
Numerical Simulation of Solitary-Wave Scattering and Damping in Fragmented Sea Ice

Philippe Guyenne1, Emilian I. Părău2
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ABSTRACT

A numerical model for direct phase-resolved simulation of nonlinear
ocean waves propagating through fragmented sea ice is proposed. In
view are applications to wave propagation and attenuation across the
marginal ice zone. This model solves the full equations for nonlinear
potential flow coupled with a nonlinear thin-plate formulation for the ice
cover. Distributions of ice floes can be directly specified in the physical
domain by allowing the coefficient of flexural rigidity to be spatially
variable. Dissipation due to ice viscosity is also taken into account by
including diffusive terms in the governing equations. Two-dimensional
simulations are performed to examine the attenuation of solitary waves
by scattering and damping through an irregular array of ice floes. Wave
attenuation over time is quantified for various floe configurations.

KEY WORDS: flexural-gravity waves; ice floes; scattering; solitary
waves; spectral method; viscosity; wave attenuation.

INTRODUCTION

The rapid decline of summer ice extent that has occurred in the Arctic
Ocean over recent years has prompted a surge of research activity and, in
particular, the role of ocean waves in controlling sea-ice morphology has
been increasingly recognized. This is especially relevant in the context of
climate change as the resulting ice melting and proliferation of open wa-
ter promote further wave growth over increasing fetches, thus allowing
long waves to propagate larger distances into the ice field. Of particular
interest is the marginal ice zone (MIZ) which is the fragmented part of
the ice cover closest to the open ocean and, as such, it is a very dynamic
region strongly affected by incoming ocean waves. By breaking up the
sea ice, waves cause it to become more fragmented, which in turn in-
creases their capacity to further penetrate and damage the ice cover. Un-
fortunately, such information has not been factored into previous climate
predictions and this is now becoming a pressing issue. State-of-the-art
forecasting models of wind-driven gravity waves are only beginning to
be tested with crude parameterizations for wave-ice interactions (Doble
and Bidlot, 2013).

While the problem of ocean waves interacting with sea ice has drawn
attention for some time now, the vast majority of theoretical studies have
used linear approximations of the governing equations. In view is the
description of wave attenuation through ice-covered seas. This direction

of inquiry has produced an abundant literature and has reached a high de-
gree of sophistication spanning a variety of situations. For the MIZ, two
different approaches have commonly been adopted: (i) continuum mod-
els for waves propagating through an inhomogeneous ice cover described
as a uniform material with effective properties including viscosity or vis-
coelasticity (Wang and Shen, 2010; Zhao et al, 2015), and (ii) separate-
floe models where the ice cover is composed of individual floes with pos-
sibly different characteristics (Kohout and Meylan, 2008; Bennetts and
Squire, 2009). Unlike case (i) that includes dissipative processes, case
(ii) focuses on wave attenuation by scattering (i.e. directional spreading)
through the heterogeneous ice field. Indeed, measurements from Wad-
hams et al (1988) provided evidence that wave scattering by ice floes
is the dominant mechanism for energy attenuation in the MIZ. In case
(i), an explicit formula for the linear dispersion relation can be derived
and can provide a theoretical basis for subgrid parameterizations in wave
forecasting models. Case (ii) leads to solving a mixed boundary value
problem where quantities measuring the degree of wave reflection and
transmission can be determined. Theoretical predictions based on scat-
tering theory typically give an exponential decay of linear waves with
distance traveled through sea ice (Bennetts and Squire, 2012).

Despite some progress in recent years, the nonlinear theory is still
in its infancy. A body of work has focused on the analysis and simula-
tion of flexural-gravity waves in continuous uniform sea ice, and has em-
ployed thin-plate theory (Euler–Bernoulli theory when strains are finite
and/or infinitesimal) for the ice combined with nonlinear potential-flow
theory for the fluid. Results include weakly nonlinear modeling in vari-
ous asymptotic regimes as well as direct numerical simulation (Părău and
Dias, 2002; Milewski et al, 2011; Guyenne and Părău, 2015). Numerical
and theoretical results on nonlinear waves propagating in fragmented sea
ice are even more scarce, and this largely remains an open problem. An
attempt has been made by e.g. Hegarty and Squire (2008) who devised a
boundary integral method to compute the perturbative second-order so-
lution for the problem of large-amplitude ocean waves interacting with a
compliant floating raft such as an ice floe.

