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ABSTRACT ified nonlinear Schrodinger equation (with exact linear dispersion) for
gravity waves on arbitrary depth, starting from Krasitskii's version of
We present a consistent and systematic Hamiltonian approach tozakharov's equation.
nonlinear modulation of water waves on arbitrary depth, both in two In the present paper, we present a new systematic approach to the
and three dimensions. It is based on a reduction of the problem to aderivation of modulation equations for water waves, based on averaged
lower-dimensional system involving surface variables alone. Using Hamiltonians. Starting from the Hamiltonian formulation of the Euler
techniques from homogenization theory and Hamiltonian perturbation €quations for water waves, this method involves an expansion of the
theory for partial differential equations, together with an expansion of Dirichlet-Neumann operator together with techniques from homogeniza-
the Dirichlet-Neumann operator, we derive new Hamiltonian envelope tion theor_y and_ Hamiltonian perturbation theory. Itis closest to the m_eth-
. . o ods of Stiassnie (1984) and Zakharov et al. (1985), however what differ-
models for surface gravity waves on finite and infinite depth. In . L ; . ) .

. . . . , A entiates it is that we are careful to retain a certain point of view, namely
particular, we derive a Hamlltoplan ve.rS|oln of D.ysthe.s. equation .|n the that scaling transformations and changes of variables are considered to
deep-water case. We analyze its Benjamin—Feir stability properties andpe canonical transformations, and the expansion in small parameter is
test the results against numerical simulations. For this purpose, we in-performed directly in the expression of the Hamiltonian. As a result, the
troduce an efficient and accurate symplectic scheme for time integration, corresponding equations of motion automatically inherit the Hamiltonian
combined with a pseudospectral method for space discretization. character.

In the following, we describe our method in the general multi-
KEY WORDS: Nonlinear surface waves; modulation theory; Hamil- dimensional setting, for water waves both on finite and infinite depth. As
tonian systems; Dysthe equation; Benjamin—Feir instability; symplectic an application, we derive a Hamiltonian version of Dysthe’s equation.
integrators. Stability analysis for Stokes waves and numerical simulations are also
presented to illustrate the performance of this new model.
INTRODUCTION

. . . ) WATER WAVES ON FINITE DEPTH
Modulation theory is a well-established method to study the long-time

evolution and stability of oscillatory solutions for nonlinear dispersive Basic Governing Equations

evolution equations describing wave phenomena. The usual modula-

tional Ansatz is to anticipate a weakly nonlinear monochromatic form We consider the motion of a free surfagex;t) on top of a fluid domain
for solutions, and to derive equations describing the evolution of their defined byS(n) = {(x,y) e R™1xR | —h<y < n(x,t)} wherex andy
envelope. In the case of surface gravity water waves, one typically finds denote the horizontal and vertical coordinates respectivelynan@ or

the nonlinear Schrodinger (NLS) equation as a canonical model for the 3 is the space dimension. The quiescent water level is fixgd-2@ and
first nontrivial contribution, and the Dysthe equation at the next order the impermeable bottom is located at constant dgpth-h. We assume
(for deep water). It has been recognized that the addition of higher- the fluid is incompressible and inviscid, and the flow is irrotational, so
order terms provides improvements on the stability properties of finite- that the fluid velocity can be expresseduas ¢, where¢ represents

amplitude waves, as compared to the NLS description. the velocity potential. Under the above assumptions, the full boundary
One of the standard approaches to modulation theory is a direct per-value problem for potential flow is given by
turbation method involving multiple scales in space and time. Whitham Ap =0 in S(n) (1)

(1974) developed an alternate method of averaged Lagrangians with an

associated transformation theory. Another approach was proposed by 0N + 0x¢ - Ox — &y$ =0 aty=n(xt), (1b)
Zakharov and coworkers (1985) based on a Fourier mode coupling for- o + %\D¢|Z+gn =0 aty=n(xt), (1c)
malism and expansion in terms of a small parameter. Very recently, dp=0 aty=—h, (1d)

