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Turbulence of one-dimensional weakly nonlinear dispersive
waves

V. E. Zakharov, P. Guyenne, A. N. Pushkarev, and F. Dias

ABSTRACT. The turbulence of weakly nonlinear dispersive waves is studied by
numerically integrating a three-parameter one-dimensional model equation. In
particular the validity of weak turbulence theory is assessed. The prédicted
power-law solutions are explicitly determined and then compared with the
numerical results. For both signs of nonlinearity, it is shown that the weakly
turbulent regime is strongly influenced by the presence of coherent structures.
These are wave collapses and quasisolitons.

1. Introduction

The weak turbulence theory developed by Zakharov {8] is a tool for obtaining
the shape of frequency spectra in problems dealing with weakly nonlinear dispersive
waves. The applications of this theory range from water waves in hydrodynamics
to ion-acoustic waves in plasma physics. The weak turbulence theory is based on a
hamiltonian formulation of the problem where only resonant interactions between
weakly nonlinear waves are taken into account. It is then possible to derive approxi-
mate equations by performing perturbation expansions in terms of the nonlinearity
parameter. Although the theory was developed more than thirty years ago, few
proofs, either experimental or numerical, have been given to assess its validity (e.g.
[7]). Recently, Majda et al. [5] proposed a one-dimensional model equation as a
basis to check the validity of weak turbulence theory. Numerical computations on
this model have been reported in {1, [3], [5] and [9]. In this paper we summarize
the most important numerical results on this equation, which depends on three
parameters, and show that the weakly turbulent regime is strongly influenced by
the presence of coherent structures, namely wave collapses and quasisolitons.
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2. One-dimensional model equation

The following three-parameter nonlinear dispersive equation was proposed by

Majda et al. [5]:
. O - oo

(2.1) 15 = witk + [ Tiosk w123 6(ky + k2 — k3 — k) dk1dkadks .
In equation (2.1), which has been written in Fourier spa.cé, ¥ denotes the k-th
component in the Fourier decomposition of the complex wave field v (z,t) and
(*) stands for complex conjugation. Equation (2.1) depends on three parameters.
The first parameter, «, is related to the linear frequency wy = |k|*. The second
parameter, 3, is related to the interaction coefficient

(2.2) Tiosk = A {k1kaksk|?/* .

The third parameter, A, which also appears in the interaction coefficient (2.2) and is
equal to +1, governs the balance between dispersive and nonlinear effects. One can
use the terminology focusing for A = —1 and defocusing for A = +1. The system
possesses two important first integrals, the Hamiltonian

- 1 aa A
H= /wklwkIQdk + 3 /T123kw1w2w§wk 8(k1 + ko — k3 — k) dkydkodkadk

and the wave action (or number of particles)

N = [ 1iua.
Equation (2.1) describes four-wave resonant interactions satisfying
(23) ki+ks = ks+k
(24) W) +wy = W3+ wg.

It can be shown that when a < 1 the system (2.3)-(2.4) has nontrivial solutions
and that dominant interactions occur between four waves. In all computations
the parameter o has been set equal to 1/2. This case mimics gravity waves in
deep water, whose dispersion relation is given by wy = (gk)/?, where g is the
acceleration due to gravity. Computations for A = +1 were performed by Majda et
al. {5]. Computations for A = +1 were recently performed by Cai et al. [1] and by
Zakharov et al. [9].

3. Kolmogorov—type spectra
For a weak nonlinearity, Zakharov’s theory [10] leads to a kinetic equation for
the two-point correlation function ny = (| |2):

O
ot

47T/ Ti2ak|® (ningns + ningny — ninang — nongny)
X 6((.01 +wo — w3y — wk) 6(}61 + ko — k3 — k) dki1dkodks .