In the present paper, we describe a numerical model recently pro-
posed by Guyenne and Părău (2017), which allows for phase-resolved
simulation of nonlinear ocean waves propagating through fragmented sea
ice. This approach is based on the full time-dependent equations for non-
linear potential flow and can directly incorporate spatial distributions of
ice floes. The ice cover is viewed as an elastic material according to
the special Cosserat theory of hyperelastic shells (Plotnikov and Toland,
2011), with an ad-hoc modification to define its spatial dependence. This

373

Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference
San Francisco, CA, USA, June 25-30, 2017
Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE)
ISBN 978-1-880653-97-5; ISSN 1098-6189 

www.isope.org



micropolar theory was selected to form the basis for our ice-cover model
because it combines a number of compelling features: it is nonlinear,
conservative and well suited to direct numerical simulation. In particu-
lar, it fits well within the commonly used Hamiltonian formulation for
ocean waves (Zakharov, 1968). Restricting our attention to the two-
dimensional finite-depth problem with solitary waves as incident wave
conditions, we present extended results on wave attenuation by scatter-
ing and damping through an irregular array of ice floes. In particular, an
original contribution of this paper is the inclusion of dissipative effects
due to ice viscosity in the model. Their significance relative to scattering
effects is examined via direct numerical simulations.

In the following sections, we introduce the mathematical formula-
tion of this hydroelastic problem, including the model for fragmented
sea ice and for ice viscosity. We then describe the numerical methods to
efficiently and accurately solve the resulting equations. Finally, we show
numerical results on wave attenuation for various floe configurations.
These results are discussed with respect to such parameters as incident
wave amplitude, ice concentration and ice fragmentation.

MATHEMATICAL FORMULATION

Equations of Motion

The basic mathematical formulation that we use is for a two-dimensional
fluid of uniform finite depth h beneath a continuous ice sheet of infinite
horizontal extent. The fluid is assumed to be incompressible, inviscid
and the flow to be irrotational. The ice sheet is modeled as a thin elastic
plate according to the special Cosserat theory of hyperelastic shells in
Cartesian coordinates (x,y), with the horizontal x-axis being the bottom
of the ice sheet at rest and the y-axis directed vertically upwards (Plot-
nikov and Toland, 2011). The vertical deformation of the ice is denoted
by y = η(x, t). The fluid velocity potential Φ(x,y, t) satisfies the Laplace
equation

∇
2
Φ = 0 , for x ∈ R , −h < y < η(x, t) . (1)

The nonlinear boundary conditions at y = η(x, t) are the kinematic con-
dition

ηt +Φxηx = Φy , (2)

and the dynamic (or Bernoulli) condition

Φt +
1
2
|∇Φ|2 +gη +

σ

ρ

(
κss +

1
2

κ
3
)
= 0 , (3)

where the subscripts are shorthand notation for partial derivatives (e.g.
Φt = ∂tΦ), κ is the mean curvature of the fluid-ice interface and s is the
arclength along this interface. In terms of η , the mean curvature is given
by

κ =
ηxx

(1+η2
x )

3/2
,

and the nonlinear bending force exerted by the ice sheet onto the fluid
surface reads

κss +
1
2

κ
3 =

1
2

(
ηxx

(1+η2
x )

3/2

)3

+
1√

1+η2
x

∂x

[
1√

1+η2
x

∂x

(
ηxx

(1+η2
x )

3/2

)]
.

This system of equations is completed with the condition at the bottom,

Φy = 0 , at y =−h . (4)

The constant σ is the coefficient of flexural rigidity for the ice sheet,
ρ = 1025 kg/m3 is the fluid density and g = 9.8 m/s2 is the acceleration
due to gravity. Since the wavelengths being considered are much larger
than the ice thickness, we neglect the inertia of the thin ice sheet, hence
the plate acceleration term is not included here. We also assume that
the elastic plate is inextensible and not pre-stressed, and the tension due
to plate stretching and bending is negligible. The coefficient of flexural
rigidity is defined by

σ =
E`3

12(1−ν2)
,

where E = 6 GPa and ν = 0.3 denote Young’s modulus and Poisson’s
ratio for the ice respectively, and ` is its average thickness.

