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ABSTRACT

Nonlinear flexural-gravity waves beneath a continuous ice sheet are

considered. A Hamiltonian formulation of the governing equations

is presented in the general three-dimensional setting. It is used to

investigate the long-wave regime and derive an asymptotic model

for weakly nonlinear dispersive waves with slower variation in the

transverse direction. In the two-dimensional case, the model predictions

are compared with direct numerical simulations of the full equations and

a good agreement is found.

KEY WORDS: Boussinesq models; flexural-gravity waves; Hamilto-

nian systems; high-order spectral method; sea ice; solitary waves.

INTRODUCTION

In recent years, there has been renewed interest in the study of flexural-

gravity (or hydroelastic) waves at the surface of a fluid covered by a thin

elastic sheet, with applications to ocean waves interacting with sea ice

in the polar regions (Korobkin et al., 2011). The recurrent interactions

between ocean waves and sea ice are a prominent feature of these re-

gions, and strongly affect sea-ice morphology and dynamics. A number

of experiments have been performed with moving loads on ice, e.g. at

McMurdo Sound, Antarctica, in deep water (Squire et al., 1996) and on

Lake Saroma, Japan, in shallow water (Takizawa, 1985).

A theoretical challenge in this problem is to model the ice defor-

mations subject to water wave motions, and thus a number of models

have been proposed. The linear Euler–Bernoulli model for the ice sheet,

combined with potential flow, has been widely used for small-amplitude

water waves and ice deflections (Squire et al., 1996). However, re-

ports of intense-in-ice events have highlighted limitations of linear theory

(Marko, 2003) and, with the perspective of rougher sea conditions due to

global warming (Squire, 2011; Kohout et al., 2014), nonlinear theory has

drawn increasing attention.

Although polar sea ice does not actually form a continuous sheet, ex-

hibiting many inhomogeneities such as cracks, leads and pressure ridges

even in pack sea ice, or being fragmented as in the marginal ice zone, the

present discussion will be centered on continuous sea-ice models. To a

first approximation, it is of interest to investigate what nonlinear behav-

ior is described by such models. These are primarily intended to sim-

ulate wave propagation in quasi-continuous pack sea ice far away from

the open ocean. Large-amplitude (i.e. nonlinear) waves can potentially

travel long distances into the ice field. These models may be further

justified in the present case by the fact that we focus on the long-wave

regime and hence smaller-scale inhomogeneities of the ice sheet may be

assumed to have little effect on the wave propagation.

In this context, nonlinear models based on Kirchhoff–Love plate

theory have been adopted by a number of investigators, mostly in two

dimensions. For example, Forbes (1986) computed periodic finite-

amplitude waves using a Fourier series expansion technique. Părău and

Dias (2002) derived a forced nonlinear Schrödinger equation for the en-

velope of ice-sheet deflections due to a moving load, and showed that

solitary waves of elevation and depression exist for certain ranges of

water depth. Bonnefoy et al. (2009) examined numerically the same

nonlinear problem of moving load on ice, through a high-order spectral

approach, and found a good agreement with theoretical predictions of

Părău and Dias (2002). Hegarty and Squire (2008) simulated the interac-

tion of large-amplitude water waves with a compliant floating raft such

as a sea-ice floe, by expanding the solution as a series and evaluating it

with a boundary-integral method.

Recently, Plotnikov and Toland (2011) proposed a nonlinear formu-

lation based on the special Cosserat theory of hyperelastic shells, which

has the advantage of conserving elastic energy unlike the Kirchhoff–

Love model. In this Cosserat framework, Milewski et al. (2011, 2013)

performed a weakly nonlinear modulational analysis of two- and three-

dimensional hydroelastic waves on infinite and finite depth using the

method of multiple scales. Guyenne and Părău (2012, 2014) examined

the two-dimensional problem through a Hamiltonian reformulation of the

governing equations. On this basis, they analyzed both the modulational

and long-wave limits, and compared their asymptotic results with direct

numerical simulations.

The present study extends the work of Guyenne and Părău (2014)

to the three-dimensional case. As a starting point, we take advantage

of the conservative property of the Cosserat formulation to express the

governing equations of the three-dimensional hydroelastic problem in

Hamiltonian form, thus extending Zakharov’s Hamiltonian formulation

for nonlinear water waves to flexural-gravity waves. In doing so, the

Dirichlet–Neumann operator (DNO) is introduced to reduce the origi-

nal Laplace problem to a lower-dimensional system involving quantities

evaluated only at the fluid-ice interface. Similarly to Haragus-Courcelle

and Ilichev (1998) and Xia and Shen (2002), we then focus on the long-

wave regime and establish a high-order Kadomtsev–Petviashvili (KP)

equation for weakly three-dimensional nonlinear dispersive waves on fi-

nite depth. To this aim, we use the Hamiltonian perturbation approach
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of Craig et al. (2005a,b), which is well-suited to the present Hamilto-

nian formulation. The derivation of this high-order KP equation is a

new theoretical accomplishment and constitutes the main result of our

paper. We note incidentally that Xia and Shen (2002) proposed a 5th-

order Korteweg–de Vries (KdV) equation for two-dimensional hydroe-

lastic waves on shallow water in the linear Euler–Bernoulli case, and

Haragus-Courcelle and Ilichev (1998) derived a three-dimensional gen-

eralization of the 5th-order KdV equation in a similar setting.

