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ABSTRACT

A direct numerical method is proposed to simulate nonlinear water
waves with nonzero constant vorticity in a two-dimensional channel
of finite or infinite depth. Such a vortical distribution represents a
background shear current that varies linearly in the vertical direction.
Our method is based on the reduction of this problem to a lower-
dimensional Hamiltonian system involving surface variables alone.
This is made possible by introducing the Dirichlet-Neumann operator
and associated Hilbert transform which are described via a Taylor
series expansion about the still water level. Each Taylor term is a sum
of concatenations of Fourier multipliers with powers of the surface
elevation, and thus is efficiently computed by a pseudo-spectral method
using the fast Fourier transform. The performance of this numerical
model is illustrated by examining the long-time evolution of Stokes
It is
observed that a co-propagating current has a stabilizing effect on surface

waves on deep water and of solitary waves on shallow water.

wave dynamics while a counter-propagating current promotes wave
growth. In particular, the Benjamin—Feir instability of Stokes waves
can be significantly reduced or enhanced, leading to the formation
of rogue waves.
ble rotational solitary waves if the vorticity is not too large in magnitude.

Our simulations also suggest the existence of sta-

KEY WORDS: Dirichlet-Neumann operator; pseudo-spectral method;
rogue waves; series expansion; vorticity; water waves.

INTRODUCTION

The classical water wave problem assumes flow irrotationality and has
been widely studied in the literature. Under this assumption, the orig-
inal Laplace problem can be reduced from one posed inside the fluid
domain to one posed at the boundary alone, and can be cast in canoni-
cal Hamiltonian form (Zakharov, 1968). Furthermore, Craig and Sulem
(1993) showed that the dependence on the surface elevation can be made
more explicit in the Hamiltonian functional by introducing the Dirichlet—
Neumann operator, and they proposed an efficient and accurate numeri-
cal method for simulating nonlinear water waves based on a Taylor series
expansion of this operator.

In recent years, the free boundary problem for water waves with
nonzero vorticity has drawn increasing attention from the scientific com-
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munity. This setting is of special relevance to problems in oceanography
and coastal engineering where wave-current interactions may play a ma-
jor role (Phillips, 1977). Much theoretical work has been done by Con-
stantin, Strauss and coworkers to investigate the existence and properties
(e.g. stability) of two-dimensional traveling wave solutions based on the
stream function or Dubreil-Jacotin formulation of the Euler equations
(Constantin and Strauss, 2004). For constant vorticity, a Hamiltonian
formulation similar to Zakharov’s can be derived so that the governing
equations can be expressed in terms of surface variables involving the
stream function and generalized velocity potential (Wahlén, 2007; Con-
stantin et al, 2008).

In addition to these theoretical results, numerical studies have also
been conducted in the fully nonlinear two-dimensional setting. For ex-
ample, Ko and Strauss (2008) computed finite-depth periodic waves with
general vorticity by solving the full equations in the Dubreil-Jacotin for-
mulation. The moving fluid domain is mapped to a fixed rectangle where
the bulk equations and boundary conditions are discretized by finite dif-
ferences. Moreira and Peregrine (2012) simulated nonlinear interactions
between deep-water waves and variable currents via a boundary inte-
gral method where the rotational part of the underlying flow is speci-
fied by a distribution of point vortices. In earlier work, Vanden-Broeck
(1996) developed a similar method based on Cauchy’s integral formula
for constant vorticity. The latter case corresponds to a linear shear cur-
rent and has also been examined by other investigators, including Dal-
rymple (1974) who sought a numerical solution in the form of a per-
turbative series, Choi (2009) who used conformal mapping to derive a
lower-dimensional system of equations more suitable for direct numeri-
cal simulation, and Francius et al (2013) who proposed an extension of
the high-order spectral method of Dommermuth and Yue (1987). All
the numerical studies mentioned above focused on wave solutions of
Stokes type (i.e. periodic nonlinear wave trains). Recently, Castro and
Lannes (2015) extended Zakharov’s Hamiltonian formulation to water
waves with general vorticity but the resulting surface equations are cou-
pled to a bulk equation for the vorticity, which requires a solution defined
over the entire fluid domain. Based on this new formulation, Lannes and
Marche (2016) derived a convenient set of Green—Naghdi equations for
rotational waves in the shallow-water regime, via the use of vertically av-
eraged quantities, and investigated solitary wave solutions numerically.

