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ABSTRACT

We present a Hamiltonian, potential-flow formulation for nonlinear sur-
face water waves in the presence of a variable bottom. This formulation
is based on a reduction of the problem to a lower-dimensional system
involving boundary variables alone. To accomplish this, we express the
Dirichlet–Neumann operator as a Taylor series in terms of the surface
and bottom variations. This expansion is convenient for both asymptotic
calculations and direct numerical simulations. First, we apply this
formulation to the asymptotic description of long waves over random
topography. We show that the principal component of the solution can
be described as a solution of a Korteweg–de Vries-type equation, plus
random phase corrections. We also derive an asymptotic expression for
the scattered component. Finally, we propose a pseudospectral method,
using the fast Fourier transform, to numerically solve the full equations.
Several applications are presented.

KEY WORDS: nonlinear surface waves; long waves; bottom topog-
raphy; random bottom; Dirichlet–Neumann operator; pseudospectral
method.

INTRODUCTION

Because of its relevance to coastal engineering, surface water wave prop-
agation in the presence of an uneven bottom has been studied for many
years. The character of coastal wave dynamics can be very complex;
waves are strongly affected by the bottom through shoaling and the re-
sulting variations in local linear wave speed, with the subsequent effects
of refraction, diffraction and reflection. Nonlinear effects, which influ-
ence waves of appreciable steepness even in the simplest of cases, have
additional components due to wave-bottom as well as nonlinear wave-
wave interactions, as seen, e.g., in depth-induced breaking. The presence
of bottom topography in the fluid domain introduces additional space and
time scales to the classical perturbation problem. The resulting nonlinear
waves can have a great influence on sediment transport and the formation
of shoals and sandbars in nearshore regions. It is therefore of central im-
portance to understand the basic mechanisms that govern the dynamics
of such waves.

The present paper proposes a new Hamiltonian formulation for sur-
face water waves in the presence of a variable bottom. This formulation
lends itself well to asymptotic modeling and analysis, using tools from
Hamiltonian perturbation theory, as well as to direct numerical simula-
tions by a pseudospectral method using the fast Fourier transform.

For illustration, we first investigate the problem of long wave propa-
gation over a randomly varying bottom. This problem has drawn serious
attention recently with the works of Grataloup and Mei (2003), Nach-
bin and Sølna (2003), Mei and Li (2004), and Garnier, Muñoz Grajales
and Nachbin (2007). Here we adopt a Hamiltonian approach to derive
a Korteweg–de Vries-type equation for the principal component of the
solution. We also derive an asymptotic expression for the scattered com-
ponent.

We then present a numerical model that solves the full equations
of the problem by a pseudospectral method using the fast Fourier trans-
form. This model is based on an expansion of the Dirichlet–Neumann
operator as a Taylor series in terms of the surface and bottom variations,
following the idea of Craig and Sulem (1993). See also the works of
Dommermuth and Yue (1987), West et al. (1987), Liu and Yue (1998),
and Smith (1998) for similar methods. Finally, the performance of the
model is demonstrated with several applications.

MATHEMATICAL FORMULATION

Governing Equations

We consider the motion of a free surface, η(x,t), on top of a fluid domain
defined by

S(β ,η) = {(x,y) ∈ R
n−1 ×R | −h+β (x) < y < η(x,t)} ,

where β (x) denotes the bottom perturbation and n = 2,3 is the spatial
dimension. The quiescent water level is located at y = 0 and the constant
reference depth is h. We assume the fluid is incompressible and inviscid,
and the flow is irrotational, so that the fluid velocity can be expressed
as u = ∇ϕ , where ϕ denotes the velocity potential. Under the above
assumptions, the full boundary value problem for potential flow is given
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by

∆ϕ = 0 in S(β ,η) , (1a)

∂tη +∇xϕ ·∇xη −∂yϕ = 0 at y = η(x,t) , (1b)

∂tϕ + 1
2 |∇ϕ|2 +gη = 0 at y = η(x,t) , (1c)

∇ϕ ·ν(β ) = 0 at y = −h+β (x) , (1d)

where g is the acceleration due to gravity, and ν(β ) = (−∇xβ ,1) is a
(non-normalized) upward vector normal to the bottom. Surface tension
effects are neglected but could easily be included in (1c) (see Craig and
Nicholls 2000).

