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ABSTRACT

We present a consistent and systematic Hamiltonian approach to
nonlinear modulation of water waves on arbitrary depth, both in two
and three dimensions. It is based on a reduction of the problem to a
lower-dimensional system involving surface variables alone. Using
techniques from homogenization theory and Hamiltonian perturbation
theory for partial differential equations, together with an expansion of
the Dirichlet–Neumann operator, we derive new Hamiltonian envelope
models for surface gravity waves on finite and infinite depth. In
particular, we derive a Hamiltonian version of Dysthe’s equation in the
deep-water case. We analyze its Benjamin–Feir stability properties and
test the results against numerical simulations. For this purpose, we in-
troduce an efficient and accurate symplectic scheme for time integration,
combined with a pseudospectral method for space discretization.

KEY WORDS: Nonlinear surface waves; modulation theory; Hamil-
tonian systems; Dysthe equation; Benjamin–Feir instability; symplectic
integrators.

INTRODUCTION

Modulation theory is a well-established method to study the long-time
evolution and stability of oscillatory solutions for nonlinear dispersive
evolution equations describing wave phenomena. The usual modula-
tional Ansatz is to anticipate a weakly nonlinear monochromatic form
for solutions, and to derive equations describing the evolution of their
envelope. In the case of surface gravity water waves, one typically finds
the nonlinear Schrödinger (NLS) equation as a canonical model for the
first nontrivial contribution, and the Dysthe equation at the next order
(for deep water). It has been recognized that the addition of higher-
order terms provides improvements on the stability properties of finite-
amplitude waves, as compared to the NLS description.

One of the standard approaches to modulation theory is a direct per-
turbation method involving multiple scales in space and time. Whitham
(1974) developed an alternate method of averaged Lagrangians with an
associated transformation theory. Another approach was proposed by
Zakharov and coworkers (1985) based on a Fourier mode coupling for-
malism and expansion in terms of a small parameter. Very recently,
Gramstad and Trulsen (2011) derived a Hamiltonian form of the mod-

ified nonlinear Schrödinger equation (with exact linear dispersion) for
gravity waves on arbitrary depth, starting from Krasitskii’s version of
Zakharov’s equation.

In the present paper, we present a new systematic approach to the
derivation of modulation equations for water waves, based on averaged
Hamiltonians. Starting from the Hamiltonian formulation of the Euler
equations for water waves, this method involves an expansion of the
Dirichlet–Neumann operator together with techniques from homogeniza-
tion theory and Hamiltonian perturbation theory. It is closest to the meth-
ods of Stiassnie (1984) and Zakharov et al. (1985), however what differ-
entiates it is that we are careful to retain a certain point of view, namely
that scaling transformations and changes of variables are considered to
be canonical transformations, and the expansion in small parameter is
performed directly in the expression of the Hamiltonian. As a result, the
corresponding equations of motion automatically inherit the Hamiltonian
character.

In the following, we describe our method in the general multi-
dimensional setting, for water waves both on finite and infinite depth. As
an application, we derive a Hamiltonian version of Dysthe’s equation.
Stability analysis for Stokes waves and numerical simulations are also
presented to illustrate the performance of this new model.

WATER WAVES ON FINITE DEPTH

Basic Governing Equations

We consider the motion of a free surfaceη(x, t) on top of a fluid domain
defined byS(η) = {(x,y) ∈R

n−1×R | −h< y< η(x, t)} wherex andy
denote the horizontal and vertical coordinates respectively, andn= 2 or
3 is the space dimension. The quiescent water level is fixed aty= 0 and
the impermeable bottom is located at constant depthy=−h. We assume
the fluid is incompressible and inviscid, and the flow is irrotational, so
that the fluid velocity can be expressed asu = ∇ϕ, whereϕ represents
the velocity potential. Under the above assumptions, the full boundary
value problem for potential flow is given by

∆ϕ = 0 in S(η) , (1a)

∂tη +∂xϕ ·∂xη −∂yϕ = 0 at y= η(x, t) , (1b)

∂tϕ + 1
2 |∇ϕ|2+gη = 0 at y= η(x, t) , (1c)

∂yϕ = 0 at y=−h, (1d)

whereg is the acceleration due to gravity, and∇ = (∂x,∂y)
⊤.
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Hamiltonian Equations