Gramstad and Trulsen (2011) derived a Hamiltonian form of the mod- ) ) )
whereg is the acceleration due to gravity, anld= (dx,dy)T.
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Hamiltonian Equations

It was noted by Zakharov (1968) that (1) can be reformulated as a Hamil-
tonian system in terms of the canonically conjugate variaplesnd

& =@ (x,n(xt),t), thus allowing for a reduction in dimension of the wa-
ter wave problem, from one posed inside the entire fluid domain to one

posed at the free surface alone. Subsequently, Craig and Sulem (1993)

showed that this surface reformulation can be made more explicit by in-
troducing the Dirichlet-Neumann operator (DNO)

G(M& =(-dn.1)" 08|, (2)

which takes Dirichlet datd at the free surface, solves the Laplace equa-
tion (1a) forg with boundary condition (1d), and returns the correspond-
ing Neumann data (i.e. the normal fluid velocity at the free surface).
While this is a linear operator i, it is nonlinear with explicit nonlocal
dependence on. In terms of§ andG(n)¢&, the equations of motion take

T o8- ().

where the 2« 2 matrixJ represents the symplectic structure of the sys-
tem. More specifically,

0 1
-1 0

OgH

OgH

an = Gn)§, (32)
O = 01— g g |- (@ME?
~2(0x& - 0xm)G(N)é +(3:E[*|3un
—(0x&-oxn)?] (3b)
whereH is the Hamiltonian of the system, given by
H = %//l\m¢|2dydx+%/gnzdx,
~ 3 [eemeEdx+} [an’ox. @

Dirichlet—-Neumann Operator

It has been shown that, if is sufficiently regular, theis is an analytic
function of n (Craig et al. 1997), from which it follows tha can be
written in terms of a convergent Taylor series

G = Gjn), (5)
2,

and each tern®; in (5) can be determined recursively (Craig and Sulem
1993). Forj odd,

j—-1

i1n N in'
Gj = ‘D)('J leli_ ‘Dx' fGJ,|
J! I:;:ven I
j -1 n'
— Dy| ""Go-—Gj_ 6
I:;)dd‘ x| TR (6a)
and, forj > 0 even,
G = ‘Dx|jizGODxij'Dx— : ‘Dx‘lilG' I
= - =
J! I:;:ven I!
— |
TG, (6)

- 2 Doy
I=1,0dd ’
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whereGg = |Dx|tanh(h|Dy|) andDx = —idx. In the limit of an infinitely
deep fluid b — +), Gp reduces tdDy|.
Retaining terms of up to second ordenijni.e.

Dx -Dx —GonGo ,
~3(IDx/21%Go + Gon?|Dx[2 ~ 2Gon Gor Go)

is sufficient for the purposes of the present study as this includes all the
contributions relevant to four-wave interactions.

This formulation of the water wave problem is convenient for the
modulational approach advocated here as well as in a number of other
settings. This includes long-wave perturbation calculations for waves
in single- and double-layer fluids (Craig et al. 2005a,b; 2011), as well
as direct numerical simulations of surface water waves both on uniform
and variable depth (Craig and Sulem 1993, Guyenne and Nicholls 2007,
Xu and Guyenne 2009).

Canonical Transformations and Modulational Ansatz

Our Hamiltonian approach consists in making changes of variables
which contain a small parameter, directly in the Hamiltonian (4), and
then expanding and truncating it at a desired order. As a result, the cor-
responding equations of motion are automatically Hamiltonian, modulo
changes in their symplectic structure as well. Details are given below.
The first step makes the canonical transformation to hormal modes

