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Abstract

The classical optical flow assumes that a feature point
maintains constant brightness across the frames. For fluid-
type motions such as smoke or clouds, the constant bright-
ness assumption does not hold, and accurately estimating
the motion flow from their images is difficult. In this paper,
we introduce a simple but effective Navier-Stokes (NS) po-
tential flow model for recovering fluid-type motions. Our
method treats the image as a wavefront surface and mod-
els the 3D potential flow beneath the surface. The gradient
of the velocity potential describes the motion flow at every
voxel. We first derive a general brightness constraint that
explicitly models wavefront (brightness) variations in terms
of the velocity potential. We then use a series of partial
differential equations to separately model the dynamics of
the potential flow. To solve for the potential flow, we use
the Dirichlet-Neumann Operator (DNO) to simplify the 3D
volumetric velocity potential to 2D surface velocity poten-
tial. We approximate the DNO via Taylor expansions and
develop a Fourier domain method to efficiently estimate the
Taylor coefficients. Finally we show how to use the DNO
to recover the velocity potential from images as well as to
propagate the wavefront (image) over time. Experimental
results on both synthetic and real images show that our
technique is robust and reliable.

1. Introduction

Optical flow is one of the most studied problems in com-
puter vision. It refers to the process of calculating the mo-
tion between two frames. Let η(x, t) 1 denote the intensity
at pixel x = (x, y) at time t. Assuming that the brightness
of every feature point remains constant across the frames

1Since our approach treats the image as a surface, we use η instead of
I for consistency.

and its movement is small, we have

dη

dt
=

∂η

∂t
+ (

∂η

∂x
,
∂η

∂y
) · u = 0 (1)

where u = (u, v)> = (dx/dt, dy/dt)> denotes the optical
flow, i.e., the instantaneous velocity between two consecu-
tive frames.

It is well understood that the optical flow problem is in-
herently under-constrained: there are more unknowns (u
and v) than constraint (Eq. (1)). Additional constraints,
hence, have been used to resolve the ambiguity problem.
These include algorithms based on phase correlation [8],
smooth prior [4], spatial statistics prior [20], derivative con-
straints of the image or the flow field [2, 19]. We refer the
readers to the optical flow evaluation database by Baker et
al [3] for a complete review.

Recent optical flow methods have been focused on re-
covering fluid-type motions such as clouds, ocean/river
waves, and smoke. These natural phenomena do not satisfy
the constant brightness constraint. For example, in ocean
engineering [13], irregular and multidirectional properties
of waves force both the smoothness and discontinuity in
image brightness to change along the physical dynamics.
Therefore, relaxing the constant brightness constraint based
on linear illumination model [9] often produces large errors.

To recover fluid-type motions, a number of approaches
have been proposed to integrate the basic optical flow so-
lution with fluid dynamics constraints, e.g., the continu-
ity equation that describes the fluid property [6, 17, 23]
or the divergence-curl (div-curl) equation [1, 6] to de-
scribe spreading and rotation. Many previous approaches
[5, 10, 15, 16] have shown that the constant brightness con-
straint is violated for fluid-type motions. Their solutions
were to treat the physical model as regularization terms to
the constant brightness constraint. Our work is inspired by
the physical-based brightness variation model [11] for com-
puting the optical flow under illumination changes and heat
transport. Our goal is to directly model brightness varia-
tions caused by fluid dynamics. Other methods attempt to
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derive the closed-form flow model using base waves [21].
Motion flow estimation can then be formulated as to find
their coefficients to match the input sequence. In practice, a
large number of base waves are required to faithfully model
the flow. Finding their coefficients is not only computation-
ally expensive but also unreliable.

In this paper, we introduce a novel Navier-Stokes poten-
tial flow framework for estimating fluid-type motions from
images. Our method treats image intensity as a wavefront
surface and models the 3D velocity potential beneath the
surface. The gradient of the velocity potential describes
the motion flow at every voxel. Unlike previous meth-
ods that regularize the constant brightness constraint, we
derive a general brightness constraint that explicitly mod-
els brightness variations in terms of the velocity potential.
We then use a set of partial differential equations (PDEs)
to separately model the dynamics of the velocity potential.
These include a fluid dynamics constraint for the wavefront,
a Neumann boundary condition at the fluid bottom, and a
Laplace equation for mass conservation.