The two main hypotheses for deriving the kinetic equation are the assumptions of
gaussianity and of random phases. The stationary Kolmogorov-type solutions are
given by

(3‘1) Nk
(3.2) ne = ag|P|/P g1

a lQll/a k—23/3—1+a/3
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TABLE 1. Slope and flux sign for the Kolmogorov-type solutions
(3.1)-(3.2). The dispersion parameter « is equal to 1/2.

; ~1 | -8/4|-1/2|-1/4| o | +3

power of kin (3.1) | —-1/6 | ~1/3 | —=1/2 | —2/3 | =5/6 | —17/6
sign of @ + + 0 - - -
power of kin (3.2) | —1/3 | -1/2 | -2/3 | -5/6 | -1 -3
sign of P - 0 + + + +

and are associated respectively with a particle flux @ and an energy flux P. The
coefficients a, and as denote the dimensionless Kolmogorov constants. It is impor-
tant to emphasize that these solutions do not depend on the sign of nonlinearity
A. Such solutions can be written for all values of 8 and @ < 1. But there is a
physical argument which plays a crucial role in deciding the realizability of the
Kolmogorov-type spectra. Suppose that pumping is performed at some frequencies
wy around wy and that damping operates at frequencies wy near zero as well as at
frequencies w; much larger than wy. Weak turbulence theory then states that the
energy is expected to flow from wy to higher wy’s (direct cascade with P > 0) while
the particles mainly head for lower wy’s (inverse cascade with @ < 0). Accordingly,
we need to evaluate the fluxes in order to select, among the rich family of power
laws (3.1) and (3.2), those which are likely to result from numerical simulations of
equation (2.1) with damping and forcing. Only the cases
B8<-3/2 and (>2a-3/2

1e.

B<=-3/2 and B>-1/2 if a=1/2
are relevant because they correspond to a particle flux towards large scales (Q < 0)
and to an energy flux towards small scales (P > 0). The signs of the fluxes are shown
in Table 1 for & = 1/2 [9]. Computations are performed in the range 8 > —1/2,
which includes the case of simple cubic nonlinearity (8 = 0) and the case of gravity
waves (8 = 3).

4. Solitons, collapses and quasisolitons

The numerical results presented below show that the weakly turbulent regime
is strongly influenced by the presence of coherent structures. These are solitons,
quasisolitons or collapses. The existence of solitons depends on the parameter A.
Looking for soliton solutions of (2.1) of the form

ik(t) — ei(SZ—kV)tqak
with Q and V constant leads to
(41) ¢k =—m—— [ Tiosi 016205 8(k1 + ko — ky — k) dkydkadks .
Q-kV + Wi

For @ < 1, the condition Q—kV +|k|* # 0,Vk € R, implies that the propagating
speed V is zero. Rewriting equation (4.1) in variational form:

§(H+QN) =0
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one-can conclude that ‘stationary’ solitons can exist only if A = —1. In that case an
equilibrium between nonlinear and dispersive effects is possible. As for nonlinear
Schrédinger-type equations, the linear stability criterion for solitons is given by
ON/OQ > 0 [4]. In our case this gives

f<a-1
ie.
B<-1/2 if a=1/2.
Therefore the solitons are unstable in the regime of interest.

In view of this result, it is natural to look at the formation of collapses. They
are typically described by self-similar solutions of the form

bi(t) = (to — )P x(£)

: B—a+2

=k (ty — )V, =
§=Fk(to—1) e 1
An analysis of the convergence of the Hamiltonian and of the wave action integral
as t — tp shows that necessary conditions for collapses to exist when o = 1/2 are

8 > —1/2 for A = —1, which coincides with the soliton instability criterion, and
8 > 0 for A = +1. In spectral space, the self-similar solution behaves at ¢t = t¢ like

(4.2) ng ~ k~Ata—?

which is analogous to Phillips spectrum for deep water gravity waves [6].