(n,&) = (z2,17,&) defined by

I = =
n = ﬁa (Dx)(z+2+n, n="hon, (7
1 4 z Ni
E = ﬁa(DX)(Z_Z)J’_E ) E - POE ) (8)
where

a(Dy) = \/g ,

and(n, &) are the zeroth Fourier modes accounting for the mean flow.
The symbol. stands for complex conjugation, afy is the projection
that associates 07, &) their zeroth-frequency modes. The presence of
the mean field¢r, &) is due to the fact that~1(0) = 0 so that the simple
change of variable$n,&) — (z2) is not invertible. Conversely, these
new variables can be expressedag, i7,&)" = A1(n,&)T in terms of
(n,&) and the 4x 2 matrix

a(Dx)(I—Py)  ia *(Dx)(I—-Po)
A L [aD)I—P) —ia~1(Dy)(I1—Py)
T2 V2R 0
0 V2P,
The corresponding equations of motion read
z SH
z 5H
iz} ﬁ = X 5,7H ,
¢ o:H
0  —i(l-R) 0 0\ /&H
_ |i@=R) 0 0 of][eoH
- 0 0 0 R||&H|"
0 0 - 0 5gH

wherel denotes the identity operator adg= AlJAI .



The next step introduces the modulational Ansatz
z=cu(X, )X z—en(X,t)e kox (9)
A=emX,t), &=ef&a(X), (10)

meaning that we look for solutions in the form of monochromatic waves
of carrier wavenumbekg and with slowly varying complex envelope
depending on the long spatial sca{e= ex. The wave amplitudes are
assumed to be small as measured by the parameteky|ag ~ |kolh <

1, whereqg is a characteristic wave amplitude. The exponents 1 and

B > 1 are to be determined by the subsequent asymptotic procedure. In
matrix form, these new variables are given by

u z
a _ A 2
m 2\ n
& 3
g~ Llgkox 0 0 0 z
7 0 g-lghox 0 0 z
B 0 0 e o |(n]"
0 0 0 k) \¢
and the equations of motion are transformed into
u AuH
v &gH
~ | =3 11
2 i1 2 | 5 H (11)
& o H
with
b = " aanAl,
0 —ign3 0 0
~liem® 0 0 0
- 0 0 0 gn-1-a-p
0 0  —ghlap 0

Further details on these canonical transformations can be found in Craig
et al. (2005a, 2010).

Expansion of the Hamiltonian

Inserting the successive changes of variables (7)—(8) and (9)—(10) in up

to O(n?) contributions of the Hamiltonian, we obtain
H=H® +HO® 1 H@ ...
where

H® — 1 [ (gGoz +an?)ax.

32 /’Uw(k0+gox)udx
+%gzm,/ &1|Dx [2&dX + %gsz"*z/ A2dX

o (12)

)

3 [&cumigax,
e [ (an0)|u?fa +ilu?ko-Dx L) dX
+872a)(ko) [ (uDx;u-+ uDxU) Ay dX

+%i8ﬁ+2/ <UDin+UijU)DxigldX

o (13)

)
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with

2
atk) = 0 (ko GBlke))
ey~ R0 o9
50\ da
~Golko)d Golko) — Gi(ko) 15 )
and
HO — 4 [eGamigax,
e3HW = szag(ko)/\u\“dx
+s3aj(ko)/\u\2<quiu+um) dx
e, (14)
with
astko) = (Golke*Go(2Ko) — kol?Golko)) .
allko) = 2 Golko) kol (Go(2k0)Golke) — kol ko

+g (1—tanhz(h\ko|)) (260(2ko)Go(ko) - \ko\z) Koj
+2Go(ko)? (1~ tan? (2hlko]) ko

Note thatw(Dy) = (gGg)Y/2 = \/g|Dy|tanh(h|Dy|) represents the full
linear dispersion relation in the finite-depth case. Balancing mean-flow
terms inH(® suggested thar = B+ 1. In the above equations and
hereafter, the Einstein summation convention is used for repeated indices
(j,I,m={1,...,n—1}).

The Hamiltonian is then further renormalized by subtracting multi-
ples of the conserved wave action

£"-3m :/\u\zdx7
and of the conserved impulse (or momentum)

/né’xfd&

"3 /[kO\U\ZJr%f(UDxUJruD—X“) “szﬁﬁlegl] dx,

and by eliminating non-resonant terms, in light of the scale separation
lemma of Craig et al. (2005b) which implies that fast oscillations essen-
tially homogenize to zero and do not contribute to the effective Hamilto-
nian. As a result, the renormalized form reads