Hamiltonian Equations

Following Craig and Sulem (1993), we can reduce the dimensionality
of the classical potential flow formulation of the water wave problem,
(1), by considering surface quantities as unknowns. We begin with the
observation that when the free surface η(x,t), Dirichlet data at the free
surface ξ (x,t) = ϕ(x,η(x,t),t) and Neumann data at the bottom v(x,t)
are specified, we can in principle solve the full problem, since ϕ satisfies
Laplace’s equation with appropriate boundary conditions. In this way,
the water wave problem can be reduced from one posed inside the entire
fluid domain to one posed at the free surface alone. This fact was orig-
inally noted by Zakharov (1968, for deep water), who reformulated (1)
as a Hamiltonian system in terms of the canonically conjugate variables
η and ξ . In terms of these variables, the equations of motion take the
canonical form

∂t

(

η
ξ

)

=

(

0 1
−1 0

)(

δη H
δξ H

)

= J

(

δη H
δξ H

)

,

or, more specifically,

∂tη = G(β ,η)ξ , (2a)

∂tξ = −gη − 1

2(1+ |∇xη|2)
[

|∇xξ |2 − (G(β ,η)ξ )2

−2(∇xξ ·∇xη)G(β ,η)ξ + |∇xξ |2|∇xη|2

−(∇xξ ·∇xη)2
]

, (2b)

where H is the Hamiltonian of the system, given by

H = 1
2

∫ ∫ η

−h+β
|∇ϕ|2dydx+ 1

2

∫

gη2dx ,

= 1
2

∫

ξG(β ,η)ξ dx+ 1
2

∫

gη2dx , (3)

and G(β ,η) is the so-called Dirichlet–Neumann operator, i.e. the singu-
lar integral operator which expresses the normal derivative of the velocity
potential on the free surface, in terms of the boundary values ξ and of the
domain itself, as parameterized by β and η which define the lower and
upper boundaries of the fluid domain. We define this operator by

G(β ,η)ξ = ∇ϕ|y=η ·ν(η) ,

where ν(η) = (−∇xη,1) is a (non-normalized) exterior vector normal
to the free surface. While this is a linear operator in ξ , it is nonlinear
with explicit nonlocal dependence on β and η .

Dirichlet–Neumann Operator

For β = 0, Coifman and Meyer (1985) showed that, if η ∈ Lip(R), then
G is an analytic function of η , from which it follows that G can be written
in terms of a convergent Taylor series

G(η) =
∞

∑
l=0

G(l)(η) , (4)

where each term G(l) is homogeneous of degree l in η . Craig, Schanz
and Sulem (1997) extended these results for periodic η ∈ C1(R2), and
Craig and Nicholls (2000) generalized this argument for η ∈C1(Rn−1).
Nicholls and Reitich (2001) devised a direct method to estimate the G(l)

(requiring the slightly stronger hypothesis η ∈ C3/2+δ (Rn−1)) with the
goal of stabilized high-order calculations. A recursion formula for the
l-th order term in (4) is given in Craig and Sulem (1993) in two dimen-
sions, and the generalization to three dimensions was derived by Nicholls
(1998).

For l odd,

G(l) = |D|l−1D
η l

l!
·D−

l−1

∑
j=2,even

|D| j η j

j!
G(l− j)

−
l

∑
j=1,odd

|D| j−1G(0) η j

j!
G(l− j) , (5a)

and, for l > 0 even,

G(l) = |D|l−2G(0)D
η l

l!
·D−

l

∑
j=2,even

|D| j η j

j!
G(l− j)

−
l−1

∑
j=1,odd

|D| j−1G(0) η j

j!
G(l− j) , (5b)

where G(0) = |D| tanh(h|D|), D = −i∇x and |D| = (−∇2
x)