It was noted by Zakharov (1968) that (1) can be reformulated as a Hamil-
tonian system in terms of the canonically conjugate variablesη and
ξ = ϕ(x,η(x, t), t), thus allowing for a reduction in dimension of the wa-
ter wave problem, from one posed inside the entire fluid domain to one
posed at the free surface alone. Subsequently, Craig and Sulem (1993)
showed that this surface reformulation can be made more explicit by in-
troducing the Dirichlet–Neumann operator (DNO)

G(η)ξ = (−∂xη,1)⊤ ·∇ϕ
∣∣
y=η , (2)

which takes Dirichlet dataξ at the free surface, solves the Laplace equa-
tion (1a) forϕ with boundary condition (1d), and returns the correspond-
ing Neumann data (i.e. the normal fluid velocity at the free surface).
While this is a linear operator inξ , it is nonlinear with explicit nonlocal
dependence onη. In terms ofξ andG(η)ξ , the equations of motion take
the canonical form

∂t

(
η
ξ

)
= J

(
δη H
δξ H

)
=

(
0 1

−1 0

)(
δη H
δξ H

)
,

where the 2×2 matrixJ represents the symplectic structure of the sys-
tem. More specifically,

∂tη = G(η)ξ , (3a)

∂tξ = −gη − 1
2(1+ |∂xη|2)

[
|∂xξ |2− (G(η)ξ )2

−2(∂xξ ·∂xη)G(η)ξ + |∂xξ |2|∂xη|2

−(∂xξ ·∂xη)2
]
, (3b)

whereH is the Hamiltonian of the system, given by

H = 1
2

∫ ∫ η

−h
|∇ϕ|2dydx+ 1

2

∫
gη2dx ,

= 1
2

∫
ξG(η)ξ dx+ 1

2

∫
gη2dx . (4)

Dirichlet–Neumann Operator

It has been shown that, ifη is sufficiently regular, thenG is an analytic
function of η (Craig et al. 1997), from which it follows thatG can be
written in terms of a convergent Taylor series

G(η) =
∞

∑
j=0

Gj (η) , (5)

and each termGj in (5) can be determined recursively (Craig and Sulem
1993). Forj odd,

Gj = |Dx| j−1Dx
η j

j !
·Dx−

j−1

∑
l=2,even

|Dx|l
η l

l !
Gj−l

−
j

∑
l=1,odd

|Dx|l−1G0
η l

l !
Gj−l , (6a)

and, for j > 0 even,

Gj = |Dx| j−2G0Dx
η j

j !
·Dx−

j

∑
l=2,even

|Dx|l
η l

l !
Gj−l

−
j−1

∑
l=1,odd

|Dx|l−1G0
η l

l !
Gj−l , (6b)

whereG0 = |Dx| tanh(h|Dx|) andDx =−i∂x. In the limit of an infinitely
deep fluid (h→+∞), G0 reduces to|Dx|.

Retaining terms of up to second order inη, i.e.

G1(η) = Dxη ·Dx−G0ηG0 ,

G2(η) = − 1
2

(
|Dx|2η2G0+G0η2|Dx|2−2G0ηG0ηG0

)
,

is sufficient for the purposes of the present study as this includes all the
contributions relevant to four-wave interactions.

This formulation of the water wave problem is convenient for the
modulational approach advocated here as well as in a number of other
settings. This includes long-wave perturbation calculations for waves
in single- and double-layer fluids (Craig et al. 2005a,b; 2011), as well
as direct numerical simulations of surface water waves both on uniform
and variable depth (Craig and Sulem 1993, Guyenne and Nicholls 2007,
Xu and Guyenne 2009).

Canonical Transformations and Modulational Ansatz

Our Hamiltonian approach consists in making changes of variables
which contain a small parameter, directly in the Hamiltonian (4), and
then expanding and truncating it at a desired order. As a result, the cor-
responding equations of motion are automatically Hamiltonian, modulo
changes in their symplectic structure as well. Details are given below.

