (thin solid line),
5700 (thick solid line) with the centres of mass aligned.

we remark that the scattering is not sufficient to significantly disperse solutions in the
scaling regime in which we work.

Finally, we find that there is an additional mechanism that affects the growth or
attenuation of solutions, which depends upon properties of skewness of the statistics
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Figure 12. The L2-norm of r as a function of time for h = 0.25, b = −8.85 × 10−3 and ε = 0.1,
exhibiting long-time scale attenuation of the solution. The solid curve represents the numerical

result, while the dashed curve represents the theoretical prediction e2bε2t‖r0‖2
2.

of the random bottom. This is not present in the usual case of a flat bottom, and
it could have the potential to be exploited in harbour design and other coastal
engineering structures.
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Appendix. Proof of two probabilistic theorems
This section contains several results in mathematical probability that are used

throughout the paper.

Proof of Theorem 3.1

The space of functions Ω : = C1(�), along with a translation invariant probability
measure P, plays the role of the set of realizations μ ∈ Ω . With respect to translations
τyμ(x) = μ(x + y), we assume that the probability space (Ω, P) describes a stationary
ergodic process. By the ergodic theorem, for every test function f (X) one has

lim
ε→0

∫
μ

(
X

ε

)
f (X) dX =E(μ)

∫
f (X) dX.

Subsequently, we may suppose that E(μ) = 0 and study the asymptotic behaviour of∫
f (X)μ

(
X

ε

)
dX =

√
εσμ

∫
f (X)

(√
ε

σμ

∂X

∫ X/ε

0

μ(s) ds

)
dX + o(

√
ε).
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We furthermore assume that the process defining μ has mixing properties, so that by
Donsker’s theorem (Billingsley 1968) the quantity

Yε(μ)(X) =

√
ε

σμ

∫ X/ε

0

μ(s) ds

converges weakly in law to Brownian motion Bω(X). Thus we have the asymptotic
result that

1√
ε

∫
f (X)μ

(
X

ε

)
dX → −σμ

∫
∂Xf (X) Bω(X) dX.

This is the essence of the statement of Theorem 3.1.

Proof of Theorem 5.1

This result also follows from the ergodic theorem and Donsker’s invariance principle.
The set of realizations in our multiple-scale setting will be C(�X : C1(�x)) = C(�X :
Ω), a space of continuous functions of two variables (in fact C1 in x). The role of the
realizations is taken by functions μ(x, X), considered as a family of stationary ergodic
processes under translations τyμ(x, X) = μ(x + y, X), parameterized continuously
by the variables X. The multiple-scale environment of the problem is given by
μ = μ(X/ε, X). That is to say we consider the dependence on the first variable to be
random and rapidly varying, which is then modulated by variations in the second
variable. In parallel, there is a family of probability measures P(X) parameterized by
the modulation variable X. The family of processes (μ(·, X), P(X)) is assumed to be
jointly stationary, ergodic for X ∈ � and jointly mixing in the sense that for every
f ∈ L1(�)∣∣∣∣

∫
f (X)[P(A ∩ τy(B), X) − P(A, X)P(B, X)] dX

∣∣∣∣ � α(y)‖f ‖L1(dX),

where α(y) → 0 as |y| → ∞ at a sufficiently rapid rate. Furthermore the family P(X)
is weakly continuous in the variables X, namely that for all jointly measurable sets A

lim
Y →X

[P(A, Y ) − P(A, X)] = 0.

Such multiple-scale situations may be approximated by finite sums of mixing processes
over compact sets of X ∈ �X . Given any small δ, we may choose a partition of unity
{gδ

m(X)}m∈� and a discrete set of points {Xδ
m ∈ supp gδ

m}m∈� such that given a
realization μ(x, X) ∈ C(�X : Ω) one defines a uniform approximation to μ(x, X) by

μδ(x, X) :=
∑
m∈�

gδ
m(X)μ

(
x, Xδ

m

)
.

Consider a test function f (X), which we assume to be smooth and of compact
support. The ergodic theorem implies that

lim
ε→0

∫
μδ

(
X

ε
, X

)
f (X) dX =

∫ ∑
m∈�

gδ
m(X)Em,δ

(
μ

(
·, Xδ

m

))
f (X) dX.