A= H-dko) 1 - (w(ko) ko (ko) )M

_ 1 -~
n-3 e [ [ 508K (ko) UDZ U+ ts(ko)lul*

£

1g2h-2 (231|Dx|231 + gﬁf +1i0k; w(ko)111Dx; gl)
+ay(ko)eP 1Ay |ul2 +ieP~L|u|%ko - Dx &y
+f—£30|fjk,kmw(ko)UD>3<,->quU

te (ag(ko)sﬁ’lﬁl + iésﬁlexj &+ aj(k0)|u|2)

x (TDy,u+ WDy u) +O(e?)] dX, (15)



after expandingu(kg + €Dx) to third order ine. The conservation of together with

M (and its subtraction froni) reflects the fact that our approximation

of the water wave problem is phase-invariant. The subtractionisf ai(ko) =0, az(ko) =
equivalent to saying that one transforms the system into a reference
coordinate frame moving with the group velociyw(ko).

3 - 3
Kol aliko) = Sholko;

so the resulting renormalized Hamiltonian is

) 1
€130 52/ [éa,fmw(ko)uDimquas(ko)\U\“

Hamiltonian Fourth-Order System

1 o 37 7, .28-2(9=2 S
Balancing mean-flow terms of orde@(¢%~2) and O(ef~1) in (15) +58778|Dx|é + £ ( N1 +idk; w(ko)N1Dx, 51)

suggests we choogeé= 1 (and thusa = 2). In terms of the slow time L B—1p 12 ~ & 3
T = £, the corresponding equations of motion are +HeP ™ u ko - Dx 1 + _ak'kukmw(kO)UDXNXmu

oy = e S, +(ad(ko)eP s + 21D &+ a)ho)lul?)
= 1o we2ut2a |u|2u+(a n +ko-ax2)u ubD D O(£?) | dX 19
= 50w 3 1M1 1 x(u XU+ U xju)—i— (¢ )] . (19)
+ie [%ﬂfmkmwaimxmll* azj <ﬁ10xiu+dxj (uﬁl)) The presence of the mean-flgw te.rm of (.)rdmszﬁfs) in (19) suggests
1 B B ) that8 = 2 (and thusx = 3). With this scaling, (19) reduces to
5 (0, E103 u+ 0 (udx, &) ) — daduPox,u] .
2 e"3H = 82/ [}dkz_kl (ko) UDg x U+ - |k0‘ uf*
+0(€?) (16) 2% |
gormy = €55 H P up? L IDxIE
']l El ) +S<é kjk‘kmw(ko)u Xix‘xmu+ 5 1‘ X‘ 1
_ 27 k. 2_ 5 ) ~ 3 _
POX[81~ ko il dg oo s HiluPko - Dx 1+ 5 Kolkoy i (WD u-+ DX )
! - 2
— &0, (ua - Tdxu) +O(e?) 7 Lo ax (20)
T n-5s g
€0réy = £ 5771H ’ and the corresponding equations of motion read
= —(gAL+au|ul? +d w, & , 1
( _ e ) idu = Ed,fjhw(ko)Dxx,u—i- M\u\z
—igal (uaxju—uaxj u) +O(2). (18) 1 -
+s(66|fjk|kmw(ko)ijxlxmu+iko-quél
For notational convenience, we have dropped the dependence of the co-
efficientsa; and w on k. At lowest order, this system reduces to the +§|k0\|u|2k0- Dxu) +o(52) , (21)
NLS equation in the case= 2, and to a Davey—Stewartson system in 2 _
the casen = 3. €20im1 = |Dx|& —iko-Dx|uf?+0O(e), (22)
2 _ ~
When theO(&“) terms are neglected, system (17)—(18) may be 20, & = o). (23)

viewed as a Hamiltonian version of the fourth-order system derived by B
Brinch-Nielsen and Jonsson (1986) for gravity waves on finite depth, and Since the mean fiel@; only appears at ordéd(¢) in (21), we can solve