The first step makes the canonical transformation to normal modes
(η,ξ )→ (z,z, η̃ , ξ̃ ) defined by

η =
1√
2

a−1(Dx)(z+z)+ η̃ , η̃ = P0η , (7)

ξ =
1√
2i

a(Dx)(z−z)+ ξ̃ , ξ̃ = P0ξ , (8)

where

a(Dx) = 4

√
g

G0
,

and(η̃ , ξ̃ ) are the zeroth Fourier modes accounting for the mean flow.
The symbol ¯. stands for complex conjugation, andP0 is the projection
that associates to(η,ξ ) their zeroth-frequency modes. The presence of

the mean fields(η̃ , ξ̃ ) is due to the fact thata−1(0) = 0 so that the simple
change of variables(η,ξ ) → (z,z) is not invertible. Conversely, these

new variables can be expressed as(z,z, η̃ , ξ̃ )⊤ = A1(η,ξ )⊤ in terms of
(η,ξ ) and the 4×2 matrix

A1 =
1√
2




a(Dx)(I−P0) ia−1(Dx)(I−P0)
a(Dx)(I−P0) −ia−1(Dx)(I−P0)√

2P0 0
0

√
2P0


 .

The corresponding equations of motion read

∂t




z
z
η̃
ξ̃


 = J1




δzH
δzH
δη̃ H
δξ̃ H


 ,

=




0 −i(I−P0) 0 0
i(I−P0) 0 0 0

0 0 0 P0
0 0 −P0 0







δzH
δzH
δη̃ H
δξ̃ H


 ,

whereI denotes the identity operator andJ1 = A1JA⊤
1 .
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The next step introduces the modulational Ansatz

z= εu(X, t)eik0·x , z= εu(X, t)e−ik0·x , (9)

η̃ = εα η̃1(X, t) , ξ̃ = εβ ξ̃1(X, t) , (10)

meaning that we look for solutions in the form of monochromatic waves
of carrier wavenumberk0 and with slowly varying complex envelopeu
depending on the long spatial scaleX = εx. The wave amplitudes are
assumed to be small as measured by the parameterε ∼ |k0|a0 ∼ |k0|h≪
1, wherea0 is a characteristic wave amplitude. The exponentsα ≥ 1 and
β ≥ 1 are to be determined by the subsequent asymptotic procedure. In
matrix form, these new variables are given by




u
u

η̃1

ξ̃1


 = A2




z
z
η̃
ξ̃


 ,

=




ε−1e−ik0·x 0 0 0
0 ε−1eik0·x 0 0
0 0 ε−α 0
0 0 0 ε−β







z
z
η̃
ξ̃


 ,

and the equations of motion are transformed into

∂t




u
u

η̃1

ξ̃1


= J2




δuH
δuH
δη̃1

H
δξ̃1

H


 , (11)

with

J2 = εn−1A2J1 A⊤
2 ,

=




0 −iεn−3 0 0
iεn−3 0 0 0

0 0 0 εn−1−α−β

0 0 −εn−1−α−β 0


 .

Further details on these canonical transformations can be found in Craig
et al. (2005a, 2010).

Expansion of the Hamiltonian

Inserting the successive changes of variables (7)–(8) and (9)–(10) in up
to O(η2) contributions of the Hamiltonian, we obtain

H = H(2) +H(3) +H(4) + · · · ,

where

H(2) = 1
2

∫ (
ξG0ξ +gη2

)
dx ,

εn−3H(2) =
∫

uω(k0+ εDX)udX

+ 1
2ε2β h

∫
ξ̃1|DX |2ξ̃1dX+ 1

2gε2α−2
∫

η̃2
1 dX

+ · · · , (12)

H(3) = 1
2

∫
ξG1(η)ξ dx ,

εn−3H(3) = εβ+1
∫ (

α1(k0)|u|2η̃1+ i|u|2k0 ·DX ξ̃1

)
dX

+εβ+2α j
2(k0)

∫ (
uDXj u+uDXj u

)
η̃1 dX

+ 1
2 iεβ+2

∫ (
uDXj u+uDXj u

)
DXj ξ̃1dX

+ · · · , (13)

with

α1(k0) =
a2(k0)

2

(
|k0|2−G2

0(k0)
)
,

α j
2(k0) =

a2(k0)

2

(
k0 j + |k0|2

∂kj
a

a(k0)

−G0(k0)∂kj
G0(k0)−G2

0(k0)
∂kj

a

a(k0)

)
,

and

H(4) = 1
2

∫
ξG2(η)ξ dx ,

εn−3H(4) = ε2α3(k0)
∫

|u|4 dX

+ε3α j
4(k0)

∫
|u|2

(
uDXj u+uDXj u

)
dX

+ · · · , (14)

with

α3(k0) =
1
4

(
G0(k0)

2G0(2k0)−|k0|2G0(k0)
)
,

α j
4(k0) =

3
8

G0(k0)|k0|−2
(

G0(2k0)G0(k0)−|k0|2
)

k0 j

+
h
8

(
1− tanh2(h|k0|)

)(
2G0(2k0)G0(k0)−|k0|2

)
k0 j

+
h
2

G0(k0)
2
(

1− tanh2(2h|k0|)
)

k0 j .