When restricted to two dimensions, our long-wave model also re-

duces to a 5th-order KdV equation and its predictions are compared with

direct numerical simulations of the full equations. Such simulations al-

low for a more detailed investigation over a wider range of parameter

values. In particular, thanks to its analyticity properties, the DNO has a

convergent Taylor series expansion in which each term can be determined

recursively. This series expansion combined with the fast Fourier trans-

form leads to an efficient and accurate numerical scheme for solving the

full Hamiltonian equations. Guyenne and Părău (2014) computed soli-

tary waves of both depression and elevation, including overturning waves

of depression for sufficiently low speeds and large depth. Solitary waves

of depression were found to be stable while solitary waves of elevation

seem to be unstable. In the shallow-water limit, these solitary waves of

elevation resemble generalized solitary wave solutions of the 5th-order

KdV equation, and were observed to persist for long times. They how-

ever are inherently unstable because they continuously emit radiation and

thus decay in time. We also review some of these numerical results in the

present paper.

In the following sections, we present the mathematical formulation

of the hydroelastic problem. The DNO is introduced and the Hamil-

tonian equations of motion are established. From this Hamiltonian

formulation, weakly nonlinear wave models are derived in the long-

wave limit. Direct numerical simulations are then shown to assess and

complement these asymptotic results.

MATHEMATICAL FORMULATION

Equations of Motion

We consider a three-dimensional fluid of uniform finite depth h beneath a

continuous thin ice sheet. The fluid is assumed to be incompressible and

inviscid, and the flow to be irrotational. The ice sheet is modeled using

the special Cosserat theory of hyperelastic shells in Cartesian coordinates

(x,y,z), with the horizontal (x,y)-plane being the bottom of the ice sheet

at rest and the z-axis directed vertically upwards. The vertical deforma-

tion of the ice is denoted by z = η(x,y, t). The fluid velocity potential

Φ(x,y,z, t) satisfies the Laplace equation

∇2Φ = 0 , for�x = (x,y)� ∈ R
2 , −h < z < η(x,y, t) . (1)

The nonlinear boundary conditions at z=η(x,y, t) are the kinematic con-

dition

ηt +Φxηx +Φyηy = Φz , (2)

and the dynamic condition

Φt +
1

2
|∇Φ|2 +gη +

D

ρ
F = 0 , (3)

where

F = 2√
A

[
∂x

(
1+η2

y√
A

∂xH

)
−∂x

(
ηxηy√

A
∂yH

)
−∂y

(
ηxηy√

A
∂xH

)
+∂y

(
1+η2

x√
A

∂yH

)]
+4H 3 −4K H ,

with

A = 1+η2
x +η2

y , K =
1

A 2
(ηxxηyy −η2

xy) ,

H =
1

2A 3/2

[
(1+η2

y )ηxx −2ηxyηxηy +(1+η2
x )ηyy

]
.

The additional term F in (3) represents the nonlinear bending force ex-

erted by the ice sheet onto the fluid surface, as derived by Plotnikov and

Toland (2011). It is also a conservative term and thus can be cast into

a Hamiltonian formulation as shown below. Note that A , K and H

denote respectively the squared normal vector norm, Gaussian curvature

and mean curvature at any point on the ice sheet. Two simpler expres-

sions of this bending force have been commonly used in the literature; a

linear one based on Euler–Bernoulli theory (Squire et al., 1996; Haragus-

Courcelle and Ilichev, 1998; Părău and Vanden-Broeck, 2011),

F = ηxxxx +2ηxxyy +ηyyyy ,

and a nonlinear one based on Kirchhoff–Love theory (Forbes, 1986;

Părău and Dias, 2002; Bonnefoy et al., 2009; Milewski et al., 2011).

The system is completed with the boundary condition at the bottom,

Φz = 0 at z =−h . (4)

Hereinafter, subscripts are also used as short notation for partial or vari-

ational derivatives (e.g. Φt = ∂tΦ). The constant D is the coefficient of

flexural rigidity for the ice sheet, ρ the density of the fluid and g the ac-

celeration due to gravity. The dynamic condition (3) is obtained from the

Bernoulli equation. The inertia of the thin elastic plate is neglected, so

the plate acceleration term is not considered here. We also assume that

the elastic plate is not pre-stressed and neglect plate stretching.

The dispersion relation for the linearized problem with solutions of

the form ei(�k·�x−ωt) is

c2 =

(
g

k
+

Dk3

ρ

)
tanh(hk) , (5)

where k = |�k| and c = ω/k is the phase speed. It can be shown that

the phase speed c(�k) has a minimum cmin at�k =�kmin for any parameter

values (Squire et al., 1996; Părău and Dias, 2002). At this minimum,

the phase velocity and group velocity are equal. Another critical speed

in finite depth is the long-wave (or shallow-water) limit c0 =
√

gh as

k → 0. The present study focuses on solitary wave solutions propagating

at speeds near c0.