In this paper, we describe the numerical approach recently pro-
posed by Guyenne (2017) to solve the full dynamical equations for two-
dimensional nonlinear water waves with nonzero constant vorticity. This



setting is of physical interest; e.g. tidal flows are well described by linear
shear currents (Swan et al, 2001). The starting point is the Hamiltonian
formulation of Wahlén (2007) and Constantin et al (2008), where such
nonlocal operators as the Dirichlet—-Neumann operator and associated
Hilbert transform play a key role in the reduction to surface variables.
The former operator gives the normal derivative of the velocity potential
at the free surface, while the latter operator evaluates the stream function
there. In light of their analyticity properties, both operators are expressed
via a convergent Taylor series expansion about the unperturbed geometry
of the fluid domain. Each term in these Taylor series is determined re-
cursively as a sum of concatenations of Fourier multipliers with powers
of the surface deformation, and thus is efficiently computed by a pseudo-
spectral method using the fast Fourier transform. In doing so, a new way
of evaluating the Hilbert transform for Dirichlet data given on the bound-
ary of an irregular domain is proposed. This leads to an efficient and ac-
curate numerical model that solves the full time-dependent equations for
nonlinear water waves with nonzero constant vorticity, and is applicable
to a wide range of wave solutions (of Stokes type or solitary type) on
arbitrary water depth. Results include simulations of rogue waves trig-
gered by the Benjamin—Feir instability of Stokes waves in the presence
of an opposing current and the numerical evidence of stable rotational
solitary waves.

In the following sections, we introduce the mathematical formula-
tion of the problem, including the Hamiltonian formulation as well as
the Taylor series expansions for the Dirichlet-Neumann operator and
associated Hilbert transform. We then describe the numerical methods
for spatial discretization and temporal integration of the governing
equations. Finally, we show numerical applications of the numerical
model in various limiting regimes and discuss the influence of vorticity
on the wave dynamics.

MATHEMATICAL FORMULATION
Equations of Motion

We consider the motion of a free surface on top of a two-dimensional
ideal fluid of uniform depth 4. In Cartesian coordinates, the x-axis is
the direction of wave propagation and the y-axis points upward. The
free surface is assumed to be the graph of a function as given by y =
N (x,7). The velocity field is denoted by u(x,y,t) = (u(x,y,t),v(x,y,t))T
and subscripts will be used as shorthand notation for partial or variational
derivatives (e.g. u; = du). In two dimensions, the vorticity y = vy —u, is
simply advected by the flow and so if it is initially constant everywhere,
then it remains so. Flows with nonzero constant vorticity are thus of
interest and we hereafter assume Y to be a constant.

From the incompressibility condition, there exist two conjugate har-
monic functions such that

Ox =V, =u+Yyy, Oy ==Yy =V,

where ¢(x,y,) denotes the generalized velocity potential, y(x,y,7) may
be viewed as a stream function and the constant vorticity Y represents
a background shear current that varies linearly in the vertical direction.
Background currents may be more generally described by

M:(PX+UO_W7

where Uj is a constant (Francius et al, 2013). This additional term how-
ever is an irrotational component of the velocity field and thus would not
contribute to rotational effects. For convenience, we set Uy = 0 here and
postpone the study of Uy # 0 to a future publication.
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Using these variables, the initial boundary value problem for rota-
tional water waves associated with the fluid domain

Qt)={0<x<L,—h<y<n(xn)},

can be stated as

Ap = 0, in Q@ ()
=@+ @M=y = 0, on y=n, (2

1
o5 (@I +0)) Y —mmecten = 0, on y=n, ()
(Py = 07 on y:7h5(4)

where g is the acceleration due to gravity. Expressing V¢ and y in
terms of Dirichlet data for ¢ on the free surface requires the introduction
of nonlocal operators as discussed next.