Dirichlet–Neumann Operator

Following Guyenne and Părău (2012, 2014), we can reduce the di-
mensionality of the Laplace problem (1)∼(4) by introducing ξ (x, t) =
Φ(x,η(x, t), t), the trace of the velocity potential on y = η(x, t), together
with the Dirichlet–Neumann operator (DNO)

G(η)ξ = (−ηx,1)> ·∇Φ
∣∣
y=η

,

which is the singular integral operator that takes Dirichlet data ξ on y =
η(x, t), solves the Laplace equation (1) for Φ subject to (4), and returns
the corresponding Neumann data (i.e. the normal fluid velocity there).

In terms of these boundary variables, the equations of motion (2)
and (3) take the form

ηt = G(η)ξ , (5)

ξt = − 1
2(1+η2

x )

[
ξ

2
x − (G(η)ξ )2−2ξxηxG(η)ξ

]
−gη− σ

ρ

(
κss +

1
2

κ
3
)
, (6)

which is a closed system for η and ξ , extending Zakharov’s formulation
for water waves (σ = 0) to ice-covered ocean waves (σ 6= 0). Dissipative
effects have so far been ignored.

In light of its analyticity properties with respect to η (Coifman and
Meyer, 1985), the DNO can be expressed in terms of a convergent Taylor
series expansion

G(η) =
∞

∑
j=0

G j(η) , (7)

where each term G j can be determined recursively (Craig and Sulem,
1993). More specifically, for even j = 2r > 0,

G2r(η) =
1

(2r)!
G0(|D|2)r−1Dη

2rD (8)

−
r−1

∑
s=0

1
(2(r− s))!

(|D|2)r−s
η

2(r−s)G2s(η)

−
r−1

∑
s=0

1
(2(r− s)−1)!

G0(|D|2)r−s−1
η

2(r−s)−1G2s+1(η) ,

and, for odd j = 2r−1 > 0,

G2r−1(η) =
1

(2r−1)!
(|D|2)r−1Dη

2r−1D (9)

−
r−1

∑
s=0

1
(2(r− s)−1)!

G0(|D|2)r−s−1
η

2(r−s)−1G2s(η)

−
r−2

∑
s=0

1
(2(r− s−1))!

(|D|2)r−s−1
η

2(r−s−1)G2s+1(η) ,
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where D = −i∂x and G0 = D tanh(hD) are Fourier multiplier operators
(D is defined in such a way that its Fourier symbol is k and thus |D|
corresponds to |k|). In the infinite-depth limit (h→ ∞), G0 reduces to
|D|.

This series expansion of the DNO provides an efficient elliptic
solver that will be exploited in the present numerical study. Such a
formulation involving boundary variables alone has been successfully
used in other contexts, e.g. in perturbation calculations for surface
gravity waves in single- and double-layer fluids (Craig et al, 2009,
2010, 2012), as well as in direct numerical simulations with uniform or
variable water depth (Guyenne and Nicholls, 2007; Xu and Guyenne,
2009; Guyenne et al, 2010).

Model for Fragmented Sea Ice

Equations (5) and (6) describing wave propagation in a continuous ice
sheet will form the basis for our model of fragmented sea ice. We will
extend this continuum formulation in an ad-hoc manner to model the
combined effects of two distinct mechanisms that contribute to wave at-
tenuation in the MIZ: scattering through an irregular array of separate
floes and dissipation due to ice viscosity.

As proposed by Guyenne and Părău (2017), a spatial distribution of
ice floes can be directly specified in the physical domain by allowing the
coefficient of flexural rigidity to be a variable function in space, namely
f (x)σ/ρ , whose amplitude varies between 0 (open water) and σ/ρ (pack
ice). Such a way of manipulating the bending force is similar to the
approach of Williams and Squire (2004) who described heterogeneities
(e.g. pressure ridges) in a continuous ice sheet by making the coefficient
of flexural rigidity spatially dependent.

In our two-dimensional procedure for generating a fragmented ice
cover of total length Lc, we first prescribe a regular array of N f identical
floes whose individual length is L f and which are evenly distributed over
the distance Lc. Then, to make this arrangement look more irregular (and
thus more realistic), each floe is shifted by an amount θL f /2 relative to
its initial center of gravity, where θ is a random number uniformly dis-
tributed between −1 and 1. Occasionally, if two neighboring floes hap-
pen to overlap after this shift, the resulting longer floe will further con-
tribute to inhomogeneity of the simulated ice cover. At the edges of each
floe, the continuous transition between the two phases (from ice to water
or vice versa) should be made steep but smooth enough to clearly distin-
guish the individual floes while complying with the continuum character
of the underlying formulation. We typically use a tanh-like profile for
this phase transition.