The total energy

H =
1

2

∫∫ ∞

−∞

∫ η

−h
|∇Φ|2dzdydx+

1

2

∫∫ ∞

−∞

[
gη2 +4

D

ρ
H

2
√

A

]
dydx ,

(6)

together with the impulse (or momentum) vector

I =
∫∫ ∞

−∞

∫ η

−h
∇�xΦdzdydx ,

where ∇�x = (∂x,∂y)
�, and the volume (or mass)

V =

∫∫ ∞

−∞
η dydx ,

are invariants of motion for (1)∼(4). The first integral in (6) represents

kinetic energy, while the second integral represents potential energy due

to gravity and elasticity.
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Hamiltonian Formulation

Following Zakharov (1968) and Craig and Sulem (1993), we can re-

duce the dimensionality of the Laplace problem (1)∼(4) by introduc-

ing ξ (x,y, t) = Φ(x,y,η(x,y, t), t), the trace of the velocity potential on

z = η(x,y, t), together with the DNO

G(η)ξ = (−∇�xη,1)� ·∇Φ
∣∣
z=η ,

which is the singular integral operator that takes Dirichlet data ξ on z =
η(x,y, t), solves the Laplace equation (1) for Φ subject to (4), and returns

the corresponding Neumann data (i.e. the normal fluid velocity there).

In terms of these boundary variables, the equations of motion take

the canonical form(
ηt

ξt

)
= J

(
Hη

Hξ

)
=

(
0 1

−1 0

)(
Hη

Hξ

)
, (7)

where the 2× 2 matrix J represents the symplectic structure of the sys-

tem. More specifically,

ηt = G(η)ξ , (8)

ξt =− 1
2(1+|∇�xη |2)

[
|∇�xξ |2 − (G(η)ξ )2 −2(G(η)ξ )∇�xξ ·∇�xη

+|∇�xξ |2|∇�xη|2 − (∇�xξ ·∇�xη)2
]
−gη − D

ρ F , (9)

which are Hamiltonian equations for the canonically conjugate variables

η and ξ , extending Zakharov’s formulation of the water wave problem

to flexural-gravity waves (Guyenne and Părău, 2012; 2014). The Hamil-

tonian is given by

H =
1

2

∫∫ ∞

−∞

[
ξG(η)ξ +gη2 +

4D

ρ
H

2
√

A

]
dydx , (10)

and corresponds to the total energy (6).

Dirichlet–Neumann Operator

In light of its analyticity properties (Craig et al., 1997), the DNO can be

expressed as a convergent Taylor series expansion in η ,

G(η) =
∞

∑
j=0

G j(η) , (11)

where each term G j can be determined recursively (Craig and Sulem,

1993; Xu and Guyenne, 2009). The resulting expressions are identical to

those in the context of water waves. More specifically, for j = 2r > 0,

G2r(η) =
1

(2r)!
G0(|D�x|2)r−1D�x ·η2rD�x

−∑r−1
s=0

1
(2(r−s))!

(|D�x|2)r−sη2(r−s)G2s(η)

−∑r−1
s=0

1
(2(r−s)−1)!

G0(|D�x|2)r−s−1η2(r−s)−1G2s+1(η) , (12)

and, for j = 2r−1 > 0,

G2r−1(η) =
1

(2r−1)!
(|D�x|2)r−1D�x ·η2r−1D�x

−∑r−1
s=0

1
(2(r−s)−1)!

G0(|D�x|2)r−s−1η2(r−s)−1G2s(η)

−∑r−2
s=0

1
(2(r−s−1))!(|D�x|2)r−s−1η2(r−s−1)G2s+1(η) , (13)

where D�x = −i∇�x and G0 = |D�x| tanh(h|D�x|) are Fourier multiplier op-

erators (D�x is defined in such a way that its Fourier symbol is�k and thus

|D�x| corresponds to |�k| = k). In the infinite-depth limit (h → ∞), G0 re-

duces to |D�x|. For example, the first terms of up to second order in η
read

G1(η) = D�xη ·D�x −G0ηG0 ,

G2(η) = − 1
2

(
|D�x|2η2G0 +G0η2|D�x|2 −2G0ηG0ηG0

)
.

This series expansion of the DNO will play a central role in the present

asymptotic and numerical procedures, as discussed in the next sections.

Such a formulation involving the DNO and boundary variables alone

is advantageous compared to a volumetric approach which requires

explicitly solving for the entire domain (e.g. in finite-element methods).

It has also been successfully used in other contexts, e.g. in perturbation

calculations for surface gravity waves in single- and double-layer fluids

(Craig et al., 2005a,b; 2012), as well as in direct numerical simulations

with uniform or variable water depth (Craig and Sulem, 1993; Guyenne

and Nicholls, 2007; Xu and Guyenne, 2009).