Hamiltonian Formulation

Following Craig and Sulem (1993), Wahlén (2007) and Constantin et al
(2008), the dimensionality of the Laplace problem (1)~(4) can be re-
duced by introducing the trace of the velocity potential on the free sur-
face,

é(x,t) = (p(x,n(x,t),t),

together with the Dirichlet—-Neumann operator (DNO)
GmE = (-ns1)" -Vl _,

which is the singular integral operator that takes Dirichlet data & on
y = n(x,t), solves the Laplace equation (1) subject to (4), and returns
the corresponding Neumann data (i.e. the normal fluid velocity there).
Via this surface reduction, Egs. (2) and (3) can be formulated as a non-

canonical Hamiltonian system
Hy
H € ’

( gzl ):< o 781;‘

for the conjugate variables 1 and &, whose Hamiltonian

(&)

H= %/OL {éG(n)é — Y&+ %yznﬂgnz} dx,

corresponds to the total energy. More specifically, these equations read

= Gn)E+ynny, (6)
& = - g [ (O - 2Emm)E]
+yné&—yK(n)é, @)

where the trace of the stream function on the free surface is the Hilbert
transform (HT) of & associated with the moving fluid domain, i.e.

W(x’n(xvt)vt) = K(n)é 5
and is related to the DNO by

G(n)& =—dK(n)E.

Equations (6) and (7) reduce to the classical Hamiltonian equations for
irrotational water waves if ¥ = 0. Surface tension could be easily incor-
porated into (7) but will not be examined in this paper.

Other invariants of motion for (5) include the volume

L
v=["nas,
0

®)



and impulse

I:/()L (néx—%ynz)dx

Dirichlet-Neumann Operator

Owing to its analyticity properties with respect to 1) (Coifman and Meyer,
1985), the DNO can be expressed in terms of a convergent Taylor series
expansion

= Gi(m) ©)
Jj=0

where each term G; is homogeneous of degree j in 1 and can be de-

termined recursively (Craig and Sulem, 1993). More specifically, for

j=2r>0,

1
= (r—1) 2r
G2r(n) (2 )' DTI D
— (r 8) 1 2(r—s)
Z (r—s) n Gas(1)
_Z s 71) G Gy (),
and, for j =2r—1>0,
# 2(r—1) 2r—1
Gar—1(1) (Zr—l)!D D1 D
r—1
- ; 2(r—s—1) ,2(r—s)—1
s;() (Z(rfs)*l)!GOD n st(n)
r=2 1

a2 I G (),
= Q2(r—s—1))! $
where D = —id;, and Gy = Dtanh(hD) are Fourier multiplier operators.
In the infinite-depth limit (A — o), G reduces to |D|. Similarly, the HT
can also be expanded as a power series

K(m) =Y Ki(n), (10)
j=0
where
Ki(n)=—-0,'G;(n)=iD"'G;(n),

by virtue of (8). The corresponding recursion formulas can also be closed
to allow the various K;’s to be re-used as vector operations on &, yielding

Ko (N) KoD*" Do o, an

- (2r)!
r—1

+
s=0
1

-
2(r—s))!
1

; 2(r—s)—=1)!

for j =2r >0, and

D09 299, Koy (1)

K()Dz(r s— ])n (r—s)— ]8K23+l(n)

1

KZV*I(TI) WDZ(ril)nb’ilax (12)
y 2(r—s—1) ,2(r—s)—1
JZ(J (r—s —1) Bir—s) =P N 9xKas(1)
r—2
; 2(r—s—2) 2(r—s—1)
+s:0 (2(r7s71))!D axn aXK23+1(n)7
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for j =2r—1> 0, where Ky = itanh(hD) is the HT for a uniform strip
of thickness 4. In the infinite-depth limit, Ky reduces to isgn(D) but
Egs. (11) and (12) remain unchanged. The HT of & is defined up to
an additive constant in (7) but this constant may be absorbed into & by
simply redefining €.

These series expansions of the DNO and HT play a central role in
our numerical approach as discussed in the next section. They require
however that 1 be a single-valued graph of x and thus overturning waves,
with a multivalued profile, are not permitted (Guyenne and Grilli, 2006;
Pomeau et al, 2008). Such a formulation has been successfully used
in other contexts, e.g. in perturbation calculations for surface gravity
waves in single- and double-layer fluids (Craig et al, 2005, 2009, 2010,
2012; Guyenne et al, 2010; Guyenne and Pardu, 2012, 2014), as well
as in direct numerical simulations with uniform or variable water depth
(Craig et al, 2006; Guyenne and Nicholls, 2007; Xu and Guyenne, 2009;
Guyenne 2017; Guyenne and Pardu, 2017).

DIRECT NUMERICAL SIMULATIONS

In this section, we describe the numerical methods to efficiently and
accurately solve the full system of equations (6)~(7). These methods
deal with the spatial discretization as well as the temporal integration.
We then present numerical results of rotational wave dynamics in two
distinct limiting regimes: Stokes waves on deep water and solitary waves
on shallow water.