In the case A = +1, quasisolitons can exist. These are approximate solutions of
equation (4.1) which look like envelope solitons. In the limit of a narrow spectrum
centered at k = k,,, such as Q — k,,V + k2, # 0, these quasisolitons are given by

(4.3) W(z,t) = ¢z — Vi) et tikm(a=Ve)
with ¢, Q and V given by

1-—
$(§) = \/ (;c(f,’f“*i) cosh,znﬁ) , k= k= k| <k

Q:——(l—a)k;‘;—%a(l—a)k,‘;_%z, V=akX!.

where

€ = arbitrary constant .

When &/k,, is small, the quasisolitons look almost like true solitons and can persist
for a long time. They can play an important role in weak turbulence. When «/ky,
is large, the quasisolitons can become unstable and develop into wave collapse.

5. Numerical results

The numerical computations are performed by adding to equation (2.1) a source
term in a narrow spectral band as well as a damping term containing a wave action
sink at large scales and an energy sink at small scales:

O

(61) i

= wpk + /T123k Unbay 8(ky + ko ~ ks — k) dky dkadks
+i (Fk -+ Dk) 'l/AJk
with
Fi=3 f6(k—k) and Dp=—v" [k~ —u* k% .
J
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FI1GURE 1. Level of nonlinearity as a function of time. The param-
eters are @ = 1/2,8 =0 and A = +1 (solid line); A = —1 (dashed
line).
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A pseudospectral code with 2048 modes is used to integrate equation (5.1).
Details can be found in [9].

5.1. Numerical results for 8 = 0, A = +1. The study is restricted to the
direct cascade. Typical initial conditions are given by random noise. Simulations
are run until a quasi-steady regime is established which is characterized by small
fluctuations of the energy and the number of particles around some mean value.
Then time averaging begins and continues for a length of time which significantly
exceeds the characteristic time scale of the slowest harmonic from the inertial range
(free of the source and the sink). In turn, the time-step of the integration has to
provide, at least, accurate enough resolution of the fastest harmonic in the system.
As our experiments show, one has to use an even smaller time-step than defined
by the last condition: the presence of fast nonlinear events in the system requires
the use of a time-step At = 0.005, which is 40 times smaller than the smallest
linear frequency period. Time averaging with such a small time step leads to a
computationally time-consuming procedure despite the one-dimensionality of the
problem. Figure 1 shows the time evolution of the average nonlinearity ¢, which
is defined as the ratio of the nonlinear part to the linear part of the Hamiltonian,
each part being calculated over the whole field. Of course, this definition does not
really make sense when external forces are applied but it provides a relatively good
estimation of the level of nonlinearity once the system reaches the steady state. The
mean values of € are 0.4 when A\ = +1 and 0.2 when A = —1. They are relatively
small. Thus, the condition of small nonlinearity required by the theory holds for
both systems. However the theory cannot explain the difference in the values of ¢,
since the same forcing is imposed in both systems.

The difference between the focusing and the defocusing cases is even more
obvious when one looks at the dissipation rates of particles and quadratic energy
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TABLE 2. a@ = 1/2,4 = 0. Time-averaged values of the wave
action, quadratic energy and corresponding fluxes in the stationary
state.

AIN|E|! @ Qt P pt
+1| 3 |19 0.1957 | 0.0090 | 0.276 | 0.258
—-1111] 9 |0.0098 | 0.0478 | 0.014 | 1.430

for small wavenumbers:
Q =2/ v k™Y |gl2dk, P~ =2/ v k™Y wi U dk
k<ky k<ks
and for large wavenumbers

@ =2 [ T Pk, P2 [ T w i b
k>ky k>ky
where k¢ is the characteristic wavenumber of forcing. Their time-averaged values
in the stationary state are collected in Table 2.

The stationary isotropic spectra of turbulence are displayed in Figures 2 and 3.
Again the results depend on the value of A. For both cases the theoretical spectrum
provides a higher level of turbulence than the observed one. In the focusing case
(A = —1) this difference is almost of one order of magnitude but the slope fits
the predicted value —1 well. For A = 41, the observed spectrum almost coincides
with the weak turbulence one at low frequencies and then decays faster at higher
wavenumbers. In this range, the slope is close to —5/4 as found in [5]. Note that
a new derivation of the Majda et al.’s spectrum is proposed in [9].