LONG-WAVE REGIME

In this section, we analyze the weakly nonlinear regime for small-

to moderate-amplitude waves on a three-dimensional fluid of finite

depth. Following Haragus-Courcelle and Ilichev (1998) and Xia and

Shen (2002), we focus on the long-wave regime for wave speeds

near c0. We emphasize that these previous studies considered simpler

models for the ice sheet and employed different methods to derive their

asymptotic wave models. Here we apply the Hamiltonian perturbation

approach of Craig et al. (2005a,b), which is especially suitable for

the present Hamiltonian formulation of the hydroelastic problem. An

advantage of this approach is that it naturally associates a Hamiltonian

to the equations of motion at each order of approximation. Chang-

ing variables through canonical transformations and expanding the

Hamiltonian (10) are the key ingredients. Below we only present the

main steps in the derivation of our weakly nonlinear models and refer

the reader to Craig et al. (2005a,b) for further details about the approach.

Boussinesq System

As a starting point, we introduce the long-wave scalings

X = εx , Y = ε2y , η(x,y, t) = ε2η̃(X ,Y, t) , ξ (x,y, t) = εξ̃ (X ,Y, t) , (14)

where the small parameter ε2 ∼ (h/�0)
2 ∼ a0/h � 1 is a measure of

weak dispersion and nonlinearity (with a0 and �0 being a characteris-

tic wave height and wavelength respectively). The different scalings in

x and y reflect the choice that the variations in y are slower than in x

(the solution traveling primarily in the x-direction) in anticipation to a

KP equation. Inserting (14) in the Hamiltonian (10) and expanding it in

powers of ε up to order O(ε5), we find

H =
ε

2

∫∫ ∞

−∞

[
hξ̃ 2

X +gη̃2 + ε2
(

hξ̃ 2
Y − h3

3
ξ̃ 2

XX + η̃ ξ̃ 2
X

)
+ε4

( 2

15
h5ξ̃ 2

XXX − 2

3
h3ξ̃XX ξ̃YY + η̃ ξ̃ 2

Y

−h2η̃ξ̃ 2
XX +

D

ρ
η̃2

XX

)]
dY dX +O(ε7) . (15)

To obtain this approximation, it is sufficient to only retain G0 and G1 in

(11). It is also common in the long-wave regime to use some velocity as

a dependent variable, rather than the velocity potential. Defining

u = ξ̃X , (16)

which plays the role of a horizontal velocity in the X-direction (hence
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ξ̃ = ∂−1
X u), the Hamiltonian (15) becomes

H =
ε

2

∫∫ ∞

−∞

[
hu2 +gη̃2 + ε2

(
h(∂−1

X uY )
2 − h3

3
u2

X + η̃u2
)

+ε4
( 2

15
h5u2

XX − 2

3
h3uX (∂

−1
X uYY )+ η̃(∂−1

X uY )
2

−h2η̃u2
X +

D

ρ
η̃2

XX

)]
dY dX +O(ε7) .

There is also a change in symplectic form associated with these trans-

formations. The new dependent variables in (14) can be expressed as

(η̃, ξ̃ )� = A1(η,ξ )
� in terms of

A1 =

(
ε−2 0

0 ε−1

)
,

so that Eqs. (7) are transformed to

(
η̃t

ξ̃t

)
= J1

(
Hη̃

H
ξ̃

)
=

(
0 1

−1 0

)(
Hη̃

H
ξ̃

)
,

where J1 = ε3A1JA�
1 , the extra factor ε3 stemming from the spatial

rescaling�x=(x,y)� → �X =(X ,Y )� =(εx,ε2y)�. Then using the matrix

form (
η̃
u

)
= A2

(
η̃

ξ̃

)
=

(
1 0

0 ∂X

)(
η̃

ξ̃

)
,

of (16) leads to(
η̃t

ut

)
= J2

(
Hη̃

Hu

)
=

(
0 −∂X

−∂X 0

)(
Hη̃

Hu

)
,

where J2 = A2J1A�
2 . These equations constitute a high-order Boussinesq

system in the present problem and read more explicitly

ητ = −huX − ε2
(

h∂−1
X uYY +

h3

3
uXXX +(ηu)X

)
−ε4

( 2

15
h5uXXXXX +

2

3
h3uXYY +(η∂−1

X uY )Y +h2(ηuX )XX

)
,

uτ = −gηX − ε2uuX − ε4
(

uY (∂
−1
X uY )−h2uX uXX +

D

ρ
ηXXXXX

)
,

after dropping the tildes, where τ = εt is a long time scale. Retaining

terms of up to order O(ε2) and neglecting the Y -dependence, this yields

the well-known integrable Kaup–Boussinesq system of the water wave

problem without flexural effects (Kaup, 1975), namely

ητ = −huX − ε2
(h3

3
uXXX +(ηu)X

)
,

uτ = −gηX − ε2uuX .