To solve for the velocity potential, we use the Dirichlet-
Neumann Operator (DNO) to simplify the 3D volumetric
velocity potential to 2D surface velocity potential. In par-
ticular, it defines two PDEs that separately model how the
wavefront evolves and how the motion flow propagates. We
approximate the DNO via Taylor expansions and develop a
Fourier domain method to efficiently estimate the Taylor co-
efficients. Finally we show how to use the DNO to estimate
the velocity potential from two frames and to propagate the
wavefront over time. We demonstrate our techniques on
synthetic and real images of waves, smoke, and clouds. We
show that our NS potential flow model surpasses existing
optical flow methods. For example, the smooth and discon-
tinuous clouds motions estimated by our method is coherent
with the image sequence, whereas the previous methods es-
timate only smooth and uniform motion.

2. Navier-Stokes Potential Flow
Our approach models the image as a wavefront surface

η(x, t), where x = (x, y) represent the pixel coordinates
and t represents time. We use z to represent the height
dimension. While traditional optical flow has focused on
estimating 2D flow field on surface η, we reformulate the
problem to solve for the 3D flow field beneath η, as shown
in Fig. 1. Specifically, we aim to estimate the 3D motion ũ
as:

ũ = (u, v, w)> = (dx/dt, dy/dt, dz/dt)> ,

where u, v and w represent the velocity along the x, y and
z directions respectively. The classical 2D optical flow u,
hence, can be viewed as the horizontal projection of ũ on
the wavefront z = η.
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Figure 1. Navier-Stokes Potential Flow. We model the image as a
height field η and study its 3D velocity potential ϕ. The gradient
of ϕ describes the 3D motion flow ũ. The 2D optical flow u can
be viewed as the 2D gradient of the surface potential ξ on η.

2.1. Potential Flow

We first introduce the notion of potential (or irrotational)
flow [24] which describes the (3D) motion flow field ũ as
the gradient of the velocity potential ϕ:

ũ = ∇ϕ , (2)

where ∇ = (∂x, ∂y, ∂z)> is the gradient operator. On
wavefront η, we have z = η(x, t), therefore,

d

dt
(η(x, t) − z) =

∂η

∂t
+

∂η

∂x

dx

dt
+

∂η

∂y

dy

dt
− dz

dt
= 0 (3)

We can rewrite Eq. (3) as

∂η

∂t
− (−∇xη, 1)> · ∇ϕ = 0

∣∣
z=η

,

or
∂η

∂t
= (−∇xη, 1)> · ∇ϕ

∣∣
z=η

, (NS.1)

where ∇x = (∂x, ∂y)> is the gradient in the (x, y)-plane.
Recall that (−∇xη, 1)> is the normal vector at each point
on wavefront η, Eq. (NS.1) reveals that wavefront (bright-
ness) variation is determined by the normal flow.

We call Eq. (NS.1) the general brightness constraint as
it expresses image brightness variations in terms of the ve-
locity potential ϕ. The constant brightness constraint (Eq.
(1)) is a special case of Eq. (NS.1) when ∂ϕ/∂z, the mo-
tion along the z direction, is zero. More importantly, the
general brightness constraint allows us to separately model
ϕ via specific physics models.

2.2. Fluid Dynamics Constraints

In this paper, we model ϕ using the fluid dynamic con-
straints. Recall the wavefront η satisfies the Navier-Stokes
(NS) equation:

ρ(∂tũ + ũ · ∇ũ) = −∇p + µ∇2ũ + f (4)

2449



where ρ is the fluid density, p is the pressure, µ is the viscos-
ity, and f is body forces. For ocean or river waves, we have
f = ∇(−ρgz), where g is the gravitational acceleration.