Figure 1 illustrates one realization of the spatial function f (x) for
the coefficient of flexural rigidity over the entire domain [0,L] = [0,600].
In this example, the ice field consists of N f = 5 floes of individual length
L f = 60, as represented by the plateaux f (x) = 1, which are randomly
positioned over the interval [100,100+ Lc] = [100,500]. Because they
are required to lie within [100,500], those which have been shifted out-
side this range are cut off (like the last floe in Fig. 1 which has been
shifted too much to the right by the randomization procedure). There is
no feedback mechanism from floes to waves in our formulation, so the
ice floes are not allowed to drift and their number is not allowed to vary
during the time evolution.

Dissipation due to ice viscosity is modeled by adding linear diffusive
terms to (5) and (6), with a coefficient of viscosity being proportional to
f (x) so that wave damping via this mechanism effectively takes place
in the presence of ice. Our motivation for using this viscous model is
twofold. First, it is sufficiently simple that it can be easily incorporated
into the underlying formulation and thus is well suited to direct numerical
simulation, as advocated in the next section. Second, it is analogous to
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Figure 1: One realization of the spatial variation f (x) for the coef-
ficient of flexural rigidity. The ice cover spans a distance Lc = 400
between x = 100 and x = 500, and consists of N f = 5 floes whose
individual length is specified to be L f = 60.

Dias et al (2008)’s model for weakly damped free-surface flows where
dissipation is due to water viscosity. In that context, viscous corrections
to the potential-flow equations also take the form of diffusive terms.

We point out that continuum viscoelastic-type models for wave-ice
interactions in the MIZ are more empirical than the present model in the
sense that their rheological parameters (including the viscosity param-
eter) do not correspond to specific properties of sea ice but rather they
are meant to represent wave attenuation from various sources combined.
By contrast here, we clearly distinguish conservative mechanisms (i.e.
scattering caused by ice floes) from non-conservative mechanisms and,
concerning the latter, we only examine dissipation due to ice viscosity.
It would be possible to include other dissipative processes by redefining
the coefficient of viscosity but this will not be considered in the present
study.

The new equations of motion read

ηt = G(η)ξ +2
λ

ρ
f (x)ηxx , (10)

ξt = − 1
2(1+η2

x )

[
ξ

2
x − (G(η)ξ )2−2ξxηxG(η)ξ

]
−gη− σ

ρ
f (x)

(
κss +

1
2

κ
3
)
+2

λ

ρ
f (x)ξxx +P , (11)

where λ denotes the dynamic viscosity of ice and P represents any other
possible forces acting at the top boundary. Note that, for simplicity, we
slightly deviate from Dias et al (2008)’s formulation who proposed a
viscous term proportional to Φyy on the left-hand side of (3) and, instead,
we replace it by

−Φyy
∣∣
y=η
' ξxx ,

on the right-hand side of (11). Otherwise, when reduced to boundary
variables, this term would yield more contributions depending on the
DNO and its derivatives. Such a simplification is consistent with the
thin-plate approximation for the ice sheet and leads to diffusive terms
similar to those used in e.g. eddy-viscosity models for breaking waves
(Tian and Choi, 2013). It would be of interest to include the full
expression of Φyy in (11) and test its performance in the future.

DIRECT NUMERICAL SIMULATIONS

In this section, we describe the numerical methods to efficiently and
accurately solve the full system of equations (10)∼(11). These methods
deal with the spatial discretization as well as the temporal integration
to allow for direct simulations in the time domain. We then present
numerical results on the attenuation of solitary waves in fragmented sea
ice. Both effects of scattering and dissipation are examined.
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Numerical Methods

For space discretization, we assume periodic boundary conditions in x
(with 0 ≤ x ≤ L) and use a pseudo-spectral method based on the fast
Fourier transform (FFT). This is a particularly suitable choice for com-
puting the DNO since each term in its Taylor series (7) consists of con-
catenations of Fourier multipliers with powers of η .

More specifically, both functions η and ξ are expanded in truncated
Fourier series(

η

ξ

)
= ∑

k

(
η̂k

ξ̂k

)
eikx .