High-Order KP Equation

Furthermore, by framing the Boussinesq system in characteristic coordi-

nates

(
r

s

)
= A3

(
η
u

)
=

⎛⎜⎝ ( g
4h

)1/4
(

h
4g

)1/4

( g
4h

)1/4 −
(

h
4g

)1/4

⎞⎟⎠(
η
u

)
, (17)

we obtain

H = ε
2

∫∫ ∞
−∞

[√
gh(r2 + s2)

+ε2
{

1
2

√
gh
(
(∂−1

X rY )
2 −2(∂−1

X rY )(∂
−1
X sY )+(∂−1

X sY )
2
)

− h2

6

√
gh

(
r2
X −2rX sX + s2

X

)
+ 1

2
√

2

( g
h

)1/4
(r3 − r2s− rs2 + s3)

}
+ε4

{
h4

15

√
gh

(
r2
XX −2rXX sXX + s2

XX

)
− h2

3

√
gh
(

rX (∂
−1
X rYY )− rX (∂

−1
X sYY )− sX (∂

−1
X rYY )+ sX (∂

−1
X sYY )

)
+ 1

2
√

2

(
g
h

)1/4
(

r(∂−1
X rY )

2 −2r(∂−1
X rY )(∂

−1
X sY )+ r(∂−1

X sY )
2

+s(∂−1
X rY )

2 −2s(∂−1
X rY )(∂

−1
X sY )+ s(∂−1

X sY )
2
)

− h2

2
√

2

(
g
h

)1/4
(

rr2
X −2rrX sX + rs2

X + sr2
X −2srX sX + ss2

X

)
+ D

2ρ

√
h
g

(
r2
XX +2rXX sXX + s2

XX

)}]
dY dX +O(ε7) , (18)

where r and s are principally right- and left-moving components of the

solution in the X-direction respectively, which obey the evolution equa-

tions (
rt

st

)
= J3

(
Hr

Hs

)
=

( −∂X 0

0 ∂X

)(
Hr

Hs

)
.

This transformation to characteristic coordinates is also accompanied by

a change in symplectic form, with J3 = A3J2A�
3 . The Hamiltonian (18)

can be further reduced by subtracting a scalar multiple of the conserved

impulse,

C · I =
∫∫ ∞

−∞
η(C ·∇�xξ )dydx =

ε

2

∫∫ ∞

−∞

√
gh(r2 − s2)dY dX ,

where C = (c0,0)
�, and by restricting our attention to right-moving so-

lutions r in a region of phase space where s ≤ O(ε3). As a result, the

new Hamiltonian takes the form

H̃ = H −C · I ,

=
ε3

2

∫∫ ∞

−∞

[1

2

√
gh(∂−1

X rY )
2 − h2

6

√
ghr2

X +
1

2
√

2

(g

h

)1/4
r3

+ε2
{( h4

15

√
gh+

D

2ρ

√
h

g

)
r2
XX − h2

3

√
ghrX (∂

−1
X rYY )

+
1

2
√

2

(g

h

)1/4
r(∂−1

X rY )
2 − h2

2
√

2

(g

h

)1/4
rr2

X

}]
dY dX

+O(ε7) ,

and the evolution equation for r becomes

rt =−∂X H̃r ,

which is expressed in a reference frame moving at speed c0 =
√

gh in

the X-direction (as a result of the subtraction of C · I from H). More

explicitly, this yields the high-order KP equation

rτ +c1∂−1
X rYY +3c2rrX +c3rXXX

+ε2c2

(
2rY (∂

−1
X rY )+ r(∂−1

X rYY )
)
+2ε2c3rXYY

+ε2c4(2rX rXX + rrXXX)+ ε2c5rXXXXX = 0 , (19)

where τ = ε3t and

c1 =
1

2

√
gh , c2 =

1

2
√

2

(g

h

)1/4
, c3 =

h2

6

√
gh ,

470



c4 =
h2

2
√

2

(g

h

)1/4
, c5 =

h4

15

√
gh+

D

2ρ

√
h

g
.

Note that the coefficients c1, · · · ,c5 are all positive. The corresponding

Hamiltonian (with respect to τ) is given by

H =
1

2

∫∫ ∞

−∞

[
c1(∂

−1
X rY )

2 +c2r3 −c3r2
X + ε2c2r(∂−1

X rY )
2

−2ε2c3rX (∂
−1
X rYY )− ε2c4rr2

X + ε2c5r2
XX

]
dY dX .

To lowest order by neglecting the O(ε2) terms, Eq. (19) reduces to the

KP-II equation for three-dimensional surface gravity waves, which ad-

mits solutions called line solitons of the form

r(�p ·�X +qτ) =
c3

c2
(�1 − �2)

2sech2
[1

2
(�p ·�X +qτ)

]
,

where

�p = (p1, p2)
� = (�1 − �2, �

2
1 − �2

2)
� , q = 4c3(�

3
1 − �3

2) ,

and �1, �2 ∈ R (Biondini and Chakravarty, 2006).

5th-Order KdV Equation

In the two-dimensional case (no Y -variation), Eq. (19) turns into the

5th-order KdV equation

rτ +3c2rrX +c3rXXX +2ε2c4rX rXX +ε2c4rrXXX +ε2c5rXXXXX = 0 ,

(20)

with Hamiltonian (with respect to τ)

H =
1

2

∫ ∞

−∞

[
c2r3 −c3r2

X − ε2c4rr2
X + ε2c5r2

XX

]
dX .