To simplify Eq. (4), we assume the fluid is inviscid, i.e.,
µ = 0, and irrotational, i.e., the convective acceleration
term ũ · ∇ũ = ∇( |ũ|

2

2 ). Finally, we assume there is no
pressure jump across η, i.e., ∇p = 0, and ρ is constant.
Notice that these assumptions hold for many natural fluid-
type motions such as smoke, clouds, waves, etc. The NS
equation, Eq. (4), hence, can be simplified as:

ρ(∂tũ + ∇(
|ũ|2

2
)) + ∇(ρgz) = 0 (5)

Substituting ũ = ∇ϕ into Eq. (5) and evaluating on η, we
have

∂tϕ +
1
2
|∇ϕ|2 + gη = 0 on z = η . (NS.2)

We call Eq. (NS.2) the NS constraint for the potential flow.
For most natural fluids such as a liquid, or a gas at low

Mach numbers, it is common to assume that they are in-
compressible, i.e., ∇· ũ = 0 which implies that the velocity
potential satisfies Laplace’s equation:

∇2ϕ = 0 , (NS.3)

for all voxels beneath η.
Finally, we introduce the boundary constraint at the bot-

tom of the fluid z = −h. We assume that there is no vertical
flow (in the z direction) at the bottom, i.e., the fluid bottom
is impermeable:

∂zϕ = 0 on z = −h . (NS.4)

We call Eqs. (NS.2)–(NS.4) the fluid dynamics con-
straints of ϕ. Together with the general brightness con-
straint Eq. (NS.1), they form the Navier-Stokes potential
flow. The main advantage of our formulation is that the gen-
eral brightness constraint is separated from the dynamics
constraints. Although our analysis is focused on fluid-type
motions, we can modify or even replace the fluid dynamics
constraints with other physical models.

2.3. Limitations

Our NS potential flow model does not include all the
characteristics of fluids that are encountered in the real
world. For example, since we model the wave surface as a
height field, it cannot be a multi-valued function of x and y.
Thus, our model excludes turbulence, which is commonly
encountered in nature. Incompressible potential flow also
makes a number of invalid predictions, e.g., d’Alembert’s
paradox, which states that the drag on any object moving
through an infinite fluid otherwise at rest is zero.

Finally, we simplify the convective acceleration term in
the Navier-Stokes equation by assuming the flow is irrota-
tional, i.e., the vorticity is zero. This is a major limitation of
our model compared with the closed-form representations
[21], where rotational flows can be effectively modeled with
a sufficiently large number of base waves. However, it is
important to note that the vorticity only acts as a measure of
the local rotation of fluid elements and it does not imply any
global behavior of a fluid: it is possible for a fluid traveling
in a straight line to be rotational, and the one moving in a
circle to be irrotational. Therefore, the NS potential flow
can still model rotational flow motions to some extent.

3. Solving for the NS Potential Flow
The fluid dynamics constraints Eqs. (NS.2)–(NS.4) and

the general brightness constraint (NS.1) form an over-
constrained system. In theory, we can discretize ϕ and η and
solve for them using finite element/finite difference meth-
ods. In practice, since ϕ is defined everywhere inside the
volume beneath η, one needs to discretize the volume fine
enough to achieve numerically accurate results. Further-
more, solving for such a large system is computationally
prohibitive.

Recall that our ultimate goal is to compute the optical
flow on wavefront η, therefore we present a new technique
to simplify the 3D volumetric velocity potential to the 2D
surface velocity potential. Specifically, we introduce a new
variable ξ(x, t) = ϕ(x, η(x, t), t) to represent the velocity
potential on η. We then use the Dirichlet-Neumann operator
(DNO) [24] to simplify the normal flow as:

(−∇xη, 1)> · ∇ϕ
∣∣
z=η

= G(η)ξ . (6)

The DNO takes Dirichlet data ξ on η, solves Laplace’s equa-
tion (NS.3) for ϕ together with the no-flow bottom condi-
tion (NS.4), and returns the corresponding Neumann data,
i.e., the fluid normal velocity on η.