Spatial derivatives and Fourier multipliers are evaluated in the Fourier
space, while nonlinear products are calculated in the physical space on
a regular grid of N collocation points. For example, if we wish to apply
the zeroth-order operator G0 to a function ξ in the physical space, we
transform ξ to the Fourier space, apply the diagonal operator k tanh(hk)
to the Fourier coefficients ξ̂k, and then transform back to the physical
space.

In practice, the Taylor series of the DNO is also truncated to a finite
number of terms,

G(η)≈ GM(η) =
M

∑
j=0

G j(η) , (12)

but thanks to its analyticity properties, a small number of terms (typi-
cally M < 10) are sufficient to achieve highly accurate results (Xu and
Guyenne, 2009). The computational cost for evaluating (12) is estimated
to be O(M2N logN) via the FFT. Aliasing errors are removed by zero-
padding in the Fourier space.

Time integration of (10) and (11) is performed in the Fourier space
so that linear terms can be solved exactly by the integrating factor tech-
nique. For this purpose, we separate the linear terms with constant co-
efficients from the nonlinear terms and linear terms with variable coeffi-
cients. Setting v = (η ,ξ )>, these equations can be expressed as

vt = L v+N (v) , (13)

where the linear part L v is defined by

L v =
(

0 G0
−g 0

)(
η

ξ

)
,

and the remaining part N (v) is given by N (v) = (N1,N2)
> with

N1 = [G(η)−G0]ξ +2
λ

ρ
f (x)ηxx ,

N2 = − 1
2(1+η2

x )

[
ξ

2
x − (G(η)ξ )2−2ξxηxG(η)ξ

]
−σ

ρ
f (x)

(
κss +

1
2

κ
3
)
+2

λ

ρ
f (x)ξxx +P .

Via the change of variables

v̂k(t) = Θ(t)ŵk(t) ,

in the Fourier space, involving

Θ(t) =

 cos
(
t
√

gG0
) √

G0
g sin

(
t
√

gG0
)

−
√

g
G0

sin
(
t
√

gG0
)

cos
(
t
√

gG0
)

 ,

system (13) takes the form

∂t ŵk = Θ(t)−1N̂k
[
Θ(t)ŵk

]
,

which only contains terms from N and is solved numerically in time
using the fourth-order Runge–Kutta scheme with constant step ∆t. By
converting back to v̂k, this scheme reads

v̂n+1
k = Θ(∆t)v̂n

k +
∆t
6

Θ(∆t)
(

f1 +2 f2 +2 f3 + f4
)
, (14)

where

f1 = N̂k (v̂
n
k) ,

f2 = Θ

(
−∆t

2

)
N̂k

[
Θ

(
∆t
2

)(
v̂n

k +
∆t
2

f1

)]
,

f3 = Θ

(
−∆t

2

)
N̂k

[
Θ

(
∆t
2

)(
v̂n

k +
∆t
2

f2

)]
,

f4 = Θ(−∆t)N̂k

[
Θ(∆t)(v̂n

k +∆t f3)
]
,

for the solution at time tn+1 = tn +∆t. The integrating factor Θ(t) is the
fundamental matrix of the linear system ∂t v̂k = L v̂k and, in the limit
k→ 0, it reduces to

Θ(t) =
(

1 0
−gt 1

)
.

To obtain (14), we use the fact that Θ(t) is a semigroup satisfying

Θ(a+b) = Θ(a)Θ(b) , Θ(a)−1 = Θ(−a) .

These identities can be easily checked by direct calculation. Despite be-
ing linear, the diffusive terms are not included in L and Θ(t) because
their coefficient is spatially variable. From the pseudo-spectral perspec-
tive, these terms are evaluated in the same way as a nonlinear product.

Expectedly, the scattering by ice floes was found to produce small-
amplitude short waves that radiate backwards from the main pulse but
these tend to contaminate the advancing solution by re-entering the com-
putational domain from the other end due to the periodic boundary condi-
tions. To overcome this difficulty, we specify a sponge layer by including
a damping pressure term of the form

P =−δ (x)G(η)ξ√
1+η2

x
,

on the right-hand side of (11), where δ (x) is a tunable spatially
dependent coefficient that is nonzero only in a small region near each
end of the domain and away from the ice floes. A tanh-like profile is
also used to represent the localized spatial behavior of δ (x).