Note thatω(Dx) = (gG0)
1/2 =

√
g|Dx| tanh(h|Dx|) represents the full

linear dispersion relation in the finite-depth case. Balancing mean-flow
terms inH(3) suggested thatα = β + 1. In the above equations and
hereafter, the Einstein summation convention is used for repeated indices
( j , l ,m= {1, ...,n−1}).

The Hamiltonian is then further renormalized by subtracting multi-
ples of the conserved wave action

εn−3M =
∫

|u|2dX ,

and of the conserved impulse (or momentum)

I =
∫

η∂xξ dx ,

εn−3I =
∫ [

k0|u|2+ 1
2ε

(
uDXu+uDXu

)
+ iε2β η̃1DX ξ̃1

]
dX ,

and by eliminating non-resonant terms, in light of the scale separation
lemma of Craig et al. (2005b) which implies that fast oscillations essen-
tially homogenize to zero and do not contribute to the effective Hamilto-
nian. As a result, the renormalized form reads

Ĥ = H −∂kω(k0) · I −
(

ω(k0)−k0 ·∂kω(k0)
)

M ,

εn−3Ĥ = ε2
∫ [1

2
∂ 2

kj kl
ω(k0)uD2

XjXl
u+α3(k0)|u|4

+ε2β−2
(h

2
ξ̃1|DX |2ξ̃1+

g
2

η̃2
1 + i∂kj

ω(k0)η̃1DXj ξ̃1

)

+α1(k0)εβ−1η̃1|u|2+ iεβ−1|u|2k0 ·DX ξ̃1

+
ε
6

∂ 3
kjkl km

ω(k0)uD3
XjXl Xm

u

+ε
(

α j
2(k0)εβ−1η̃1+

i
2

εβ−1DXj ξ̃1+α j
4(k0)|u|2

)

×
(

uDXj u+uDXj u
)
+O(ε2)

]
dX , (15)
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after expandingω(k0 + εDX) to third order inε. The conservation of
M (and its subtraction fromH) reflects the fact that our approximation
of the water wave problem is phase-invariant. The subtraction ofI is
equivalent to saying that one transforms the system into a reference
coordinate frame moving with the group velocity∂kω(k0).

Hamiltonian Fourth-Order System

Balancing mean-flow terms of ordersO(ε2β−2) and O(εβ−1) in (15)
suggests we chooseβ = 1 (and thusα = 2). In terms of the slow time
τ = ε2t, the corresponding equations of motion are

i∂τu = εn−5δuĤ ,

= −1
2

∂ 2
kj kl

ω∂ 2
Xj Xl

u+2α3|u|2u+
(

α1η̃1+k0 ·∂X ξ̃1

)
u

+iε
[1

6
∂ 3

kj kl km
ω∂ 3

Xj Xl Xm
u−α j

2

(
η̃1∂Xj u+∂Xj (uη̃1)

)

−1
2

(
∂Xj ξ̃1∂Xj u+∂Xj (u∂Xj ξ̃1)

)
−4α j

4|u|2∂Xj u
]

+O(ε2) , (16)

ε∂τ η̃1 = εn−5δξ̃1
Ĥ ,

= h|DX |2ξ̃1−k0 ·∂X |u|2−∂kj
ω∂Xj η̃1

− i
2

ε∂Xj

(
u∂Xj u−u∂Xj u

)
+O(ε2) , (17)

ε∂τ ξ̃1 = −εn−5δη̃1
Ĥ ,

= −
(

gη̃1+α1|u|2+∂kj
ω∂Xj ξ̃1

)

−iεα j
2

(
u∂Xj u−u∂Xj u

)
+O(ε2) . (18)

For notational convenience, we have dropped the dependence of the co-
efficientsαi andω on k0. At lowest order, this system reduces to the
NLS equation in the casen = 2, and to a Davey–Stewartson system in
the casen= 3.