Under the DNO, the general brightness constraint
(NS.1) reduces to:

∂tη = G(η)ξ , (7)

and the fluid dynamics constraint (NS.2) becomes:

∂tξ = −gη − 1
2(1 + |∇xη|2)

[
|∇xξ|2 − (G(η)ξ)2

−2(G(η)ξ)∇xξ · ∇xη + |∇xξ|2|∇xη|2

−(∇xξ · ∇xη)2
]

. (8)

The other two constraints Eqs. (NS.3)–(NS.4) are already
incorporated through the DNO.

We emphasize that Eqs. (7)–(8) describe fully nonlinear
and fully dispersive fluid dynamics. In particular, the waves
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1. Compute the Fourier transform F (q).

2. Multiply q1 = kx (k2
x + k2

y)−1/2 F (q) in
Fourier space, where kx and ky are wave
numbers in the x and y directions respectively.

3. Compute the inverse Fourier transform F−1(q1).

4. Multiply q2 = η F−1(q1) in physical space.

5. Compute the Fourier transform F (q2).

6. Multiply q3 = kx (k2
x + k2

y)−1/2 F (q2) in
Fourier space.

7. Compute the inverse Fourier transform F−1(q3).

Figure 2. Algorithm 1: Computing |D|−1Dx η Dx|D|−1q .

are not assumed to be small nor weakly dispersive. This
formulation of the flow model also has many practical ad-
vantages. First, the reduction of dimensionality implies that
the wavefront η is determined explicitly from the equations
of the problem, and thus needs not be reconstructed a pos-
teriori. Moreover, the Laplace problem Eqs. (NS.2)–(NS.4)
need not be solved directly, which saves us from solving a
linear system. Second, given the initial wavefront η0 and
velocity potential ξ0, we can directly propagate η and ξ us-
ing Eqs. (7)–(8); whereas given two wavefronts η0 and η1,
as in the typical case of optical flow estimation, we can com-
pute the velocity potential ξ0 from Eq. (7) (Section 3.2).
Finally, different from existing fluid models [1, 6, 21], our
flow model possesses a Hamiltonian structure [25]:

∂tη = δξH , ∂tξ = −δηH ,

with the Hamiltonian

H =
1
2

∫∫ [
ξG(η)ξ + gη2

]
dx (9)

where the notation δj is shorthand for the variational deriva-
tive with respect to the subscript j. The Hamiltonian formu-
lation naturally associates the energy H which is an impor-
tant conserved quantity in the dynamics of the system.

3.1. Approximate the DNO

Next, we show how to approximate the DNO for prac-
tical use. To this aim, we adopt an operator expansion ap-
proach based on the fact that, under the regularity condition
on η, the DNO is an analytic function of η. It follows that
the DNO can be written in terms of a convergent Taylor se-
ries

G(η) =
∞∑

j=0

Gj(η) , (10)

where the Taylor polynomials Gj are homogeneous of de-
gree j in η and can be obtained by a recursion formula

[7, 24]. For j = 2r > 0,

G2r(η) =
1

(2r)!
G0(|Dx|2)r−1Dx · η2rDx

−
r−1
X

s=0

1

(2(r − s))!
(|Dx|2)r−sη2(r−s)G2s(η)

−
r−1
X

s=0

1

(2(r − s) − 1)!
G0(|Dx|2)r−s−1η2(r−s)−1G2s+1(η) ,

(11)

and, for j = 2r − 1 > 0,

G2r−1(η) =
1

(2r − 1)!
(|Dx|2)r−1Dx · η2r−1Dx

−
r−1
X

s=0

1

(2(r − s) − 1)!
G0(|Dx|2)r−s−1η2(r−s)−1G2s(η)

−
r−2
X

s=0

1

(2(r − s − 1))!
(|Dx|2)r−s−1η2(r−s−1)G2s+1(η) , (12)

where Dx = −i∇x and G0 = G(0) = |Dx| tanh(h|Dx|)
represent Fourier multiplier operators.

The Taylor expansion allows us to evaluate the DNO in
its series form Eq. (10) using the recursion formulas Eqs.
(11)–(12). These formulas can be easily implemented and
efficiently computed by the fast Fourier transform.