1/2.
For β 6= 0, Nicholls and Taber (2008) showed that the Dirichlet–

Neumann operator is jointly analytic in all spatial and parametric (bound-
ary) variables, and that it can be analytically continued in the two para-
metric variables. Craig et al. (2005) extended the recursion formulas
(5) to the case of an uneven bottom and showed that they can be used
verbatim with the exception that the first term G(0) is replaced by

G(0) = |D| tanh(h|D|)+ |D|L(β ) . (6)

The operator L(β ), which takes into account the bottom variations, is
derived from the Neumann boundary condition at the bottom (1d) and
can be expressed as a convergent Taylor series expansion in β ,

L(β ) =
∞

∑
j=0

L j(β ) ,

where each term L j can also be determined explicitly by a recursion for-
mula.

For j odd,

L j = − D

|D| sech(h|D|) ·
[β j

j!
sech(h|D|)|D| j−1D

+
j−1

∑
l=2,even

β l

l!
cosh(h|D|)|D|l−1DL j−l

−
j−2

∑
l=1,odd

β l

l!
sinh(h|D|)|D|l−1DL j−l

]

, (7a)

and, for j > 0 even,

L j = − D

|D| sech(h|D|) ·
[ j−2

∑
l=2,even

β l

l!
cosh(h|D|)|D|l−1DL j−l

−
j−1

∑
l=1,odd

β l

l!
sinh(h|D|)|D|l−1DL j−l

]

. (7b)

For example, the first three terms in the expansion of L are

L0 = 0 , L1 = − D

|D| sech(h|D|) ·βDsech(h|D|) ,
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L2 =
D
|D| sech(h|D|) ·βDsinh(h|D|)L1 .

It should be noted that multi-valued surfaces (e.g. overturning waves)
cannot be described with this formulation.

We next show that this formulation of the water wave problem
with a variable bottom is convenient for the derivation of asymptotic
models, e.g. for long waves over random topography, as well as for
direct numerical simulations of the basic governing equations.

LONG WAVES OVER RANDOM TOPOGRAPHY

Boussinesq and KdV Regimes

Focusing our attention on small-amplitude long waves propagating over
a randomly varying bottom, we intend to derive an asymptotic expression
for the solution in the Korteweg–de Vries (KdV) scaling regime (n = 2).
As we will show, this consists of a solution of a deterministic KdV-type
equation, plus random corrections due to the bottom variations. To do so,
we apply successive changes of variables to the Hamiltonian (3) and to
the symplectic structure J (Craig, Guyenne and Kalisch 2005), and use
scale-separation results (de Bouard et al. 2008). The main steps of the
procedure are given below.

We assume that the bottom variations β are described by a zero-
mean, stationary, ergodic process with mixing properties, and that they
take place on length scales shorter than those of the surface waves. This
is a question of homogenization theory. Introducing the velocity variable
u = ∂xξ and using the scaling

εx = X , u(x) = ε2ũ(X) , η(x) = ε2η̃(X) , β (x) = εβ̃ (X/ε) ,

where ε is a small parameter, the Hamiltonian can be approximated, up
to order O(ε5), by

H1 =
ε3

2

∫

[

hε u2 +gη2 − ε2
(h3

3
(∂X u)2 −ηu2

)]

dX ,

after dropping the tilde notation. The corrected depth is given by

hε = h− εγ − ε2E(βDx tanh(hDx)β ) ,

where γ(x) = sech(hDx)β and the symbol E(.) denotes the expected
value. The equations of motion then take the form

∂t

(

η
u

)

= ε−3
(

0 −∂X

−∂X 0

)(

δη H1
δuH1

)

,

leading to the Boussinesq system

∂tη = −∂X

[

(hε + ε2η)u
]

− ε2 h3

3
∂ 3

X u ,

∂tu = −g∂X η − ε2u∂X u .