Numerical Methods

For space discretization, we assume periodic boundary conditions in x
(with 0 < x < L) and use a pseudo-spectral method based on the fast
Fourier transform (FFT). This is a particularly suitable choice for com-
puting the DNO and HT since each term in their Taylor series consists of
concatenations of Fourier multipliers with powers of 7.

More specifically, both functions 17 and £ are expanded in truncated

Fourier series
Nk ) ey

(¢)-x(s

Spatial derivatives and Fourier multipliers are evaluated in the Fourier
space, while nonlinear products are calculated in the physical space on
a regular grid of N collocation points. For example, if we wish to apply
the zeroth-order operator Gy to a function & in the physical space, we
transform & to the Fourier space, apply the diagonal operator k tanh(/k)

to the Fourier coefficients &, and then transform back to the physical
space.

In practice, the Taylor series of the DNO and HT are also truncated
to a finite number of terms,

M
Gn)~G"(n)=Y G;(n) , (13)
Jj=0

ZK

but thanks to analyticity properties of the DNO, a small number of terms
(typically M < 10 <« N) are sufficient to achieve highly accurate results
(Xu and Guyenne, 2009). Given the direct relation between G and K, it
is natural to use the same truncation order M in both series. The compu-
tational cost for evaluating (13) is estimated to be O(M?NlogN) via the
FFT. Aliasing errors are removed by zero-padding in the Fourier space.
There are alternate ways of determining the DNO and HT. We may
first evaluate (10) together with (11)~(12) for K and then simply com-
pute G via G = —dyK. Conversely, we might apply the inverse operator



—d: ! to G after calculating it from (9). While there is a singularity (or
at least some indetermination) for k = 0 since d;~! corresponds to (ik) ™!
in the pseudo-spectral framework, this difficulty could be overcome by
“manually” setting the zeroth Fourier coefficient of K(1)& to zero, be-
cause the HT is defined up to an additive constant which may be omitted
as mentioned earlier. From a general perspective, both series expansions
(9) and (10) are of interest in their own right. In particular, evaluating the
HT via the closed formulas (11)~(12) is straightforward and avoids any
issue at k = 0. This provides a new recursive procedure for efficiently
computing the HT in boundary value problems with an irregular domain,
independently of the DNO.

Time integration of (6) and (7) is performed in the Fourier space
so that the linear terms can be solved exactly by the integrating factor
technique. For this purpose, we separate the linear and nonlinear parts in

(6)~(7). Setting v = (1,E) T, these equations can be expressed as
hv=2Lv+ N (v), (14)

where the linear part .£’v is defined by

0 Go n
(5 9)(2)
and the nonlinear part A4 (v) = (4],.45) T is given by
M [G(n) = Go|&+ e,
s (8 - (Gmer - 28mGme
+m&—vK(m)§.

Via the change of variables

Lv=

M

in the Fourier space, involving
cos (1v/gGo So gin (¢ 2Go
o) (Vo) /T ainvaGi) |
- G%sin(z 3Go) cos (11/2Go)
system (14) takes the form
awi =00 LA [O() W],

which only contains nonlinear terms and is solved numerically in time
using the fourth-order Runge—Kutta scheme with constant step Ar. By
converting back to Vy, this scheme reads

N A
Vit = e v+ <o) <f1 +2f2+2f3 +f4) ,

where
fi = e/T/k\(?Z)?
= o(-3)alp(3)(7-30)]
- o(-2) (%) (2025
fi = O(-ANA|O) (7 +Arf) ]

for the solution at time t,,.| =, + Ar. By definition, the integrating factor
O(t) is the fundamental matrix of the linear system 0,V = £V;. Here
all its entries are real-valued and, in the limit K — 0, they reduce to

@(t):( 7'gt ‘1))
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Numerical Results

We non-dimensionalize (6)~(7) by using characteristic length and time
scales associated with the wave regime under consideration. In the
deep-water regime, these are 1/ky and 1/+/gky respectively, so that
g — 1 and ¥ — y/\/gko (ko denotes a characteristic wavenumber). In
the shallow-water regime, these are hy and +/hg/g respectively, so that
g— 1, h— h/hy and ¥ — y\/ho/g (ho denotes a characteristic water
depth). For convenience, in the following, we retain the original notation
for all the variables and parameters but the reader should keep in mind
that these now refer to dimensionless quantities.