3.2. Potential Flow Estimation and Wavefront Prop­
agation

To estimate the velocity potential between two wave-
fronts (images) ηi and ηi+1, we can first compute ∂tηi =
(ηi+1 − ηi)/∆t (where ∆t is the time step between two
consecutive frames) and then invert the DNO G in Eq. (7)
to compute ξi as:

ξi = G(ηi)−1∂tηi . (13)

To compute the inverse DNO G(η), we again use the
Taylor expansion of the operator. In our experiments, we
find it is often sufficient to just use the first two terms in
the expansion since the analyticity of G implies fast con-
vergence of its Taylor series, thus

G(η)−1 = G−1
0 − G−1

0 Dx · ηDxG−1
0 + η

= |Dx|−1−|Dx|−1Dx η Dx|Dx|−1−|Dx|−1Dy η Dy |Dx|−1+η
(14)

Moreover, since the function tanh(x) rapidly reaches ±1 as
x → ±∞, we have

G0 = |Dx| . (15)

To make our computation more efficient, we map
G(η)−1 in Fourier domain. This transforms complex par-
tial derivative operators to functions of the wave number kx

and ky in the x and y directions in Fourier space: Dx maps
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t = 1 t = 3 t = 5 t = 7

BA Model Our Method

Figure 3. Motion Flow Estimation on Synthetic Data. Top row
: Four frames (t = 1, 3, 5, 7) of an expanding Gaussian wave.
Bottom row : The recovered motion flow between frame t = 3
and t = 4 using BA model [4] and our NS potential flow.

t = 51 t = 53 t = 55 t = 57

BA Model Our Method

Figure 4. Motion Flow Estimation on Gaussian Wave. Top row:
Four frames (t = 51, 53, 55, 57) of the same Gaussian wave as
Fig. 3. Bottom row : The recovered motion flow between frame
t = 53 and t = 54 using BA model [4] and our NS potential flow.

to kx, Dy maps to ky , and |Dx| maps to
√

k2
x + k2

y . The
middle two terms in Eq. (14) are then computed using the
Fourier domain method as shown in Algorithm 1. We can
further propagate the wavefront ηi+1 to the next frame ηi+2

using the estimated velocity potential ξi. We first compute
the next velocity potential ξi+1 by Eq. (8) and then apply
Eq. (7) to obtain ηi+2.

4. Results

We have validated our NS potential flow framework on
both synthetic and real images. To demonstrate the robust-

t = 100 t = 110 t = 120 t = 130

BA Model Our Method

Figure 5. Motion Flow Estimation on a Gas Flow. Top row : Four
frames of a gas flow simulated using the NVidia GPGPU Steady
Flow SDK. Bottom row : The estimated optical flow by BA model
[4] and our NS potential flow.

ness of our method, we conduct all experiments using two
consecutive images. We also include the preceding and the
following frames to validate our estimated flow.

4.1. Gaussian Waves

Since it is difficult to quantify the errors of the estimated
flow in real images, we first synthesize a test sequence with
ground truth flow data.

We start with a synthetic Gaussian wave image with the
initial wavefront η0(x) = 0.01 e−(x−π)2−(y−π)2 and veloc-
ity ξ0(x) = 0. The wave is propagated under gravity. We
evolve the wave using the standard Navier-Stokes equation
[12]. This creates a wavy fluid-type image sequence.

Bottom right of Fig. 3 shows our estimated motion flow
between frame t = 3 and t = 4. Our NS potential flow
faithfully captures the expanding flow motion. In contrast,
the classical optical flow method [4] (BA model) estimates
a contracting flow. This is because the constant brightness
constraint forces the outward features to match the collaps-
ing center.