The next change of variables is a normal-mode transformation, defined
by

η = 4

√

hε
4g

(r + s) , u = 4

√

g

4hε
(r− s) = kε (r− s) ,

which reduces the Hamiltonian to

H2 =
ε3

2

∫

[

√

ghε (r2 + s2)− ε2h3

3

(

∂X (kε r−kε s)
)2

+
ε2

2
kε (r3 − r2s− rs2 + s3)

]

dX ,

and the equations of motion to

∂t

(

r
s

)

= J2

(

δrH2
δsH2

)

,

with

J2 = ε−3

(

−∂X
1
4

∂X hε
hε

− 1
4

∂X hε
hε

∂X

)

.

Finally, the additional scaling s1 = ε−3/2s puts forward r(X ,t) as the
main component of the solution which is anticipated to be traveling prin-
cipally to the right, with a relatively small scattered component s1(X ,t)
propagating principally to the left. Accordingly, the evolution equations
are rewritten as

∂t

(

r
s1

)

= J3

(

δrH3
δs1 H3

)

, (8)

with

J3 = ε−3

(

−∂X
ε−3/2

4
∂X hε

hε

− ε−3/2

4
∂X hε

hε
∂X

)

,

and

H3 =
ε3

2

∫

[

√

ghε (r2 + ε3s2
1)−

ε2h3

3

(

∂X (kε r− ε3/2kε s1)
)2

+
ε2

2
kε (r3 − ε3/2r2s1 − ε3rs2

1 + ε9/2s3
1)
]

dX .

It can be shown that the asymptotic behavior of solutions of (8), as ε → 0,
is governed by the following coupled system of equations

∂t r = −∂X

[

cε r + ε2
(

c1∂ 2
X r +

3
2

c2r2
)]

+ ε2br , (9a)

∂t s1 =
√

gh∂X s1 +
1
4

√

g

h
ε−3/2∂xγ

(X

ε

)

r , (9b)

where the corrected wave speed is

cε =
√

gh
(

1− ε
2h

γ − ε2aKdV

)

,

and

aKdV =
1

2h
E(βDx tanh(hDx)β )+

1

4h2 E(γ2)+
1
8

E((∂xγ)2) ,

c1 =
h3

3

√

g

4h
, c2 =

1
2

4

√

g

4h
,

b = − 7
768

√

g

h
E((∂xγ)3) .

Equation (9a) for r has the form of a KdV-type equation, while Eq. (9b)
for s1 is linear with a forcing term by r.

Solution Procedure

We now describe a reduction procedure for system (9) that expresses the
solution component r(X ,t) in terms of a solution q(Y,τ) of a determin-
istic KdV-type equation, under a random change of variables Y → X and
a scaling τ = ε2t to the KdV time. The scattered component s1(X ,t) has
an expression involving integrations along characteristics.

Substitute r = ∂X R into (9a). The resulting equation for R is

∂tR = −cε (X)∂X R− ε2
(

c1∂ 3
X R+

3
2

c2(∂X R)2
)

+ ε2bR .
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Transform to characteristic coordinates,

dX

dt
= cε (X) , X(0) = Y . (10)

Integration of (10) yields

X = Y +(1− ε2aKdV )t
√

gh− ε2

2h

∫ (Y+t
√

gh)/ε

Y/ε
γ(s)ds . (11)

Then define successively Q(Y,τ) = R(X ,t) and q(Y,τ) = ∂Y Q(Y,τ) so
that q satisfies the deterministic equation

∂τ q = −c1∂ 3
Y q−3c2q∂Y q+bq . (12)

If b = 0, Eq. (12) is the classical KdV equation. By solving (12) together
with the random change of variables Y → X induced by (10), the solution
r(X ,t) of (9a) can be expressed as

r(X ,t) = ∂X Q = ∂Y Q∂XY

= q(X −
√

ght,ε2t) (13)

+∂X

[

q(X −
√

ght,ε2t)
( ε2

2h

∫ X/ε

(X−√
ght)/ε

γ(t ′)dt ′
)]

.

By integrating (9b) along left-moving characteristics, the scattered com-
ponent reads

s1(X ,t) = s1(X +
√

ght,0) (14)

+
ε−3/2

4h

∫ X+
√

ght

X
∂xγ
(θ

ε
)

r
(

θ ,t +
X −θ√

gh

)

dθ .