Comparison of the turbulence levels and fluxes of particles @ for both signs
of nonlinearity leads to a paradoxal result. At A = —1 the total number of particles
is three times less than at A = +1, while the dissipation rate of particles is higher
by one order of magnitude. It can be explained only by the presence in this case
of a much more powerful mechanism of nonlinear interactions, which provides very
fast wave particles transport to high frequencies. In our opinion, this mechanism is
wave collapse. Sporadic collapsing events developing on top of the weak turbulence
background could send most of particles to high wavenumbers without violation
of energy conservation, because in each self-similar collapse structure the amount
of total energy is zero. Such a collapsing event is shown in Figure 4. Note that
the contribution of collapses to the high-frequency spectrum is weak because they
produce a Phillips-type spectrum which decays very fast as k — +00. In our case,
equation (4.2) becomes

NE ~ k32,
Hence, only the weakly turbulent component k~! survives at large wavenumbers.
The coexistence of wave collapse and weak turbulence was also observed in [2] for
the nonlinear Schrédinger equation.

At A = +1 the picture of turbulence matches the weak turbulence predic-
tion both quantitatively and qualitatively. Meanwhile, the spectrum at high k’s is
steeper than the theoretical one. So far we cannot give a consistent explanation of
this fact. We can just guess that it is somehow connected with quasisolitons.
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FIGURE 2. 8 = 0,\ = —1. Stationary and isotropic spectra n
vs. wavenumber. We compare the computed spectrum with the
predicted one of Kolmogorov-type n; = ck™! with ¢ = a;P/3
(straight line).

FiGure 3. 8 = 0, A = +1. Stationary and isotropic spectra ng
vs. wavenumber, We compare the computed spectrum with the
predicted one of Kolmogorov-type ny = ck~! with ¢ = a,P/3
(straight line).
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FIGURE 4. 8 = 0,A = —1. Evolution towards collapse at z ~ 1
between ¢ = 4999.980 and ¢ = 5000.205.
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5.2. Numerical results for 8 = 3,A = +1. Computations were performed
with 8 = 3 because this case is analogous to gravity water waves. Moreover the
strength of the interactions is larger than in the case 3= 0.

Equation (5.1) was again integrated numerically over long times. The system
is first separated into several soliton-like structures and low-amplitude quasi-linear
waves. Processes of mutual interactions slowly redistribute the number of waves
in a way leading to the growth of initially bigger quasisolitons and the decay of
initially smaller quasisolitons. The final state then consists of one big quasisoliton
moving in a sea of small quasilinear waves as shown in Figure 5. The shape of
the quasisoliton is well described by the formula (4.3). The reader is referred to
our paper [9] for more detail on quasisolitons. This phenomenon is similar to the
‘droplet’ effect observed in the non-integrable nonlinear Schrédinger equation [11].
The soliton solution turns out to be a statistical attractor for the system: long time
evolution leads to the condensation of the number of particles into a single soliton
which minimizes the Hamiltonian.

6. Conclusions

In conclusion, the numerical results show a discrepancy with the theory, which
is mainly due to the presence of localised coherent structures, collapses in the
focusing case (A = —1) and quasisolitons in the defocusing case (A = +1). In other
words, both mechanisms, weak turbulence and coherent structures, are present and
lead to a complex mixed picture. The discrepancy between numerics and theory
may also be due to the sparsity of resonances in one dimension and the numerical
discretization. Four-wave interactions are not as efficient and localised structures
become dominant. Therefore equation (2.1) is not such a good model to assess the
validity of weak turbulence theory.
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FIGURE 5. B = 3,2 = +1. Snapshot of a quasisoliton at z ~ 3.7
and ¢ = 10880.
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