the corresponding Hamiltonian takes the form (22) for &; to leading order, yielding
Ho= [ [50Rotko)dudu+ as(ho)lul® & =i[Dx|ko- Dx|uP+Ole) (24)
+251\Dx\2;51+ gﬁf-H?kj w(ko)ﬁlaxj 51-1- crl(ko)ﬁ1|u|2 ?hnedcrl)(l)usgeék}ljr;xpressmn in (21). The envelope equation (21) then takes
U203 5,1+ £k, (k)T 3,005 x, 1) 20u = 02 w(ko)dK x u-t[kol?ulu
+2£<azj(ko)ﬁl+ %axj El+aj(ko)\u\2)m(uaxi u)] dx, +e(%af;hkmw(ko)0§’jx.xmu—3i\ko\IUIZko-0xu
where[] stands for the imaginary part. -+2ukoj ko [Dx| 0% x \U\2> : (25)

We note the presence of the nonlocal operaiiy| 1 = (—A)~2 in
(25), which accounts for the mean-flow effects. It can be checked that

Hamiltonian Dysthe Equation (25) has the symplectic structure

In the infinite-depth case, it is possible to derive a simpler fourth-order Oru=—idH,
system than in the finite-depth case, yielding a closed-form Hamiltonian with the closed-form Hamiltonian
equation for the wave envelope at the order of approximation being con-

WATER WAVES ON INFINITE DEPTH

sidered. H = 2/ 02, (ko) O, Udx 0+~ 'ko‘ uf
The fundamental technical difference with the previous situation is
thatGg = |Dyx|. As a consequence, we have +s<§akihhﬂw(ko)D(0ind>quu) —koj kol (0 \U\2)|Dx|71¢3x. |u[?
F A3 N E 3
[&@Gofadx —¢ [ &IDx|@adX. £ Kolkoj 200 ) ) dX (26)
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which is obtained by substituting with (24) in (20). Eq. (25) may be  (28) as represented by the term proportionalX8 + u2)~/2 is clearly
viewed as a Hamiltonian version of Dysthe’s equation (1979) for gravity identifiable, given the fact that this is the Fourier symbol of the nonlocal

waves on deep water. operatoiDx |1 that definest; in (24).
Fig. 1 shows the instability region enclosed by the zero-contour
Relation with Existing Dysthe Equations level of condition (28) fore = 1, kg = 1 andAg = 0.05, 01, 0.15. For

comparison, the instability region for the NLS equation in the case
Aop = 0.15 is also presented. Unlike the latter for which the instability
1 /|ko|\1/4 € region extends to infinity, that of (25) remains bounded near the origin,
7<*) (1+ gi ko Dx)u hich from leaki high b
2\ g 4k which prevents energy from leaking to higher wavenumbers. The
o i . ) largerAg (or equivalently the largeg), the larger the instability region.
\k/)vh|((;f)1 |sar?J|rst-orQer gpprzgmaﬂop c()jf the free(—;ﬂface envelope as given Overall, we observe strong similarities with results from previous work
Y0, inserting itin (25), we find up to ordete) (e.g. Trulsen and Dysthe 1996, Trulsen et al. 2000). A stability analysis
2oy = ,ak2jkl w(k0)5>%ix. llf+291/2|k0\5/2\llf\zlll for Stokes waves on finite depth can be found in Gramstad and Trulsen
(2011) for their Hamiltonian model.

Introducing the new variable

Y=

i .
+5<§‘7|Z°}k,kmw(k0)‘7>%j>qul/—’ — 6igM/2[ko| /| W[?ko - Ox

—ig"/2 ko2 YKo - Ox , '
+4gM 2 ko| Y 2okt |Dx| 10F x 1WI2) (27)
This equation contains all the usual Dysthe terms including the ad- 06 06 /
ditional high-order nonlinear terni?ko - I as can be seen e.g. in - 04 ) - 04
Dysthe (1979), Stiassnie (1984) and Lo and Mei (1985). The Hamilto-
nian structure is however lost in the transformation to gheariable. o2 o2
Moreover, besides the general form of (27), we should not expect to o v . o v .
obtain precisely the same numerical coefficients as in previous work, a A (b) A
since the various approaches do not use precisely the same physical
variables (in particular the choices of the velocity potential and of the 1 1
wave envelope). 08 08
Benjamin—Feir Stability Analysis L% L%
It is of interest to investigate the Benjamin—Feir stability of a uniform ° °
wavetrain (i.e. a Stokes wave) in the framework of the Hamiltonian 02 02
model (25). For this purpose, we consider the general three-dimensional o o
casen = 3 such thak = (x1,x) | € R?, and we assume thkgj is aligned 0 05 1 0 05 1
. . . A A
in the x¢-direction. (c) (d)
We first observe that (25) admits exact uniform solutions
Uo(T) :Aoe*ii"g’%r , Figure 1: Instability regions for the Hamiltonian Dysthe equa-