Fig. 4 shows our NS potential flow result between frame
t = 53 and t = 54, where the central fluid was expanding
and the boundary fluid was contracting, forming a new ring-
shaped band. Our NS-flow accurately estimates the flow
field on both sides of the band whereas the BA model esti-
mates uniformly expanding flow. We have further used the
estimated flow between frame t = 53 and t = 54 to prop-
agate the wavefront. The top row of Fig. 6 shows that our
propagated wavefront at time instance t = 58 is consistent
with the ground truth. Our NS potential flow algorithm is
also highly efficient. On a Dell workstation with Intel(R)
Pentium(R) D CPU 3.00GHz, it takes 0.37 second to com-
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Ground Truth

t = 53
Propagated Frame

t = 58

Ground Truth

t = 58

t = 120 t = 125 t = 125

Figure 6. Wavefront Propagation Using the NS Potential Flow.
Top row: Our synthesized frame t = 58 using the estimated flow
between frame t = 53 and t = 54 on a Gaussian wave. Bottom
row: Our synthesized new frame t = 125 using the flow between
t = 120 and t = 121 on a gas flow.

pute the flow at a 256x256 resolution and 14.92 seconds to
propagate the wavefront to the following frame.

4.2. Gas, Clouds, and Typhoon Images

Gas Flow. To test the robustness of our algorithm, we
synthesize an irregularly shaped gas flow at a 512x512 res-
olution as shown in Fig. 5. We use the NVidia SDK 9.5 [18]
for real-time Stable Fluids [22]. Synthetic blue dyes were
added to better illustrate the flow motion. We first invert the
intensity of the images and use the blue component as the
wavefront height in our algorithm. The bottom row of Fig.
4 shows the estimated flows. Our NS potential flow method
is able to capture both the global translational motion to-
wards the bottom right and the local expanding motion of
the dyes. The BA method only captures the global motion
as shown in Fig. 4. Using the estimated motion between
frame t = 120 and t = 121, we further propagate the image
to frame t = 125. The bottom row of Fig. 6 compares our
propagation result and the ground truth.

Clouds. We obtain the clouds image sequences (Fig. 7)
from [14]. We first extract the alpha matte of the foreground
clouds using blue screen matting. We then map the alpha
matte to a height field. Notice that, although our NS con-
straints (Eqs. (NS.2)–(NS.4)) were initially derived for fluid
surface height, they can also be used to model the density,
and hence, the alpha matte.

The top row of Fig. 7 shows the alpha mattes of five con-
secutive frames from the clouds sequence. We apply our
NS potential flow method to estimate the motion flow be-
tween frame t = 13 and t = 14. We include the preceding
and following frames to validate our result. The BA model
only detects translational flow inside the red area whereas
our model estimates strong contracting motion. The image

t = 23

BA Model

t = 24

Our Method

Figure 8. NS Potential Flow Estimation on a Typhoon Image Se-
quence. Top row: Two consecutive frames of the Typhoon satellite
image. Bottom row: The estimated optical flow by the BA model
[4] and our NS potential flow.

sequence confirms that the clouds get condensed over time
inside the red region. Similarly, inside the yellow region,
the BA model estimates a strong rightward flow whereas
our estimated result reveals an expanding flow, as verified
by the image sequence.

Infrared Satellite Images. Fig. 8 shows the optical
flow results on Typhoon Haitang (0505) when it passed by
the Taiwan Strait. The image sequence was captured by
a Multi-functional Transport Satellite-1R (MTSAT-1R) of
Japan Meteorological Agency (JMA) at one frame per hour.
Similar to the clouds example, we first apply blue screen
matting to extract the alpha mattes for each frame and esti-
mate the motion flows between the alpha mattes. For clarity,
we highlight the estimated optical flows inside two regions.
The BA model detects an underestimated flow in the red
and yellow regions whereas our NS potential flow method
reveals an expanding flow in both regions.

4.3. Error Analysis

Notice that the motion flows of real images are usually
complex. Therefore, we further present a scheme to mea-
sure the quality of the flow. Recall that our NS potential
flow formulation allows us to both estimate the flow and to
propagate the wavefront. Therefore, once we estimate the
flow u1 (or ξ1) between two frames η1 and η2, we can use
it to synthesize η′

2 and compare it with the ground-truth η2.
For the BA model, we can also warp η1 to η′′

2 using its es-
timated optical flow. Fig. 9 compares the ground truth η2,
our propagated η′

2, the BA model warped η′′
2 for the clouds

and Typhoon examples. Our propagation results are more
consistent with the ground truth.
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t = 11 t = 12 t = 13 t = 14 t = 15

BA Model Our Method

Figure 7. Motion Flow Estimation on a Clouds Sequence. The top row shows five consecutive frames. Bottom left: The motion flow
estimated between frame t = 13 and t = 14 by the BA model [4]. Bottom right: Our NS potential flow results.