This Hamiltonian 5th-order KdV equation is similar to those investigated

by Craig and Groves (1994) and Champneys et al. (2002) in the con-

text of gravity and capillary-gravity water waves, respectively. However,

there are noticeable differences from the 5th-order KdV equations de-

rived by Haragus-Courcelle and Ilichev (1998) and Xia and Shen (2002)

for flexural-gravity waves, which do not have the high-order nonlinear

terms in factor of c4.

Particular attention will be paid to Eq. (20) in the present study.

Because this equation is not exactly integrable in general, it is solved

numerically for solitary waves which are stationary in a secondary refer-

ence frame moving at constant speed σ . In our Hamiltonian framework,

these solutions correspond to fixed points of the variational δr(H −σ I).
This leads to the nonlinear ordinary differential equation

−σr+
3

2
c2r2+c3rXX +ε2c4(rrX )X − ε2

2
c4r2

X +ε2c5rXXXX = 0 , (21)

which is discretized by a pseudospectral method assuming periodic

boundary conditions. Equation (21) is solved iteratively by Newton’s

method using the classical KdV soliton

r(X) =
σ

c2
sech2

(1

2

√
σ

c3
X
)
, (22)

as an initial guess. A number of 1024 grid points is typically specified in

these computations. Results will be presented in the next section.

At this order of approximation, the ice-sheet deflection is given in

terms of r by

η =

(
h

4g

)1/4

r , (23)

after inverting (17) and neglecting the smaller contribution from s. Note

that the unscaled variables (14) should eventually be reintroduced in

order to compare with direct numerical simulations.

DIRECT NUMERICAL SIMULATIONS

In this section, we perform two-dimensional, direct numerical simu-

lations of (1)∼(4) to illustrate general properties of the mathematical

formulation and test predictions from our weakly nonlinear model (20).

Computations of both steady (in a moving frame) and time-dependent

solutions are discussed.

Numerical Methods

Following Takizawa (1985), Bonnefoy et al. (2009) and Milewski et

al. (2011), we non-dimensionalize the equations using the characteristic

scales

L =

(
D

ρg

)1/4

, V =

(
Dg3

ρ

)1/8

,

as unit length and unit velocity, respectively. In the two-dimensional

setting, the x-axis now refers to the horizontal direction while the y-axis

refers to the vertical direction. Since we are interested in solitary waves,

the key parameters to be examined are the dimensionless wave speed c

and the dimensionless water depth h. We will pay particular attention

to the case h = 3.095 which corresponds to Takizawa’s experiments on

Lake Saroma, Japan.

To compute fully nonlinear steady and unsteady waves, we use a

boundary-integral method (combined with Cauchy’s integral formula)

and a high-order spectral method, respectively. A brief description of

these numerical methods is presented below and the reader is referred to

Guyenne and Părău (2012, 2014) for further details.

For steady waves in a reference frame moving at constant speed c,

the complex potential

w(z) = Φ(x,y)+ iΨ(x,y) ,

is introduced in the fluid domain, where Ψ(x,y) is the stream function.

The physical plane

z = x(w)+ iy(w) ,

is mapped to w(z) in the inverse plane. Therefore

Φx − iΦy =
dw

dz
=

1

xΦ + iyΦ
.

Without loss of generality, we set Ψ = 0 on the fluid-ice interface and

choose Φ = 0 at x = 0. It can be shown that Ψ =−ch on the bottom. In

terms of the potential, the fluid-ice interface is parameterized by

(x(Φ),y(Φ)) = (x(Φ+ i0),y(Φ+ i0)) .

In this notation, x′(Φ) and y′(Φ) are the values of xΦ and yΦ evaluated at

the interface Ψ = 0. As yΦ = 0 on the bottom Ψ = −ch, we can extend

the function xΦ −1/c+ iyΦ by symmetry about the line Ψ = −ch to an

analytic function in the strip (−2ch,0).
We apply Cauchy’s integral formula along a rectangular strip be-

tween Ψ = 0 and Ψ =−2ch. Assuming the symmetry of solutions about

Φ = 0, application of Cauchy’s integral formula yields, after some alge-

bra,

x′(Φ0)− 1

c
=− 1

π

∫ ∞

0
y′(Φ)

(
1

Φ−Φ0
+

1

Φ+Φ0

)
dΦ
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+
1

π

∫ ∞

0

(Φ0 −Φ)y′(Φ)+2ch(x′(Φ)−1/c)

(Φ−Φ0)2 +4c2h2
dΦ

+
1

π

∫ ∞

0

−(Φ0 +Φ)y′(Φ)+2ch(x′(Φ)−1/c)

(Φ+Φ0)2 +4c2h2
dΦ , (24)

where the primes denote differentiation with respect to Φ. The evalu-

ation point Φ0 lies on the interface and the first integral on the right-

hand side is evaluated in the principal-value sense. A typical resolution

ΔΦ = 0.025 is used in the quadrature of (24). Thanks to the hodograph

transformation, this numerical method can handle multivalued solutions.

However, it is especially designed for computing solitary waves and thus

is not suitable for periodic waves in general.