Numerical Results

For convenience, Eqs. (10)∼(11) are non-dimensionalized using the
characteristic scales(

σ

ρg

)1/4
,

(
σg3

ρ

)1/8

,

as unit length and unit speed respectively. This implies that the coeffi-
cients g and σ/ρ are scaled out of the equations, while the coefficient of
ice viscosity takes the dimensionless form

γ =
λ

ρ

(
ρ3

σ3g

)1/8

.

We set γ = 5×10−4 as a representative value based on the choice λ = 31
Pa · s and ` = 0.4 m (Newyear and Martin, 1997). In the following, we
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will retain the original notation for the physical variables but the reader
should keep in mind that these now refer to dimensionless quantities.

Incident wave conditions are given by solitary waves that solve the
basic equations (1)∼(4) for surface gravity waves (σ = 0). We focus
on the shallow-water (or long-wave) regime that is characterized by pure
solitary waves with a single localized hump. Such solutions are com-
puted by a boundary integral method based on Cauchy’s integral formula
and have been extensively tested via time-dependent simulations using
our spectral scheme (Craig et al, 2006). In the absence of ice, they prop-
agate steadily without change of shape and speed, and may be viewed as
a prototype for long swell waves. We set h = 1 to be the reference unit
length scale.

In our simulations, we typically use ∆t = 0.002 (with M = 6) as
a good compromise between accuracy, stability and computational cost.
As a reference, this time step is hundreds times smaller than the linear
wave period in shallow water τ =

√
h/g = 1 for h = 1. Given the fourth-

order accuracy of our time-integration scheme, this value of ∆t is quite
reasonable. The choice M = 6 for the truncation order of the DNO is
motivated by previous tests on surface gravity waves and flexural-gravity
waves along a continuous ice sheet, where it has been found to yield
highly accurate results at a moderate cost (Guyenne and Părău, 2014).

The present setup features a domain of length L = 1200, with
the fragmented ice cover lying between x = 100 and x = 1100 (hence
Lc = 1000). The main objective is to quantify the attenuation of soli-
tary waves propagating over this distance, as a function of incident wave
height A, ice concentration C ' N f L f /Lc and ice fragmentation F ' N f .
The quantities N f L f /Lc and N f should be viewed as average values of C
and F since their exact values may slightly vary from one realization to
another due to floe merging and trimming by the randomization proce-
dure.

To quantify this attenuation, we use the L2 norm

‖η‖2 =

(
1
L

∫ L

0
η(x, t)2dx

)1/2
, (15)

which denotes the standard deviation relative to the zero mean value of
η (i.e. the quiescent level). Equation (15) is a measure of dispersion (i.e.
loss of coherency) of the solitary wave. The smaller this L2 norm, the
closer the solution to a small-amplitude dispersive wave with zero mean
value. The integral in (15) is evaluated numerically by the trapezoidal
rule.

We consider realizations from four different floe configurations de-
fined by (N f ,L f ) = (77,4), (77,8), (13,60), (13,72) and correspond-
ing to average ice concentrations C = 0.31, 0.62, 0.78, 0.94 respec-
tively. Among them, two pairs of configurations display well distinct
ice fragmentations: one pair (N f ,L f ) = (77,4) and (77,8) is particu-
larly fragmented, composed of many small floes, while the other pair
(N f ,L f ) = (13,60) and (13,72) is less fragmented, consisting of much
fewer but larger floes. Each pair has two configurations with varying floe
sizes, hence varying ice concentrations, but L f was not varied too much
in order to ensure a certain level of ice fragmentation and avoid the risk
of excessive floe merging by the randomization procedure. Typically,
the larger N f and L f (i.e. the higher C), the closer the floe configura-
tion to a continuous ice sheet. Among these four configurations, the case
(N f ,L f )= (77,4) is closest to open-water conditions since it has the low-
est C and highest F , while the case (N f ,L f ) = (13,72) is most similar to
a continuous ice sheet since it has the highest C and lowest F .

Because special attention is paid to nonlinear wave effects, we
choose to examine a fairly large amplitude A = 0.3 (relative to h = 1) as
an illustrative example. This incident wave amplitude is six times bigger
than the (dimensionless) ice thickness `= 0.05. A peculiarity of solitary
waves is that the higher the amplitude, the more localized the pulse and
expectedly the more pronounced the attenuation in the presence of ice.
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Figure 2: Snapshots of η for (N f ,L f )= (77,4) at t = 0 (a), (77,4)
at t = 416 (b), (77,8) at t = 416 (c), (13,60) at t = 416 (d) and
(13,72) at t = 416 (e) with A = 0.3 in the non-viscous case. Open
water is represented in blue color while ice floes are represented
in red color.