In the limit ε → 0, the transformation (11) converges as a distribution to

X = Y +(1− ε2aKdV )t
√

gh− ε3/2

2h
σβ

4
√

ghB(t) , (15)

and expressions (13) and (14) are asymptotic to

r(X ,t) = q(X −
√

ght,ε2t) (16)

+
ε3/2

2h
σβ

4
√

gh∂X

[

q(X −
√

ght,ε2t)B(t)
]

,

and

s1(X ,t) = s1(X +
√

ght,0)

+
1

4hσβ

∫ X+
√

ght

X
B(θ )

× d2

dθ 2 q(2θ −X −
√

ght,ε2(t +
X −θ√

gh
))dθ

+
1

4hσβ

[

∂X B(X +
√

ght)q(X +
√

ght,0)

−∂X B(X)q(X −
√

ght,ε2t)
]

− 1
2hσβ

[

B(X +
√

ght)∂X q(X +
√

ght,0)

−B(X)∂X q(X −
√

ght,ε2t)
]

, (17)

where σ2
β denotes the variance of β and B is Brownian motion.

Further analysis of system (9) together with solutions (16) and (17)
is work in progress.

Discussion

(i) Equation (12) contains a linear term which acts as damping or forcing

depending on the sign of b. If b < 0, solutions decay to zero, while they
grow in time if b > 0. A sketch of a bottom for which b < 0 is shown in
Fig. 1.
(ii) If the statistics of β are reversible, meaning that they are preserved
under the inversion x →−x, then E((∂xβ )3) = 0 implying that b = 0.
(iii) Equation (16) indicates that coherent wave solutions (e.g. solitary
waves) persist, and maintain the same basic properties of momentum and
energy transport as in the classical problem of a flat bottom. However,
these solutions are modified by two random and realization-dependent
effects. First, from (15), the solutions’ phase has a random component
which, in the asymptotic limit, is governed by Brownian motion.
Second, from (16), there is a modulation of the solutions’ amplitude by
a white noise process (the derivative of Brownian motion). These two
manifestations of randomness are correlated. Finally, as shown in (17),
the scattered component can be expressed in terms of a diffusion process
which is a weighted integral of white noise.

x

y

0

−h

Figure 1: Sketch of a fluid domain with a bottom for which b < 0.

DIRECT NUMERICAL SIMULATIONS

Numerical Model

In this section, we present a numerical model that solves the full
equations (2) in both two and three space dimensions. We first describe
the numerical methods for space and time discretizations of the model,
and then show some applications.

Spatial discretization: We assume periodic boundary conditions in the
x-direction and use a pseudospectral method. This is a natural choice for
the computation of the Dirichlet–Neumann operator, since each term in
its Taylor series consists of concatenations of Fourier multipliers (e.g. D
and |D| tanh(h|D|)) with powers of β and η .

More specifically, the functions β , η and ξ are represented by trun-
cated Fourier series with the same number of modes N. Applications of
Fourier multipliers are performed in Fourier space, while nonlinear prod-
ucts are calculated in physical space at a discrete set of equally spaced
points. For example, application of |D| tanh(h|D|) in physical space is
equivalent to multiplication by |k| tanh(h|k|) in Fourier space (where k
denotes the wavenumber). All these operations can be performed effi-
ciently by using the fast Fourier transform.

Both operators G and L are also approximated by a finite number of
terms,

G(β ,η) '
M

∑
l=0

G(l)(β ,η) , L(β ) '
Mb

∑
j=0

L j(β ) ,

where M and Mb are chosen according to the physical problem under
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consideration. In practice, it is not necessary to specify large values for
M and Mb (typically M,Mb < 10) since the series converge rapidly owing
to the analyticity properties of the Dirichlet–Neumann operator.

Note that there are no a priori restrictions on the relative length
scales between bottom and surface variations. In particular, the method
is not restricted to slowly varying topography compared to surface
waves. However, because of the character of Taylor series expansions
and the use of fast Fourier transforms, bottom and surface variations are
both required to be single-valued, sufficiently smooth and of moderate
amplitude.