When theO(ε2) terms are neglected, system (17)–(18) may be
viewed as a Hamiltonian version of the fourth-order system derived by
Brinch-Nielsen and Jonsson (1986) for gravity waves on finite depth, and
the corresponding Hamiltonian takes the form

H =
∫ [1

2
∂ 2

kjkl
ω(k0)∂Xj u∂Xl u+α3(k0)|u|4

+
h
2

ξ̃1|DX |2ξ̃1+
g
2

η̃2
1 +∂kj

ω(k0)η̃1∂Xj ξ̃1+α1(k0)η̃1|u|2

+|u|2k0 j ∂Xj ξ̃1+
ε
6

∂ 3
kjkl km

ω(k0)ℑ
(

∂Xj u∂ 2
Xl Xm

u
)

+2ε
(

α j
2(k0)η̃1+

1
2

∂Xj ξ̃1+α j
4(k0)|u|2

)
ℑ
(

u∂Xj u
)]

dX ,

whereℑ stands for the imaginary part.

WATER WAVES ON INFINITE DEPTH

Hamiltonian Dysthe Equation

In the infinite-depth case, it is possible to derive a simpler fourth-order
system than in the finite-depth case, yielding a closed-form Hamiltonian
equation for the wave envelope at the order of approximation being con-
sidered.

The fundamental technical difference with the previous situation is
thatG0 = |Dx|. As a consequence, we have

∫
ξ̃1G0ξ̃1dX = ε

∫
ξ̃1|DX |ξ̃1dX ,

together with

α1(k0) = 0 , α3(k0) =
|k0|3

4
, α j

4(k0) =
3
8
|k0|k0 j ,

so the resulting renormalized Hamiltonian is

εn−3Ĥ = ε2
∫ [1

2
∂ 2

kjkl
ω(k0)uD2

XjXl
u+α3(k0)|u|4

+
1
2

ε2β−3ξ̃1|DX |ξ̃1+ ε2β−2
(g

2
η̃2

1 + i∂kj
ω(k0)η̃1DXj ξ̃1

)

+iεβ−1|u|2k0 ·DX ξ̃1+
ε
6

∂ 3
kj kl km

ω(k0)uD3
XjXl Xm

u

+ε
(

α j
2(k0)εβ−1η̃1+

i
2

εβ−1DXj ξ̃1+α j
4(k0)|u|2

)

×
(

uDXj u+uDXj u
)
+O(ε2)

]
dX . (19)

The presence of the mean-flow term of orderO(ε2β−3) in (19) suggests
thatβ = 2 (and thusα = 3). With this scaling, (19) reduces to

εn−3Ĥ = ε2
∫ [1

2
∂ 2

kj kl
ω(k0)uD2

XjXl
u+

|k0|3
4

|u|4

+ε
(1

6
∂ 3

kj kl km
ω(k0)uD3

XjXl Xm
u+

1
2

ξ̃1|DX |ξ̃1

+i|u|2k0 ·DX ξ̃1+
3
8
|k0|k0 j |u|2

(
uDXj u+uDXj u

))

+O(ε2)
]

dX , (20)

and the corresponding equations of motion read

i∂τu =
1
2

∂ 2
kj kl

ω(k0)D
2
XjXl

u+
|k0|3

2
|u|2u

+ε
(1

6
∂ 3

kjkl km
ω(k0)D

3
XjXl Xm

u+ ik0 ·uDX ξ̃1

+
3
2
|k0||u|2k0 ·DXu

)
+O(ε2) , (21)

ε2∂τ η̃1 = |DX|ξ̃1− ik0 ·DX |u|2+O(ε) , (22)

ε2∂τ ξ̃1 = O(ε) . (23)

Since the mean field̃ξ1 only appears at orderO(ε) in (21), we can solve

(22) for ξ̃1 to leading order, yielding

ξ̃1 = i|DX|−1k0 ·DX |u|2+O(ε) , (24)

and plug this expression in (21). The envelope equation (21) then takes
the closed form

2i∂τu = −∂ 2
kjkl

ω(k0)∂ 2
XjXl

u+ |k0|3|u|2u

+ε
( i

3
∂ 3

kjkl km
ω(k0)∂ 3

XjXl Xm
u−3i|k0||u|2k0 ·∂Xu

+2uk0 j k0l |DX|−1∂ 2
XjXl

|u|2
)
. (25)

We note the presence of the nonlocal operator|DX |−1 = (−∆)−1/2 in
(25), which accounts for the mean-flow effects. It can be checked that
(25) has the symplectic structure

∂τu=−iδuH ,

with the closed-form Hamiltonian

H =
1
2

∫ [
∂ 2

kj kl
ω(k0)∂Xj u∂Xl u+

|k0|3
2

|u|4

+ε
(1

3
∂ 3

kjkl km
ω(k0)ℑ(∂Xj u∂ 2

XlXm
u)−k0 j k0l (∂Xj |u|2)|DX |−1∂Xl |u|2

+
3
2
|k0|k0 j |u|2ℑ(u∂Xj u)

)]
dX , (26)
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which is obtained by substituting̃ξ1 with (24) in (20). Eq. (25) may be
viewed as a Hamiltonian version of Dysthe’s equation (1979) for gravity
waves on deep water.