Therefore, A = 0.3 is a suitable choice for our study of wave scattering
and damping in fragmented sea ice.

First, we investigate the role of wave scattering caused by ice floes
and disregard ice viscosity by setting γ = 0. To show what the atten-
uation process and various floe configurations look like in the physical
space, Fig. 2 provides snapshots of η at a few instants during wave
propagation across the ice field. A single realization of each of the floe
settings is considered and, for graphical purposes, the individual floes
are associated with the values of f (x) ∈ [1− ε,1+ ε] (with ε = 10−3) to
take floating-point arithmetic into account. The incident solitary wave is
initially located at x = 80 near the left edge of the ice cover, and travels
from left to right. Its interaction with the random array of ice floes gives
rise to an irregular pattern of wave scattering whose characteristics and
associated wave decay depend on the levels of C and F .

Figure 2 suggests that two distinct mechanisms coexist and con-
tribute to wave attenuation: (i) multiple wave reflections from the ice
floes (most apparent in the short-floe configurations) and (ii) pulse
spreading due to the presence of ice itself (most apparent in the long-floe
configurations). Case (i) produces small backward radiation while case
(ii) can generate a moderately large dispersive wave train that propagates
forward ahead of the main pulse. In all cases however, we can discern a
remnant of the initial solitary wave, which persists throughout the entire
propagation. For the sparsest floe configuration (N f ,L f ) = (77,4), the
solitary wave is seen to travel essentially unaffected aside from a slight
decrease in amplitude. By contrast, for (N f ,L f ) = (77,8), the incident
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Figure 3: L2 norm of η as a function of time for A = 0.3 in the
non-viscous case. Numerical data are represented in various sym-
bols while their exponential fits are plotted in solid line.

wave quickly decays through backward radiation and pulse spreading
while retaining a well-localized shape. In this case, the maximum wave
elevation gets as low as ηmax' 0.05 (which is comparable to `) at t = 950
when the main pulse reaches the right edge of the ice field. These results
indicate that the ice cover should be sufficiently fragmented and dense
for wave attenuation to be significant, with a floe size on the order of the
wavelength or pulse extent.

To further quantify the observed attenuation, Fig. 3 depicts the L2

norm (15) as a function of time for all four floe settings. These numeri-
cal data span a long time interval t ∈ (0,1000)� τ and are normalized
relative to the incident values at t = 0. Motivated by linear predictions,
the least-squares exponential fit

‖η‖2 = βeαt , (16)

to each data set is also presented in this figure as a reference. Although
we look at wave characteristics as functions of time, there is a direct
correspondence with the behavior as a function of distance traveled into
the ice field owing to the localized and progressive nature of solitary
waves. Figure 3 confirms that (N f ,L f ) = (77,4) and (77,8) are the least
and most attenuating floe configurations, respectively, among the four
considered. Because (N f ,L f ) = (77,8) defines a highly fragmented ice
cover, multiple wave reflections caused by ice floes likely plays a ma-
jor role in wave attenuation. However, as mentioned above, its level
of ice concentration is such that the mechanism of pulse spreading also
contributes to wave scattering and helps make the whole process more
effective.

While the exponential fit (16) performs reasonably well for
(N f ,L f ) = (77,4) when the attenuation is weak, it provides a poorer ap-
proximation to the numerical data when the attenuation is stronger. This
is especially apparent in the case (N f ,L f ) = (77,8) and the reason is be-
cause the data seem to converge to a nonzero (positive) limit rather than
to zero as time goes on. Guyenne and Părău (2017) found that a two-term
exponential function of the form

‖η‖2 = β1eα1t +β2eα2t ,

where α1 and α2 are of opposite signs, provides a better fit. Consistent
with previous observations from Fig. 2, this stagnating behavior as t →
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Figure 4: L2 norm of η as a function of time for A = 0.3 in floe
configuration (N f ,L f ) = (77,4) (a), (77,8) (b), (13,60) (c) and
(13,72) (d). Comparison between the viscous and non-viscous
cases is shown.