To compute unsteady waves, we directly solve the Hamiltonian

equations (8)∼(9) in space and time (Guyenne and Nicholls, 2007). For

space discretization, we assume periodic boundary conditions in x, with

0 ≤ x ≤ L, and use a pseudospectral method based on the fast Fourier

transform. This is a particularly suitable choice for the computation of

the DNO since each term in its Taylor series expansion (11)∼(13) con-

sists of concatenations of Fourier multipliers with powers of η . More

specifically, both functions η and ξ are expanded in truncated Fourier

series(
η
ξ

)
= ∑

k

(
η̂k

ξ̂k

)
eikx .

Spatial derivatives and Fourier multipliers are evaluated in the Fourier

domain, while nonlinear products are calculated in the physical domain

on a regular grid of N collocation points. In practice, the Taylor series of

the DNO is also truncated to a finite number of terms,

G(η)≈
M

∑
j=0

G j(η) , (25)

but thanks to its analyticity properties, a small number of terms (typically

M < 10) is sufficient to achieve very accurate results (Xu and Guyenne,

2009).

Time integration of (8) and (9) is performed in the Fourier domain

so that the linear terms can be solved exactly by the integrating factor

technique. The nonlinear terms are integrated in time using a 4th-order

Runge–Kutta scheme with constant time step Δt. Starting from zero ini-

tial conditions, solitary waves are produced by applying the localized

pressure

P = P0e−(x−x0−ct)2/16 , (26)

over a finite interval of time 0 ≤ t ≤ T , with given P0 and c (T = 125

is chosen in all of our time-dependent simulations). The pressure term

(26) is added to the right-hand side of (9) and its distribution is initially

centered at x0 = L/2. To minimize the generation of radiation due to a

cold start, we also apply a tanh-like ramp function in time to (26), which

allows for a smooth transition from 0 to P0. Despite our effort however,

small radiative waves were inevitably excited by the applied pressure in

our numerical simulations.

A typical run uses M = 6, Δt = 0.002 and N = 4096 for a

computational domain of length L = 600. These values of numerical

parameters were found to be a good compromise between accuracy and

computational cost. In particular, the domain was specified long enough

so that the numerical solution is not significantly affected by the periodic

boundary conditions. Numerical tests on the conservation of invariants

of motion will be shown in the next section. Note that the Hamiltonian

formulation (8)∼(9) together with the series expansion (11)∼(13) of the

DNO require that η be a single-valued graph of x.
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−3

−2.5

−2

−1.5

−1

−0.5

0

c

η(
0)

Figure 1: Amplitudes of depression solitary waves for h = 1 (thin

solid line), h = 1.5 (dashed line), h = 3.095 (dotted line), h =
5 (dashed-dotted line) and h = 8 (thick solid line). The critical

speed cmin in each case is represented by a circle.

Numerical Results

In the steady case, we first compute solitary waves on infinite depth for

c < cmin and then, by continuation, decrease the depth h. Depression and

elevation solitary waves were found in all cases considered. Amplitude

branches of depression solitary waves are presented in Fig. 1 for different

values of h. For h = 8, the branch is very close to that in infinite depth

and starts from a nonzero finite amplitude at c = cmin. However, for

h = 1 and h = 1.5, the wave amplitudes seem to approach zero at c =
cmin. Therefore, in shallow water, the solitary wave branches seem to

start from zero amplitude while, in deeper water, they start at a finite

amplitude. The exact critical depth where this change occurs cannot be

easily found as it is difficult to accurately compute waves for values of c

very close to cmin (more and more oscillations appear and an increasingly

larger number of grid points is needed).

In Fig. 2, we present a large-amplitude solitary wave with slightly

overturning profile for h = 3.095. Such waves are found when c is small

and for moderate to large depth. For large depth, the branch of depression

solitary waves approaches a similar limiting profile. However, we were

not able to follow this branch down to c = 0 because our solutions need

to satisfy x′(φ)→ 1/c as φ → ∞, and thus the numerical scheme fails to

yield accurate results for very small values of c.

We now turn our attention to the unsteady case and examine the

regime c > c0 where the 5th-order KdV equation (20) is applicable. For

h = 3.095 and P0 = 0.1, a solitary wave of elevation emerges in Fig. 3,

which tends to separate at speed c = 1.905 from a large-scale radiative

wavepacket induced by the initial forcing. Incidentally, a similar solu-

tion would develop if a negative pressure P0 = −0.1 were applied. A

close-up of this solitary wave of elevation is presented in Fig. 4 which

compares it with a (numerical) solitary wave solution of (20). We set

ε = 1 and only vary σ in (21)∼(23) so that the iterative solution of (21)

matches the fully nonlinear solitary wave as closely as possible. As in

the context of gravity (or capillary-gravity) water waves, these 5th-order

KdV solutions are so-called ‘generalized’ solitary waves in the sense that

they are not truly localized but their central pulse typically connects to

smaller periodic waves on both sides, as found in steady computations of

Champneys et al. (2002). The wavelength �d = 2π/kd of these dispersive
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Figure 2: Large-amplitude overturning solitary wave for c =
1.273 and h = 3.095. Only the central part of the wave is shown.