Relation with Existing Dysthe Equations

Introducing the new variable

ψ =
1√
2

( |k0|
g

)1/4(
1+

ε
4|k0|2

k0 ·DX

)
u ,

which is a first-order approximation of the free-surface envelope as given
by (7), and inserting it in (25), we find up to orderO(ε)

2i∂τ ψ = −∂ 2
kjkl

ω(k0)∂ 2
XjXl

ψ +2g1/2|k0|5/2|ψ|2ψ

+ε
( i

3
∂ 3

kj kl km
ω(k0)∂ 3

XjXlXm
ψ −6ig1/2|k0|1/2|ψ|2k0 ·∂Xψ

−ig1/2|k0|1/2ψ2k0 ·∂Xψ

+4g1/2|k0|−1/2ψk0 j k0l |DX|−1∂ 2
XjXl

|ψ|2
)
. (27)

This equation contains all the usual Dysthe terms including the ad-
ditional high-order nonlinear termψ2k0 · ∂Xψ as can be seen e.g. in
Dysthe (1979), Stiassnie (1984) and Lo and Mei (1985). The Hamilto-
nian structure is however lost in the transformation to theψ-variable.
Moreover, besides the general form of (27), we should not expect to
obtain precisely the same numerical coefficients as in previous work,
since the various approaches do not use precisely the same physical
variables (in particular the choices of the velocity potential and of the
wave envelope).

Benjamin–Feir Stability Analysis

It is of interest to investigate the Benjamin–Feir stability of a uniform
wavetrain (i.e. a Stokes wave) in the framework of the Hamiltonian
model (25). For this purpose, we consider the general three-dimensional
casen= 3 such thatx= (x1,x2)

⊤ ∈R
2, and we assume thatk0 is aligned

in thex1-direction.
We first observe that (25) admits exact uniform solutions

u0(τ) = A0e−
i
2 k3

0A2
0τ ,

whereA0 is a real constant. Inserting in (25) a perturbed solution of the
form

u(X,τ) = u0(τ)
[
1+B(X,τ)

]
,

where

B(X,τ) = B1eΩτ+i(λX1+µX2) +B2eΩτ−i(λX1+µX2) ,

is a plane-wave perturbation with sideband wavenumbers(λ ,µ) and con-
stant complex amplitudes(B1,B2), and retaining linear terms in(B1,B2)
only, we find that the conditionℜ(Ω) 6= 0 for instability yields

A2
0

√
gk0

(λ 2

2
−µ2

)(
k0−2ε

λ 2
√

λ 2+µ2

)
− g

4k3
0

(λ 2

2
−µ2

)2
> 0 , (28)

whereℜ denotes the real part. Eq. (28) indicates that the linear disper-
sive terms as well as the nonlocal mean-flow term play an important role
on the growth of sideband perturbations. In particular, the mean flow
causes a small ‘Doppler shift’ relative to the carrier wavenumberk0,
which is consistent with previous observations e.g. by Dysthe (1979).
In the present mathematical framework, the mean-flow contribution in

(28) as represented by the term proportional to(λ 2+ µ2)−1/2 is clearly
identifiable, given the fact that this is the Fourier symbol of the nonlocal
operator|DX |−1 that defines̃ξ1 in (24).

Fig. 1 shows the instability region enclosed by the zero-contour
level of condition (28) forε = 1, k0 = 1 andA0 = 0.05, 0.1, 0.15. For
comparison, the instability region for the NLS equation in the case
A0 = 0.15 is also presented. Unlike the latter for which the instability
region extends to infinity, that of (25) remains bounded near the origin,
which prevents energy from leaking to higher wavenumbers. The
largerA0 (or equivalently the largerε), the larger the instability region.
Overall, we observe strong similarities with results from previous work
(e.g. Trulsen and Dysthe 1996, Trulsen et al. 2000). A stability analysis
for Stokes waves on finite depth can be found in Gramstad and Trulsen
(2011) for their Hamiltonian model.
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Figure 1: Instability regions for the Hamiltonian Dysthe equa-
tion (25) for (a)A0 = 0.05, (b)A0 = 0.1 and (c)A0 = 0.15. For
comparison, the instability region for the NLS equation is shown
in panel (d) forA0 = 0.15. The other parameters areε = 1 and
k0 = 1.