Stokes Waves on Deep Water: We first examine the Benjamin—Feir
instability (BFI) of Stokes waves in the presence of a linear shear current.
For this purpose, we solve (6) and (7) with initial conditions of the form

n(x,0) = [1+4cos(gx) | mo(x), &(x.0)= [1+Acos(@) | &), (15)

where (19,&p) denote a Stokes wave solution to (1)~(4) with v =0,
which is computed by Fenton’s method (Fenton, 1988). The Stokes wave
is defined by its amplitude a and carrier wavenumber k, and its steepness
is given by € = ka. The parameters A and ¢ in (15) represent the am-
plitude and wavenumber of the initial sideband perturbation. This is a
physically relevant setting that may correspond to e.g. swell waves prop-
agating into an oceanic area dominated by a strong background current.
In the irrotational water wave problem, it is well known that Stokes waves
are unstable to sideband perturbations on deep water. It is thus of interest
to investigate the effects of constant vorticity on Stokes wave evolution,
in particular whether vorticity can enhance or prevent the BFI. We spec-
ify a spatial domain of length L = 27 and infinite depth & = oo, which is
discretized with N = 1024 collocation points. The temporal resolution is
given by Ar = 0.001 and the truncation order is set to M = 6 based on
previous tests (Xu and Guyenne, 2009; Guyenne and Pdrdu, 2012).

We run simulations of (6)~(7) up to t = 1000 starting from (15)
with (a,x) = (0.005,10) and (A,q) = (0.1,1) such that € = 0.05. The
sideband wavenumber g = 1 corresponds to the maximum of the growth

rate
2 q q ?
o =E"/gK 1— ,
8 (2 21('8) <2ﬁ1€£)

as predicted by a weakly nonlinear analysis based on the nonlinear
Schrodinger (NLS) equation. This initial disturbance serves to suitably
trigger the BFI by promptly exciting the potentially most unstable mode.
Figure 1 shows snapshots of 7 at the initial time = 0 for Y =0 and at
the time of maximum growth (when the wave profile exhibits the high-
est crest) for Yy =0, 1, £2. For the sake of comparison, we use the
same initial condition in all these cases. The waves travel from left to
right in the positive x-direction. Note that ¥ > 0 corresponds to primarily
co-propagating currents (directed rightward) because it contributes posi-
tively to the horizontal fluid velocity u = ¢ — vy for y < 0, while y <0
represents primarily counter-propagating currents (directed leftward).
We find that a co-propagating current tends to stabilize the Stokes
wave; the larger 7, the stronger the stabilizing effect. For y = +1 and
Y = +2, the BFI seems to be inhibited. The wave experiences a recur-
ring sequence of small-amplitude modulations and demodulations about
its initial configuration. As a result, the initial wave profile is overall
preserved (modulo translation) up to at least r = 1000. The correspond-
ing graphs are not shown here for convenience since they look almost
identical to Fig. la. On the other hand, a counter-propagating current
(moving in opposite direction to the Stokes wave) tends to promote and
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(b)
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Fig. 1: Snapshots of 1 at (a) t =0 (y=0), (b) t =956 (y = 0),
(c)t =586 (y=—1) and (d) t = 376 (y = —2) for an initially
perturbed Stokes wave of amplitude a = 0.005 and wavenumber
K = 10 on deep water.

enhance its instability. The larger |y|, the sooner the Stokes wave be-
comes unstable and the higher it grows. For y = —1 and y = —2, the
wave reaches an elevation amax = 0.016 and amax = 0.025 at + = 586
and r = 376 respectively, which corresponds to a factor of o = 3.2 and
o =5 compared to the initial unperturbed wave amplitude a = 0.005. As
a reference, the maximum wave growth observed in Fig. 1b for y =0 1is
o = 2.4 (amax = 0.012), which agrees with the NLS prediction

o= g4 1—<
a

2
q

3 \/51(8) 24,

for kK =10, € =0.05 and g = 1. In the case y = —2, the wave focusing
att = 376 is so strong that the computer code breaks down shortly after-
ward. These computations support the fact that wave-current interactions
represent a possible mechanism for rogue wave formation in the ocean
(Kharif and Pelinovsky, 2003). Similar numerical results were obtained
by Choi (2009) and Francius et al (2013).