+∞ may be attributed in part to the well-known stability of solitary waves
(Benjamin, 1972), which prevents them from completely disintegrating
as they travel across the ice field.

We now incorporate ice viscosity (γ = 5× 10−4) and compare the
L2 results with those obtained in the previous non-viscous case (γ = 0)
for A = 0.3. The graphs are shown in Fig. 4 for all four floe settings. We
see that viscous effects may be significant, especially in long-floe con-
figurations where ice concentration is high thus allowing such effects to
accumulate over time. For the short-floe setting (N f ,L f ) = (77,8) where
strong attenuation takes place through wave scattering, the correction due
to viscous damping is found to be relatively small. But overall, the pres-
ence of ice viscosity tends to induce a faster decay rate as expected.

To further explore the dependence of wave attenuation on physical
parameters, we extract the exponential decay rate α from L2 data in the
non-viscous case. This decay rate is plotted as a function of incident
wave conditions and floe parameters in Fig. 5. Because a wider range
of A = {0.01,0.02,0.05,0.1,0.2,0.3} is examined, which implies a
higher computational cost, we consider a smaller domain of length
L = 600 with Lc = 400 for this calculation. Accordingly, while the
same values of L f are used to define the four floe configurations, the
corresponding values of N f are now smaller. Looking at Fig. 5, the
tendency for wave scattering and attenuation (i.e. α < 0) is confirmed in
all cases. The larger the incident wave amplitude, the faster the decay
rate (i.e. |α| increases with A), and scattering effects are negligible
for A = 0.01 and A = 0.02. This is a consequence of the pulse being
more localized as A is increased, which approximates shorter waves
experiencing more scattering. It is also clearly demonstrated that
(N f ,L f ) = (31,8) is significantly more favorable to wave attenuation
than (N f ,L f ) = (5,60) although they display similar levels of C. Given
that the floe configuration (N f ,L f ) = (31,8) is much more fragmented
than (N f ,L f ) = (5,60) while being even slightly less concentrated in
ice, i.e. C = 0.61 and C = 0.66 respectively, this clearly indicates that
wave scattering is promoted by a high level of F .
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Figure 5: Exponential rate of attenuation for the L2 norm of η

as a function of A (upper panel) and C (lower panel) in the non-
viscous case.

CONCLUSIONS

We have proposed a numerical model for direct phase-resolved simula-
tion of nonlinear ocean waves interacting with fragmented sea ice. This
approach is based on the full time-dependent equations for nonlinear po-
tential flow, combined with a thin-plate model for the ice cover according
to the special Cosserat theory of hyperelastic shells. Via an ad-hoc exten-
sion of the original plate formulation, spatial distributions of ice floes can
be directly incorporated into the numerical algorithm to mimick sea-ice
morphology in the MIZ. We have also explored the possibility of includ-
ing diffusive terms in the equations of motion to model dissipation due
to ice viscosity.

Restricting our attention to the two-dimensional finite-depth prob-
lem, we have examined the attenuation of solitary waves due to scatter-
ing and damping through an irregular array of ice floes. The numerical
model was run for various floe configurations, and the L2 norm of η

was used to quantify this attenuation over time as a function of incident
wave height, ice concentration and ice fragmentation. Our main results

can be summarized as follows. (i) The larger the incident wave ampli-
tude, the stronger the attenuation, which is a consequence of the more
localized profile of the pulse and is consistent with linear predictions and
field observations (Wadhams et al, 1988). (ii) The most attenuating floe
configuration represents a good compromise between ice concentration
and ice fragmentation such that both mechanisms of pulse spreading and
multiple wave reflections contribute to wave attenuation in an effective
way. (iii) The inclusion of ice viscosity may have significant dissipative
effects on wave dynamics over time, especially in long-floe configura-
tions where ice concentration is high.

The present model should be viewed as a first step to provide a
platform for direct phase-resolved simulation of nonlinear ocean waves
in the MIZ. In the future, we plan to investigate the three-dimensional
problem with fragmented sea ice and compare with recent field mea-
surements (Meylan et al, 2014). The proposed approach for simulating
wave-ice interactions is readily extensible to three dimensions. Pre-
liminary three-dimensional computations were performed by Părău
and Vanden-Broeck (2011) for nonlinear potential flow coupled with a
continuous ice sheet according to linear Euler–Bernoulli theory.
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