tails is determined by the resonance condition

cd(kd) =
√

h

[
1− 1

6
h2k2

d +

(
19

360
h4 +

1

2

)
k4

d

]
= c , (27)

where cd is the 5th-order KdV approximation of (5) in dimensionless

units. Solving (27) numerically yields kd = 0.586 for e.g. (c,h) =
(1.905,3.095), and it can be graphically checked in Fig. 4 that the dis-

persive wavelength is about �d = 2π/kd = 10.714 on both sides of the

5th-order KdV solitary wave. Figure 4 indicates a very good agreement

for the central pulse in both amplitude and width. However, the fully

nonlinear solitary wave seems to exhibit only one dispersive tail trailing

behind it (i.e. on its left side). Despite the irregular unsteady shape of this

dispersive tail, we see that its wavelength and amplitude are comparable

to those in the 5th-order KdV solution. Such a low level of radiation

may explain why this solitary wave of elevation seems to be steadily pro-

gressing, at least up to t = 1000. However, it is likely to be unstable as it

gradually loses energy by emitting radiation.

As far as unsteady solutions are concerned, the occurrence of two

dispersive tails is not possible in the present conservative case because

otherwise this would imply that there is a wave source/sink at either +∞
or −∞. As mentioned in Michallet and Dias (1999), on which side the

dispersive tail appears is determined by the value of its group velocity

relative to that of its phase velocity. If the group velocity is less than the

phase velocity, then ripples appear behind the solitary pulse. Otherwise,

they appear ahead of it. In the present hydroelastic problem, the group

velocity is less than the phase velocity if k < kmin and larger otherwise.

Therefore, since kd = 0.586 < kmin = 0.735 for (c,h) = (1.905,3.095),
ripples should trail behind the main pulse (i.e. on its left side), which is

confirmed in Fig. 4 (lower panel).

On the other hand, for shallower water, say (c,h) = (0.722,0.5), we

find kd = 0.501 > kmin = 0.204 and thus ripples are emitted ahead of

the main crest (i.e. on its right side), as shown in Fig. 4 (upper panel).

In this case again, the agreement is overall satisfactory between the 5th-

order KdV and fully nonlinear solutions, modulo discrepancies due to

unsteadiness in the latter. However, the fully nonlinear wave disperses

more quickly than in the previous situation h = 3.095 because it emits

a higher level of radiation. Note that the trough on the left side of the

main crest is a remnant of the initial disturbance induced by the applied

pressure (with P0 = 0.01).

Finally, the conservation of invariants of motion (i.e. energy

H, impulse I and volume V ) after t = T is illustrated in Fig. 5, for
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Figure 3: Snapshots of the ice-sheet deflection η(x, t) at t = 50,

120, 490, 1000 (from top to bottom) for P0 = 0.1, c = 1.905 and

h = 3.095. The pressure is removed at t = 125. The high-order

spectral method on the full equations (8)∼(9) is used here.
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Figure 4: Comparison of wave profiles obtained from the high-

order spectral method on (8)∼(9) (solid line) and from the 5th-

order KdV equation (20) (dashed line) at t = 140 for (c,h) =
(0.722,0.5) (top) and at t = 490 for (c,h) = (1.905,3.095) (bot-

tom).
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Figure 5: Time evolution of energy H (thick solid line), im-

pulse I (dashed line) and volume V (thin solid line) for (c,h) =
(0.658,1.5) (top) and (1.905,3.095) (bottom). The pressure is

removed at t = 125.

(c,h) = (0.658,1.5) and (1.905,3.095). In both cases, we observe

that these quantities are all very well conserved in time, with V

being essentially zero as in the capillary-gravity water wave problem

(Longuet-Higgins, 1989).

CONCLUSIONS

We have presented a Hamiltonian formulation for three-dimensional

nonlinear flexural-gravity waves propagating at the surface of a

finite-depth fluid covered by a continuous ice sheet. The ice cover is

modeled as a thin elastic sheet, based on the special Cosserat theory

of hyperelastic shells as proposed by Plotnikov and Toland (2011).

The DNO is introduced to convert the original Laplace problem into

a lower-dimensional system involving quantities evaluated only at the

fluid-ice interface. We have used this Hamiltonian formulation to

investigate the long-wave regime and derive a high-order KP equation

for weakly nonlinear dispersive waves with large horizontal aspect ratio

(i.e. slower variation in the transverse direction than in the longitudinal

one). In the two-dimensional case, this asymptotic model reduces

to a 5th-order KdV equation whose predictions compare well with

direct numerical simulations of the full equations. For speeds near

the shallow-water limit, fully nonlinear solitary waves of elevation

resemble generalized solitary wave solutions of this 5th-order KdV

equation, exhibiting a central pulse with a radiative tail. In the future,

it would be of interest to perform direct numerical simulations of the

three-dimensional problem and compare with predictions from our

high-order KP equation. Preliminary three-dimensional computations

were carried out by Părău and Vanden-Broeck (2011) for a linear Euler–

Bernoulli model of the ice sheet combined with nonlinear potential flow.
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