Time integration: Time integration is carried out in Fourier space. The
linear terms in (2) are solved exactly by an integrating factor technique.
The nonlinear terms are integrated in time using a fourth-order Runge–
Kutta scheme with constant step size.

In the computations (especially of large-amplitude waves), it was
observed that spurious oscillations can develop in the wave profile, due
to the onset of an instability related to the growth of numerical errors
at high wavenumbers. Similar instabilities were observed by other au-
thors (Dommermuth and Yue 1987) who used smoothing techniques to
circumvent this difficulty. Here, at every time step, we apply an ideal
low-pass filter to both η and ξ , of the form

γk =

{

1 if |k|/kmax ≤ θ , 0 < θ ≤ 1 ,
0 if |k|/kmax > θ ,

where kmax is the largest wavenumber of the spectrum. Typically, we
found that θ = 0.8 suffices to stabilize the solution. Care is taken to spec-
ify a sufficiently high spatial resolution and a value of θ close to unity
so that only energy levels located in the high-wavenumber region of the
spectrum are suppressed by filtering. In most of our simulations with
small to moderate amplitudes (e.g. Bragg reflection over sinusoidally
varying topography, harmonic generation over a submerged bar; see be-
low), no filtering was used at all.

Further details on the numerical methods, together with numerical
tests, are given in Guyenne and Nicholls (2005, 2007).

Numerical Results

Here we show two-dimensional (n = 2) simulations to illustrate the
performance of the numerical model. Comparisons with experimental
data and other numerical models are provided. Unless stated otherwise,
all variables are non-dimensionalized according to long-wave theory, i.e,
lengths are divided by h and times divided by

√

h/g.

Solitary wave shoaling on slope: The first experiment concerns the evo-
lution of solitary waves traveling up a plane slope, and our computations
are compared with results obtained by a boundary element method (Grilli
et al. 2001; Guyenne and Grilli 2006). The bottom geometry is depicted
in Fig. 2; the initial condition is a fully nonlinear solitary wave of am-
plitude a0 computed by Tanaka’s method (Tanaka 1986). Because re-
flecting lateral boundaries are used in the boundary element code, both
the bottom geometry and initial condition in the present model are spec-
ified symmetrically about the center of the domain in order to simulate a
reflecting boundary condition at some distance up the slope. As shown
in Fig. 2, the situation is two solitary waves propagating symmetrically
towards a submerged island between them.

We present results for two simulations with incident solitary waves
of amplitudes a0 = 0.3,0.4. In both cases, the bottom slope is fairly steep
(s = 1/18). We used M = 8, Mb = 4 and N = 512. Figures 3–4 show a
comparison of wave profiles at two advanced stages of shoaling. The
boundary element solution exhibits a slightly sharper and higher wave
crest than the spectral solution, and these discrepancies become more

pronounced as the solitary waves approach breaking. Nevertheless, the
overall agreement is good. The rear faces of the waves match almost
perfectly and the wave crests have nearly the same locations.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

x

y

Figure 2: Bottom topography and initial condition in the solitary
wave shoaling problem. The two solitary waves are of amplitude
a0 = 0.3 and the bottom slope is s = 1/18.

(a)
10 15 20 25

0

0.2

0.4

x

y

(b)
10 15 20 25

0

0.2

0.4

x

y
Figure 3: Comparison of solitary wave profiles between boundary
element (dashed line) and spectral (solid line) methods, for a0 =
0.3 at times (a) t = 12 and (b) t = 13.6.
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(b)
10 15 20 25

0

0.2

0.4

0.6

x

y

Figure 4: Comparison of solitary wave profiles between boundary
element (dashed line) and spectral (solid line) methods, for a0 =
0.4 at times (a) t = 10.2 and (b) t = 12.