Figure 2 plots the time evolution of errors

H—Hy
0

Error:‘ V—Vol,

-1
I |’
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Fig. 2: Time evolution of errors on energy H (thick solid line),
impulse / (dashed line) and volume V (thin solid line) for an ini-
tially perturbed Stokes wave on deep water in the presence of a
linear shear current with vorticity (a) y = +1 and (b) y = —1.

on energy H, impulse / and volume V respectively, for y = +1. The
quantities Hy, Iy and Vjy denote their initial values at + = 0. Note that,
for V, we simply examine the absolute error rather than the relative
error because Vj is essentially zero for such a periodic wave train as the
Stokes wave. We see that all three invariants of motion are very well
conserved in our numerical simulations, with the errors on V remaining
near machine precision. The errors on H and I are a few orders of
magnitude higher than those for V, and they tend to coincide, probably
because the computation of H and / involves several quantities including
N and &, while that for V only involves 7). Another observation is that
the errors for ¥ = +1 are a bit lower and their variation is smoother than
those for Y = —1. This is consistent with previous observations from
Fig. 1 and reflects the fact that the wave dynamics is relatively calm in
the presence of a co-propagating current. On the other hand, for y = —1,
the errors on H and / exhibit more variation because of the stronger
wave growth.

Solitary Waves on Shallow Water: We now consider the propagation
of solitary waves on shallow water with constant vorticity. These long
coherent waves are known to have strong stability properties in the irro-
tational case (Craig et al, 2006). Therefore, we simply perform simula-
tions with initial conditions given by unperturbed solitary-wave solutions
of (1)~(4) for y = 0, and examine their evolution as they travel through
the rotational field. These initial conditions are computed by Tanaka’s
method (Tanaka, 1986), and propagate steadily without change of shape
and speed in the absence of vorticity. The domain length and depth are
set to L = 150 and h = 1, with a spatial resolution of N = 1024 grid
points (corresponding to Ax = 0.146). The spatial domain is specified
long enough to accommodate the broad support of shallow-water soli-
tary waves, hence a very fine grid size is not needed to accurately resolve
their profile. Accordingly, the time step is chosen to be Az = 0.01 but
the truncation order is kept at M = 6 to ensure that we capture well the
nonlinear character of such solutions.

We first run simulations of (6)~(7) starting from a single solitary
wave of height a = 0.3 (relative to 7 = 1). In the presence of a co-
propagating current, the wave is found to gradually decrease in ampli-
tude and broaden in width. An equilibrium state is then reached, with the
wave height stagnating at amax < a and the wave shape remaining over-
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Fig. 3: Comparison between an irrotational solitary wave com-
puted by Tanaka’s method (solid line) and our rotational solution
(dashed line) for (a) amax = 0.2 (y = +0.5) at ¢+ = 310 and (b)
amax = 0.4 (y=—0.3) atr = 465.

all preserved. Small fluctuations are discernible due to interaction of the
pulse with the low-amplitude ambient radiation. The latter is produced
during the early stages when the initial solitary wave enters the rotational
field, and then it contaminates the entire domain via the periodic bound-
ary conditions. On the other hand, a counter-propagating current causes
the wave to grow and, if the vorticity is not too strong, a near-steadily
progressing pulse of height amax > a emerges and coexists with smaller
ambient radiation. If the vorticity is too strong, the solitary wave quickly
steepens and the computer code breaks down. As with Stokes waves,
the extent to which a solitary wave is amplified (or reduced) is directly
related to the vortical strength.

Figure 3 shows a direct comparison between an irrotational solitary
wave computed by Tanaka’s method and our rotational solution for ini-
tial height a = 0.3. Two cases are presented: amax = 0.2 (y = +0.5)
and amax = 0.4 (y = —0.3). On each graph, the two curves are super-
imposed in such a way that their central crests coincide. Snapshots of
the rotational solution are chosen at a late time after relaxation to the
equilibrium state. We observe that, if ¥ < 0 (resp. y > 0), the rotational
solitary wave tends to be thinner (resp. broader) than the irrotational one.
Similar differences in wave shape were highlighted by Ali and Kalisch
(2013) in the context of long-wave models. Although the fluctuations
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Fig. 4: Head-on collision of two initial solitary waves of equal
height a = 0.2 on shallow water at (a) t =0, (b) t =98, (c) t = 106
and (d) t =200 for y= —0.3.

due to interaction with the ambient radiation are more apparent in the
lower-amplitude solution (amax = 0.2), it is clear from Fig. 3 that a co-
propagating current (¥ > 0) has a broadening effect on the surface wave
profile.