tion (25) for (a)Ag = 0.05, (b)Ag = 0.1 and (c)Ap = 0.15. For

whereA is a real constant. Inserting in (25) a perturbed solution of the comparison, the instability region for the NLS equation is shown

form in panel (d) forAg = 0.15. The other parameters age= 1 and
U(X,T) = o(1) [1+B(X,T)] , ko = 1.
where
B(X,T) = BleQr+i()\X1+uX2) + Bzeﬁrfiuxlwxz) NUMERICAL SIMULATIONS
is a plane-wave perturbation with sideband wavenumiperg) and con- In this section, we concentrate on the infinite-depth case and present
stant complex amplitudg®;, B;), and retaining linear terms {{By, B) two-dimensional 1f = 2) numerical simulations to illustrate the per-
only, we find that the conditiofl (Q) # O for instability yields formance of the Hamiltonian Dysthe equation (25) with regards to its

) ) ) X conservative and Benjamin—Feir stability properties. For this purpose,
A2 /gko(A— _“2> (%_25%) _ % (L _HZ) >0, (28) all variables are non-dimensionalized according to Stokes wave theory
2 VATt 45\ 2 in deep water, i.e. lengths are multiplied kyand times multiplied by

where denotes the real part. Eq. (28) indicates that the linear disper- ©(Ko) = (gko)*? so thaig =1 andko = 1. We also take this opportunity
sive terms as well as the nonlocal mean-flow term play an important role to introduce an efficient and accurate symplectic scheme for the time
on the growth of sideband perturbations. In particular, the mean flow integration of (25), motivated by the fact that it is a Hamiltonian partial
causes a small ‘Doppler shift' relative to the carrier wavenuntger differential equation. Details are given below.

which is consistent with previous observations e.g. by Dysthe (1979).

In the present mathematical framework, the mean-flow contribution in Two-dimensional Model
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In the two-dimensional case & 2), Eq. (25) reduces to

V8520 By y £ V9 53
ou = skg/zdxu 2k8|u| u+ 16k(5)/20xu
- Sekguiaxu -+ iekguiDx 2, (29)
whose Hamiltonian is given by
a1 V9 5 2 ENVO s na2
- 2/ 21Uy 3/2|‘7 x| T8y ( oxwdgu)
+§sk0\u\2|]<uéxu> fsk(2)|u|2|Dx\|u|2]dX (30)

Note thatX = X; € R andkg > 0.

Numerical Methods

We assume periodic boundary conditions in ¥wlirection, and use a

pseudospectral method for space discretization. More specifically, the

envelopeu is represented by a truncated Fourier series \Wtmodes
(which also corresponds to the number of grid points in the phyXieal

Numerical Results

Having the test on Benjamin—Feir instability in mind, we specify as ini-
tial condition

u(X,0) = Ag|1+ap cos(ApX)] .

For the purpose of our numerical illustrations, we restrict our attention to
the case’g = 0.15,&£ = 1, ap = 0.01 andA, = 0.2. The valueAp = 0.2
corresponds to the most unstable disturbance as indicated in Fig. 2. Note
that, because of our choice of non-dimensionalization, chod%ing 1
while fixing € = 1 is similar to choosing < 1 while fixing Ag = 1.