Bragg reflection over sinusoidally varying topography: We now con-
sider Bragg reflection over a sinusoidal ripple patch. For small incident
wave and bottom slopes, reflection near Bragg resonance is predicted
well by multiple-scale linearized perturbation theory (Mei 1985). Here
we numerically examine higher-order nonlinear effects using our spec-
tral model. The conditions in Davis and Heathershaw (1984) are used in
order to compare with their experiments. The ripple patch is defined by

β (x) = d sin(kbx) , −Lb ≤ x ≤ Lb ,

as depicted in Fig. 5. The ripple slope is kbd = 0.31, the ripple amplitude
is d = 0.16, and Lb/λb = 10 (i.e. a patch of 10 sinusoidal ripples, with
λb = 2π/kb).
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Figure 6 shows the computed reflection coefficient for incident
waves of steepness ka0 = 0.05 and wavenumber k near the linear Bragg
resonance condition 2k/kb = 1 (M = Mb = 2 and N = 512). We used
the least-squares method of Mansard and Funke (1990) to evaluate the
reflection coefficient from time series in the steady state. For compari-
son, experimental data by Davis and Heathershaw (1984) along with the
linear solution by Mei (1985) are also plotted in Fig. 6. We observe a
downshift of the resonant peak relative to the linear value, in accordance
with the experimental data. This wavenumber downshift is not predicted
by linear theory and can be attributed to nonlinear effects, as reported by
other authors (Liu and Yue 1998).
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Figure 5: Bottom topography with a patch of 10 sinusoidal ripples
of amplitude d = 0.16 and slope kbd = 0.31.
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Figure 6: Bragg reflection coefficient near the linear resonance
condition 2k/kb = 1, for ka0 = 0.05, kbd = 0.31, d = 0.16: ex-
periments (circles), linear theory (dashed line), and our numerical
simulations (squares-solid line).

Harmonic generation over a submerged bar: It is well-known that
regular waves decompose into higher-frequency free waves as they prop-
agate past a submerged bar, as shown in experimental work (Dingemans
1994). As the waves travel up the front slope of the bar, higher harmonics
are generated due to nonlinear interactions, causing the waves to steepen.
These harmonics are then released as free waves on the downslope, pro-
ducing an irregular pattern behind the bar. Here we compare our spectral
model with experimental data of Dingemans (1994). The geometry of
the submerged bar is illustrated in Fig. 7.

We present numerical results for two different incident wave
conditions: (T0,a0) = (2.02s,0.02m) and (2.525s,0.029m), where T0

and a0 denote the incident wave period and height, respectively. Time
histories of the surface elevation at various locations are shown in Figs.
8–9. In both cases, the computations were performed using M = Mb = 8
and N = 2048. The time origin was shifted so that the numerical results
match the measurements for the first wave gauge at x = 2m. Overall, the
computations compare well with the experimental data in both cases.
In particular, the asymmetry of the shoaling waves and the generation
of higher harmonics are reproduced well by the numerical model. Note

that, in the second case (which corresponds to an incident wave of larger
amplitude than in the first case), some discrepancies are observed for
gauges downstream from the top of the bar (i.e. x > 13.5m). This may
be explained by the occurrence of spilling breakers in the experiments
as reported in Dingemans (1994) for this case.
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Figure 7: Submerged bar for harmonic wave generation as de-
scribed in the experiments of Dingemans (1994).

CONCLUSIONS

We have presented a Hamiltonian formulation for nonlinear surface
water waves in the presence of a variable bottom. This formulation
is convenient for both asymptotic calculations and direct numerical
simulations. First, we have applied this formulation to the asymptotic
description of long waves over random topography. We have shown
that the principal component of the solution can be described as a
solution of a KdV-type equation, plus random phase corrections. We
have also derived an asymptotic expression for the scattered component.
Finally, we have proposed a spectral method, based on this Hamiltonian
formulation, to numerically solve the full equations of the problem.
Several applications have been shown to demonstrate its performance.
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Figure 8: Time series of surface elevations at various locations
for waves passing over a bar: experiments (dashed line) and nu-
merical simulations (solid line): T0 = 2.02 s and a0 = 0.02 m.
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Figure 9: Time series of surface elevations at various locations
for waves passing over a bar: experiments (dashed line) and nu-
merical simulations (solid line): T0 = 2.525 s and a0 = 0.029 m.
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