We further examine the stability of these solitary waves by simu-
lating their pairwise collisions. Figure 4 describes the head-on collision
of two solitary waves, moving in opposite directions, for y = —0.3. Al-
though the two waves are initially of the same height a = 0.2, their col-
lision does not remain symmetric over time because the background cur-
rent acts against the right-moving wave and in favor of the left-moving
wave. Consequently, the former gets thinner and taller while the latter
gets broader and smaller. Aside from this behavior, the head-on collision
resembles its counterpart in the irrotational case (Craig et al, 2006). In
particular, the two distinct waves seem to be preserved after the colli-
sion. A small residual wave is likely produced but it is difficult to assess
how inelastic this interaction is because the residual wave would not be
discernible from the ambient radiation that appears from the beginning.
Note that the solution reaches an elevation that is slightly higher than the
sum of the two initial wave heights at the peak of the collision (Fig. 4c).

An example of an overtaking collision is given in Fig. 5 with both
waves moving in the same direction. The vorticity is again set to ¥ =
—0.3. Two different wave heights are initially specified so that, over
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Fig. 5: Overtaking collision of two initial solitary waves of height
a= 0.3 and a = 0.1 on shallow water at (a) t = 0, (b) t = 395, (c)
t =480 and (d) r = 1000 for y = —0.3.

time, the large wave catches up and passes the small one. Both of them
get thinner and taller in the presence of the counter-propagating current.
Because the waves travel in the same direction, this type of collision
typically span a longer time than a head-on collision. Here again, the
general picture is similar to that in the irrotational case, with both waves
re-emerging pretty much intact from the collision.

Our direct time-dependent simulations suggest that, if |y] is not too
large, there exist large-amplitude rotational solitary waves that would
travel steadily without change of speed and shape in the absence of
disturbances. Moreover, they seem to be stable since they remain mostly
unaffected by the surrounding radiation and through mutual collisions.
These results support the theoretical predictions of Groves and Wahlén
(2008) on the existence of solitary waves with vorticity, as well as the
recent computations of Lannes and Marche (2016) based on the (weakly
dispersive) Green—Naghdi equations.

CONCLUSIONS

We have proposed a direct numerical solver for the full time-dependent
equations describing two-dimensional nonlinear water waves over ar-
bitrary (uniform) depth with nonzero constant vorticity, based on the
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Hamiltonian formulation of Wahlén (2007) and Constantin et al (2008).
As an extension of the numerical approach of Craig and Sulem (1993),
our solver reduces the original Laplace problem to a lower-dimensional
computation involving surface variables alone. This is accomplished by
introducing the DNO and associated HT which are expressed in terms of
a convergent Taylor series expansion about the unperturbed geometry of
the fluid domain. Each term in these Taylor series is determined recur-
sively and computed efficiently by a pseudo-spectral method using the
FFT. In particular, we have derived a new recursion formula to evaluate
the HT in its series form, where each term is given as a sum of concate-
nations of Fourier multipliers with powers of the surface elevation.

We have applied our numerical model to simulating nonlinear solu-
tions in two distinct limiting regimes: Stokes waves on deep water and
solitary waves on shallow water. A co-propagating background current
(Y > 0) is found to have a stabilizing, and even attenuating, effect on sur-
face wave dynamics. If ¥ is large enough, the BFI of Stokes waves may
be completely inhibited while solitary waves are significantly reduced
in amplitude. A counter-propagating current (Y < 0) on the other hand
tends to amplify surface waves. In particular, it promotes and enhances
the BFI of Stokes waves (by making it happen sooner with a larger wave
growth). If the opposing current is too strong, wave breaking eventu-
ally occurs and the computer code breaks down. Our numerical results
also suggest the existence of stable rotational solitary waves in the fully
nonlinear and fully dispersive setting, if |}| is not too large.

Because of the restriction to constant vorticity and the fact that
we have used a mathematical formulation that is well suited to this
particular setting, our numerical model is not directly extensible to three
dimensions (with two horizontal dimensions). The three-dimensional
problem is more complicated and, accordingly, the mathematical
formulation and associated models are more sophisticated (Castro and
Lannes, 2015). On the other hand, extension to an uneven bottom is
possible with the present model and would require a modification of the
series expansion for the DNO and HT as done in Guyenne and Nicholls
(2007). This extension is envisioned for future work.
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