Subsequently, in the limit of small δ

lim
ε→0

∫
μ

(
X

ε
, X

)
f (X) dX =

∫
E(μ)(X)f (X) dX.
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Subtracting the mean, we may now suppose that E(μ)(X) = 0. Using the same
approximation, it suffices to consider

μδ

(
X

ε
, X

)
=

∑
m∈�

gm(X)μδ
m

(
X

ε

)
= G(X)�M

(
X

ε

)
,

which, up to terms which vanish with δ → 0, can also be assumed to be of
mean value zero. Here G�(X) = (. . . , gm(X), . . .) is the smooth partition of unity
and M = (. . . , μδ

m : = μ(·, Xδ
m), . . .)� is a stationary sequence of zero-mean processes

with strong mixing properties. For a test function f (X) of compact support as above,
only a finite number N of the processes μ(·, Xδ

m) come into play. The limit as ε → 0
is given by Donsker’s theorem

lim
ε→0

1√
ε

∫
f (X)μδ

(
X

ε
, X

)
dX = −

∫
∂X(f (X)GN (X)�)ANBN (X) dX

=

∫
f (X)GN (X)�AN∂XBN (X) dX,

where GN (X) is a finite-dimensional vector function, BN (X) is the standard normalized
N-dimensional Brownian motion and AN is the N × N matrix such that ANA�

N = σ 2
N

which has entries (σ 2
N )ij : =

∫
E(μδ

i (0)μδ
j (s))ds.

To identify the above limit, we calculate the covariance function of the quantity
inside the integral of the right-hand side, namely

ρN (X, Y ) = E
(
G�

N (X)AN∂XBN (X), G�
N (Y )AN∂Y BN (Y )

)
= δ(X − Y )G�

N (X)ANA�
NGN (Y )

= δ(X − Y )

∫
E(μδ(0, X)μδ(s, X)) ds

= δ(X − Y )σ 2
μδ (X),

where

σ 2
μδ (X) =

∫
E(μδ(0, X)μδ(s, X)) ds.

This uniquely characterizes processes with this covariance as being of the form

σμδ (X)dBω(X).

Taking δ → 0 we have thus obtained the basic result of Theorem 5.1,∫
f (X)μ

(
X

ε
, X

)
dX =

∫
f (X)E(μ)(X) dX +

√
ε

∫
f (X)σμ(X) dBω(X) + o(

√
ε).

This exhibits the fact that the asymptotic form of the left-hand side is defined in

terms of the mean value E(μ)(X) and the diffusion process D(X) =
∫ X

0
σμ(θ)dBω(θ).
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Garnier, J., Muñoz Grajales, J. C. & Nachbin, A. 2007 Effective behaviour of solitary waves
over random topography. Multiscale Model. Simul. 6, 995–1025.

Grataloup, G. & Mei, C. C. 2003 Long waves in shallow water over a random seabed. Phys. Rev.
E 68, 026314.

van Groesen, E. & Pudjaprasetya, S. R. 1993 Uni-directional waves over slowly varying bottom.
Part I. Derivation of KdV type equation. Wave Mot. 18, 345–370.

Howe, M. S. 1971 On wave scattering by random inhomogeneities, with application to the theory
of weak bores. J. Fluid. Mech. 45, 785–804.

Mei, C. C. & Hancock, M. 2003 Weakly nonlinear surface waves over a random seabed. J. Fluid
Mech. 475, 247–268.

Mei, C. C. & Li, Y. 2004 Evolution of solitons over a randomly rough seabed. Phys. Rev. E 70,
016302.

Nachbin, A. 1995 The localization length of randomly scattered water waves. J. Fluid Mech. 296,
353–372.

Nachbin, A. & Sølna, K. 2003 Apparent diffusion due to topographic microstructure in shallow
waters. Phys. Fluids 15, 66–77.

Nakoulima, O., Zahibo, N., Pelinovsky, E., Talipova, T. & Kurkin, A. 2005 Solitary wave
dynamics in shallow water over periodic topography. Chaos 15, 037107.

Pihl, J. H., Mei, C. C. & Hancock, M. 2002 Surface gravity waves over a two-dimensional random
seabed. Phys. Rev. E 66, 016611.

Rosales, R. & Papanicolaou, G. 1983 Gravity waves in a channel with a rough bottom. Stud. Appl.
Math. 68, 89–102.

Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid.
J. Appl. Mech. Tech. Phys. 9, 190–194.