NUMERICAL SIMULATIONS

In this section, we concentrate on the infinite-depth case and present
two-dimensional (n = 2) numerical simulations to illustrate the per-
formance of the Hamiltonian Dysthe equation (25) with regards to its
conservative and Benjamin–Feir stability properties. For this purpose,
all variables are non-dimensionalized according to Stokes wave theory
in deep water, i.e. lengths are multiplied byk0 and times multiplied by
ω(k0) = (gk0)

1/2 so thatg= 1 andk0 = 1. We also take this opportunity
to introduce an efficient and accurate symplectic scheme for the time
integration of (25), motivated by the fact that it is a Hamiltonian partial
differential equation. Details are given below.

Two-dimensional Model
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In the two-dimensional case (n= 2), Eq. (25) reduces to

∂τu = − i
8

√
g

k3/2
0

∂ 2
Xu− i

2
k3

0|u|2u+
ε
16

√
g

k5/2
0

∂ 3
Xu

−3
2

εk2
0|u|2∂Xu+ iεk2

0u|DX ||u|2 , (29)

whose Hamiltonian is given by

H =
1
2

∫ [k3
0
2
|u|4− 1

4

√
g

k3/2
0

|∂Xu|2+ ε
8

√
g

k5/2
0

ℑ
(

∂Xu∂ 2
Xu

)

+
3
2

εk2
0|u|2ℑ

(
u∂Xu

)
− εk2

0|u|2|DX||u|2
]
dX . (30)

Note thatX = X1 ∈ R andk0 > 0.

Numerical Methods

We assume periodic boundary conditions in theX-direction, and use a
pseudospectral method for space discretization. More specifically, the
envelopeu is represented by a truncated Fourier series withN modes
(which also corresponds to the number of grid points in the physicalX-
space). Applications of spatial derivatives and nonlocal operators are
performed in Fourier space, while nonlinear products are evaluated in
physical space at a discrete set of equally spaced points. For example,
application of the nonlocal operator|DX | in physical space is equivalent
to multiplication by |λ | in Fourier space. All operations are executed
efficiently using the fast Fourier transformF , and aliasing errors are
removed by zero-padding in Fourier space.

Time integration of (29) is carried out in Fourier space, which allows
the linear terms to be solved exactly by the integrating factor technique.
The nonlinear terms are integrated in time using a symplectic fourth-
order (2-stage) Gauss–Legendre Runge–Kutta scheme (Xu and Guyenne
2009). Applied to (29), this scheme reads

ûn+1 = eL ∆τ ûn+∆τeL ∆τ
[
b1e−c1L ∆τ

N
(
ec1L ∆τ û(1)

)

+b2e−c2L ∆τ
N

(
ec2L ∆τ û(2)

)]
, (31)

û(1) = ûn+∆τa11e−c1L ∆τ
N

(
ec1L ∆τ û(1)

)

+∆τa12e
−c2L ∆τ

N
(
ec2L ∆τ û(2)

)
, (32)

û(2) = ûn+∆τa21e−c1L ∆τ
N

(
ec1L ∆τ û(1)

)

+∆τa22e
−c2L ∆τ

N
(
ec2L ∆τ û(2)

)
, (33)

for the solution̂un+1 =F (u)n+1 at timeτn+1 = τn+∆τ, where∆τ is the
constant time step. The values of the coefficients are

a11 = a22 =
1
4
, a12 =

1
4
+

√
3

6
, a21 =

1
4
−

√
3

6
,

b1 = b2 =
1
2
, c1 =

1
2
+

√
3

6
, c2 =

1
2
−

√
3

6
.

The operator

L =
i
8

√
g

k3/2
0

λ 2− i
ε
16

√
g

k5/2
0

λ 3 ,

denotes the Fourier multiplier associated with the linear terms in (29),
while N contains the nonlinear terms. At each time step, the nonlinear
system (32)–(33) for̂u(1) andû(2) is solved by fixed point iteration. We
have typically observed in our applications that 3 iterations are needed
to achieve convergence given a tolerance of 10−8 on the relative error.