We can further quantitatively measure the errors between
the ground truth and the synthesized frames by computing
the difference image. Since fluid-type images contain large
areas of uniform colors, a meaningful scheme should ex-
clude such areas. Therefore, we only use the top 10% pixels
with the largest values in the difference image and compute
their averaged error. Table 1 compares the errors using the
BA model and our method for the examples shown in this
paper. Our method surpasses the BA model in all cases.

Notice that our matching errors are significantly larger
on real images than on synthetic ones for several reasons.
First, we only approximate G(η) using the first two terms in
its Taylor expansion and apply the fast Fourier transform to
compute G(η)−1. Thus, our approximation method works
better on periodic and smooth synthetic data than on real
images of inhomogeneous flows. Second, the real image
sequences that we obtain are of poor quality and contain se-
vere compression artifacts. Therefore, the estimated spatial
derivatives are noisy. Finally, for real images, the transi-
tions between the frames are not smooth, as shown in the
Typhoon example (Fig. 8). This violates the basic optical
flow assumption that brightness variations ∂tη can be ap-
proximated using finite differences.

5. Conclusion and Future work

We have presented a new Navier-Stokes (NS) potential
flow method that explicitly models brightness variations in

Ground Truth
Our MethodBA Model

Warped 

Frame

Difference 

Image
Propagated 

Frame

Difference 

Image
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200

0

20
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60

80

100

t = 14

t = 24

Figure 9. Error Analysis on the Warped/Propagated Results. Left:
The ground truth second frame used in computing the optical flow.
Middle: The warped second frame using the optical flow estimated
by the BA model. Right: The propagated second frame using our
estimated optical flow.

fluid-type motions. Our NS potential flow aims to recover
the 3D velocity potential whose gradient describes the ac-
tual motion flow. We have derived a general brightness con-
straint that models brightness variations in terms of fluid
dynamics of the velocity potential. To solve for the veloc-
ity potential, we have presented a Dirichlet-Neumann Op-
erator (DNO) that simplifies the 3D volumetric flow to 2D
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Gaussian1 Gaussian2 Gas Clouds Satellites
BA model 2.30282 6.31217 4.29739 38.14344 74.23475
our method 0.93173 0.85458 2.50324 35.90740 61.01021

Table 1. Quantitative Error on the Warped/Propagated Results. The maximum wavefront height was normalized to 255 in all examples.

surface flow. We have shown that the DNO can be effec-
tively approximated via Taylor expansions and computed in
the Fourier space. The DNO can be directly applied to es-
timate the velocity potential from images and to propagate
the wavefront.

Our NS-flow formulation has several advantages com-
pared with existing fluid-based optical flow techniques.
First, our method does not use complex optimization
schemes for flow estimation whereas many existing meth-
ods need either optimize over a large number of parameters
[21] or solve over-constrained systems [1, 6]. Second, our
fluid dynamics model is numerically accurate, efficient, and
stable. Finally, since our general brightness constraint sep-
arately treats potential flow dynamics and brightness varia-
tions, one can replace the fluid dynamics model with other
physics models and reuse the same solution process.

For future work, we plan to integrate our NS potential
flow model with fluid surface acquisition. Most existing
fluid acquisition methods have been focused on reconstruct-
ing individual frames and very little has been done to en-
force temporal coherence of reconstructed surface. Since
our NS potential flow provides effective means to both es-
timate the flow and to propagate the wavefront, it may be
directly applied to measure and possibly improve the qual-
ity of the acquired surface, e.g., by checking if it obeys fluid
dynamics. Another class of important future work is to ex-
tend our potential flow framework to accommodate vorticity
and viscosity, as well as to model turbulence-type flows.
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