Fig. 3 shows the time evolution of the relative errors

’ )

on wave actiorM and HamiltoniarH respectively, up ta = 2500 Mg
andHg are the initial values at = 0). We used a domain length= 20,

M — Mo
Mo

H — Ho
Ho

AM*’

AH 7’
Mo o

Ho

)

space). Applications of spatial derivatives and nonlocal operators are spatial resolutioN = 256 and time step\r = 10~3. Overall, bothM
performed in Fourier space, while nonlinear products are evaluated inandH are very well conserved, although their errors tend to gradually
physical space at a discrete set of equally spaced points. For examplegrow in time. This is likely due to the development of the Benjamin—Feir

application of the nonlocal operat{y | in physical space is equivalent
to multiplication by|A| in Fourier space. All operations are executed
efficiently using the fast Fourier transfor#, and aliasing errors are
removed by zero-padding in Fourier space.

Time integration of (29) is carried out in Fourier space, which allows
the linear terms to be solved exactly by the integrating factor technique.
The nonlinear terms are integrated in time using a symplectic fourth-

order (2-stage) Gauss—Legendre Runge—Kutta scheme (Xu and Guyenne

2009). Applied to (29), this scheme reads

g™l = 7P pATe? AT [blefclﬂmbi/ (e2ZB1gD)
+hye ATy (271G (31)
M = 0"+Arape fAy (e ZATg)
+ATag e YTy (624 RTG2)) (32)
0@ = 0"+Araye afAy (e ZATgD)
+ATage” 2Ty (627802 | (33)

for the solutiond™™! = . (u)"! at timeT,, 1 = T+ AT, whereAT is the
constant time step. The values of the coefficients are

1 1 V3 1 V3
a1=82=7, alz—ZJr?, @1=7-""%
1 1 V3 1 V3
b1:b2:§7 01:§+?7 szé—?-
The operator
g_1V932 ;€ V0,3
ST CA Th-C

denotes the Fourier multiplier associated with the linear terms in (29),
while .4 contains the nonlinear terms. At each time step, the nonlinear
system (32)—(33) foa(Y) andt(? is solved by fixed point iteration. We

have typically observed in our applications that 3 iterations are needed

to achieve convergence given a tolerance ofél6n the relative error.
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instability combined with the accumulation of numerical errors.
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Figure 2: Instability region as given by condition (28) for the

Hamiltonian Dysthe equation (29) fég = 0.15 ande = 1 (solid
line). For comparison, the instability region for the NLS equation
is also presented (dashed line).

Fig. 4 depicts the time evolution of the normalized amplitudes for
the fundamental and sideban{i0)| and|G(+Ap)|. The general pattern
is somewhat irregular, although we discern some recurring exchange of
energy between the fundamental and sidebands, with the lower sideband
being more excited than the upper one. This moderately irregular behav-
ior may be attributed to the triggering of higher-order instabilities by the
Benjamin—Feir instability, and to their subsequent mutual interaction, as
suggested by Su and Green (1984). We have also run computations with
smaller values ofg which show nearer-recurring behaviors but extend-
ing over longer periods of time.

Finally, Fig. 5 presents snapshots of the envelope magniide
together with the corresponding (rescaled) free-surface elevatibn.
Using the transformation (7), the latter quantity can be easily computed
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Figure 4: Normalized harmonics as a function of time Agr=
0.15,&£ =1, a, = 0.01 andAp, = 0.2. Fundamentgli(0)| (thick
solid line). Lower sideban{li(—Ap)| (dashed line). Upper side-
band|t(Ap)| (thin solid line).
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CONCLUSIONS

We have presented a systematic Hamiltonian approach to deriving
envelope model equations for surface gravity waves on arbitrary
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10, 500 1000 1500 2000 2500 depth, both in two and three dimensions. It is based on a surface
(b) T reformulation of the water wave problem, and involves an expansion
of the Dirichlet-Neumann operator which is performed directly in the
expression of the Hamiltonian, together with transformations of the
Figure 3: Relative errors on (a) wave actighand (b) Hamilto- symplectic structure of the system. As an application, we have derived
nianH as a function of time foA; = 0.15,& = 1, a, = 0.01 and a Hamiltonian version of Dysthe’s equation in the deep-water case. We
Ap=0.2. have then analyzed its Benjamin—Feir stability properties, and performed
numerical simulations to illustrate its performance.
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