Numerical Results

Having the test on Benjamin–Feir instability in mind, we specify as ini-
tial condition

u(X,0) = A0

[
1+ap cos(λpX)

]
.

For the purpose of our numerical illustrations, we restrict our attention to
the caseA0 = 0.15, ε = 1, ap = 0.01 andλp = 0.2. The valueλp = 0.2
corresponds to the most unstable disturbance as indicated in Fig. 2. Note
that, because of our choice of non-dimensionalization, choosingA0 ≪ 1
while fixing ε = 1 is similar to choosingε ≪ 1 while fixingA0 = 1.

Fig. 3 shows the time evolution of the relative errors

∆M
M0

=
∣∣∣M−M0

M0

∣∣∣ , ∆H
H0

=
∣∣∣H −H0

H0

∣∣∣ ,

on wave actionM and HamiltonianH respectively, up toτ = 2500 (M0
andH0 are the initial values atτ = 0). We used a domain lengthL= 20π,
spatial resolutionN = 256 and time step∆τ = 10−3. Overall, bothM
andH are very well conserved, although their errors tend to gradually
grow in time. This is likely due to the development of the Benjamin–Feir
instability combined with the accumulation of numerical errors.
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Figure 2: Instability region as given by condition (28) for the
Hamiltonian Dysthe equation (29) forA0 = 0.15 andε = 1 (solid
line). For comparison, the instability region for the NLS equation
is also presented (dashed line).

Fig. 4 depicts the time evolution of the normalized amplitudes for
the fundamental and sidebands,|û(0)| and|û(±λp)|. The general pattern
is somewhat irregular, although we discern some recurring exchange of
energy between the fundamental and sidebands, with the lower sideband
being more excited than the upper one. This moderately irregular behav-
ior may be attributed to the triggering of higher-order instabilities by the
Benjamin–Feir instability, and to their subsequent mutual interaction, as
suggested by Su and Green (1984). We have also run computations with
smaller values ofA0 which show nearer-recurring behaviors but extend-
ing over longer periods of time.

Finally, Fig. 5 presents snapshots of the envelope magnitude|u|
together with the corresponding (rescaled) free-surface elevationε−1η.
Using the transformation (7), the latter quantity can be easily computed
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Figure 3: Relative errors on (a) wave actionM and (b) Hamilto-
nianH as a function of time forA0 = 0.15,ε = 1, ap = 0.01 and
λp = 0.2.

as

η(X,τ) =
ε√
2

[
F

−1
(

4

√
|k0+ ελ |

g
û
)

eik0X/ε

+F
−1

(
4

√
|k0+ ελ |

g
û
)

e−ik0X/ε
]
.

This expression neglects the mean fieldη̃ which does not contribute at
the order of approximation considered here, but it includes exactly all
the contributions from the higher sidebands. We see that the solution
develops strong amplitude modulations as a result of the Benjamin–Feir
instability. The development of the left-right asymmetry in the profile
of |u| is consistent with the asymmetric evolution observed between
the lower and upper sidebands in Fig. 4. Moreover, the occurrence
of smaller-scale oscillations in the profile of|u| seems to support our
previous observation from Fig. 4 that higher-order instabilities also
come into play, triggered by the Benjamin–Feir instability. It is also
interesting to note that, in general, the profile of|u| does not exactly
coincide with the actual shape of the free-surface elevation. This is
explained in part by the fact that the relation (7) betweenu and η,
as defined in our Hamiltonian approach, is not a simple relation of
proportionality.
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Figure 4: Normalized harmonics as a function of time forA0 =
0.15, ε = 1, ap = 0.01 andλp = 0.2. Fundamental|û(0)| (thick
solid line). Lower sideband|û(−λp)| (dashed line). Upper side-
band|û(λp)| (thin solid line).

CONCLUSIONS

We have presented a systematic Hamiltonian approach to deriving
envelope model equations for surface gravity waves on arbitrary
depth, both in two and three dimensions. It is based on a surface
reformulation of the water wave problem, and involves an expansion
of the Dirichlet–Neumann operator which is performed directly in the
expression of the Hamiltonian, together with transformations of the
symplectic structure of the system. As an application, we have derived
a Hamiltonian version of Dysthe’s equation in the deep-water case. We
have then analyzed its Benjamin–Feir stability properties, and performed
numerical simulations to illustrate its performance.
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